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ABSTRACT Light field (LF) images suffer from low spatial resolution due to the trade-off between angular
and spatial resolutions. Thus, spatial super-resolution (SR) of LF images is an essential task to obtain
high-quality LF images. However, the existing SR networks still have limitations, since they exploit only
single-level features to use sub-pixel information in LF images. In this paper, we proposed a light field super-
resolution (LFSR) network to effectively improve the spatial resolution of light field images. The proposed
network takes one target image and its 8-neighboring images for references. We construct multi-level
structures for the proposed network to effectively estimate and mix sub-pixel information in reference
images. The proposed network is composed of a feature extractor, a feature warpingmodule, a feature mixing
module, and a upscaling module. The feature extractor provides multi-level features for SR and offsets to
the feature warping module to obtain aligned features for multiple reference images. The feature mixing
module mixes multiple aligned features based on the similarity between the target and reference images to
obtain multi-level mixed features. Finally, the upscaling module generates a high-resolution residual image
using themulti-levelmixed features. Experimental results demonstrate the proposed network outperforms the
state-of-the-art methods on various light field datasets. The pre-trained model and source codes are available
at https://github.com/Hwa-Jong/LF_MLS.

INDEX TERMS Light field, super-resolution, light field super-resolution, convolutional neural network,
multi-level feature, deformable convolution.

I. INTRODUCTION
Light field cameras record not only spatial information but
also angular information by inserting a micro-lens array
between the main lens and the image sensor [1]. From
recorded spatial and angular data, multi-view images of a
scene can be reconstructed. These light field images have
been used in many computer vision tasks, such as saliency
detection [2], [3], depth sensing [4], [5], de-occlusion [6]–[8].
However, light field images have low spatial resolution due
to the trade-off between angular and spatial resolutions.
Low spatial resolution images lead to performance degrada-
tion of computer vision applications. Therefore, light field
image super-resolution (LFSR) is required to improve the
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performance of the applications. To solve this problem,
we propose a LFSR network to achieve spatial super-
resolution based on multi-level structures.

Since light field images are highly correlated with each
other, sub-pixel information can be estimated using adja-
cent view images. Different from traditional single image
super-resolution (SISR), LFSR can generate high-resolution
images using sub-pixel information estimated from other
light field images. Recently, with the release of large LFSR
datasets [7], [9]–[13], many deep learning networks [14]–[18]
have been developed based on convolutional neural networks
(CNNs), which uses multiple view images as references.
Figure 1 shows some approaches in the existing LFSR meth-
ods using multiple view images. All LF images are used
to generate all super-resolved LF images (all-to-all) [15],
[19] or each super-resolved view image (all-to-one) [18].
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FIGURE 1. Examples of approaches in SR of 4 × 4 LF images: (a) all-to-
all [15], [19], (b) all-to-one [18], (c) ResLF [14], and (d) LFSR_AFR [16].
Red border boxes represent target images, which are super-resolved,
and blue boxes are reference images.

Also, ResLF [14] uses several sets of LF images in various
directions. These approaches require the fixed angular res-
olution of LF images to obtain super-resolved LF images.
On the other hand, the approach in LFSR_AFR [16], which
uses 8-neighboring view images, can provide super-resolved
LF images regardless of angular resolutions. However,
LFSR_AFR [16] still has limitation that it exploit only
single-level features to increase the spatial resolution.

In this paper, we propose a light field super resolution
network, which enhance the spatial resolution of LF images,
based on multi-level structures. The proposed network con-
sists of a feature extractor, a feature warpingmodule, a feature
mixing module, and a upscaling module. The proposed net-
work takes one target view image and its 8-neighboring view
images for references. In the feature extractor, the proposed
network extracts low-level features, as well as high-level fea-
tures for each view image. Then, the feature warping module
warps features of reference images to the target image using
deformable convolution to obtain aligned features. Next, the
feature mixing module yields multi-level mixed features by
combining the multiple aligned features of reference images
based on the similarity between the reference images and the
target image. Finally, the multi-level mixed features are used
to produces a super-resolved residual image in the upscaling
module. Experimental results demonstrate that the proposed
LFSR network outperforms the state-of-the-arts on various
LF datasets without increasing the number of parameters.

II. RELATED WORK
Image SR aims to generate a high-resolution image from its
low-resolution image. However, image SR is a classical ill-
posed problem [20]. To solve this problem, many CNN-based
SR networks have been developed to improve the SR per-
formance. SR can be categorized into single image super-
resolution (SISR), video super-resolution (VSR), and light
filed super-resolution (LFSR).

A. SISR
The goal of SISR is to generate a high-resolution image
from only one low-resolution image. SRCNN [21] is the first
SISR network, which is composed of only three convolution

layers. Also, VDSR [22] including 20 convolution layers was
developed. After that, many CNN-based SISR networks have
been developed, including attention-based [23], [24], and
generative adversarial networks-based [25], [26] methods.

B. VSR
VSR attempts to increase the spatial resolution of frames
based on temporally adjacent frames. In terms of exploiting
sub-pixel information of reference frames through motions,
VSR is similar to LFSR. DUF [27] generated high-resolution
frames using dynamic upsampling filters. Tian et al. [28]
adopted deformable convolution [29] for VSR. EDVR [30]
reconstructed high-resolution frames using a deformable
alignment module and temporal and spatial attention fusion
modules.

C. LFSR
LFSR aims at generating high-resolution LF images from
low-resolution LF images. To learn mapping between low
and high-resolution light field images based on data-
driven method, Yoon et al. [31] proposed an early model
for LFSR based on deep CNNs. Fan et al. [32] proposed
two-stage CNNs for SISR and multi-patch fusions. Gul and
Gunturk [19] proposed two networks for angular SR and spa-
tial SR.Wang et al. [33] improved horizontally and vertically
stacked images separately and combined the using stacked
generalization. Zhang et al. [14] divided view images into
four groups and stacked views in each group to use residual
information between neighbor views. Yeung et al. [34] gen-
erated high-resolution LF images using the spatial-angular
separable convolution. Ko et al. [16] proposed two networks
to improve spatial and angular resolution based on the adap-
tive feature remixing. Jin et al. [18] proposed an all-to-one
strategy for LFSR, which enforces the LF parallax structure
in reconstructed LF images.

III. PROPOSED NETWORK
We adopt the 4D light field representation in [35]. Thus, the
light field can be represented as:

L(u, v, x, y) ∈ R3, (1)

where L is in the color space, such as RGB space. Also,
(u, v, x, y) are defined on the domain NU ×NV ×NW ×NH ,
where Nk , {1, 2, . . . , k}. Also, (u, v) denotes an angu-
lar coordinate and (x, y) denotes a spatial coordinate. Thus,
L hasU×V light field images ofH×W spatial resolution. Let
Iu denote a view image at an angular coordinate u = (u, v).
The proposed network super-resolves each view image Iu to
reconstruct higher-resolution light field

LHR(u, v, x, y) ∈ R3, (2)

defined on NU × NV × NrW × NrH with a scale factor r .

A. NETWORK ARCHITECTURE
Figure 2 shows the overview of the proposed network.
To increase the spatial resolution of a view image Iu, the
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FIGURE 2. Architecture of the proposed network.

FIGURE 3. The different number of available reference images according
to angular coordinates of the target image.

proposed network additionally takes 8-adjacent view images
in the angular domain to use sub-pixel information. Let Iu =
{Ii}9i=1 denote 3 × 3 view images centered on Iu. They are
indexed from top-left to bottom-right, and thus we refer
to I5 = Iu as a target image and {Ii}9i=1,i6=5 as reference
images. As in Figure 3(a), a target image has 8 reference
images when it is located in center of light field. On the
other hand, some reference images are unavailable when a
target image is located in the boundary of light field as in
Figure 3(b). In this case, we use virtual images filledwith zero
value for unavailable reference images. To this end, given Iu,
the proposed network estimates a super-resolved image IHRu
through feature extractor, feature warping, feature mixing,
and upscaling modules.

FIGURE 4. Structure of the feature extractor.

1) FEATURE EXTRACTOR
The feature extractor consists of a convolution layer and
six residual blocks. It takes each view image and extracts a
feature for every two residual blocks to construct multi-level
features. Thus, 3-level features are obtained from the feature
extractor. As in Figure 4, we use two feature extractors of the
same structure to extract SR and offset features. To this end,
for each Ii, multi-level SR features {Fli ∈ RH×W×C

}
3
l=1 and

multi-level offset features {Ol
i ∈ RH×W×C/2

}
3
l=1, where

C = 32, are obtained.
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FIGURE 5. Structure of the feature warping module.

2) FEATURE WARPING MODULE
Reference images in Iu contain sub-pixel information for SR,
but there are various sub-pixel shifts according to angular
positions such as horizontal, vertical, and diagonal offsets.
To use sub-pixel information effectively, SR features of ref-
erence images should be aligned to the target image I5. The
feature warping module estimates offsets between the target
image I5 and reference images to warp SR features of refer-
ence images to the target frame.

Figure 5 illustrates the detailed structure of the feature
warping module. For each reference image Ii, i 6= 5, off-
set features Ol

i and Ol
5 are concatenated, and the concate-

nated one is fed into a convolution layer to obtain an offset
U l
i ∈ RH×W×2. Then, by employing the deformable con-

volution [36], Fli is warped to the target image to obtain an
aligned SR feature Al

i . Here, U
l
i is used for the offset in the

deformable convolution. This warping process is performed
for all feature levels, and thus multi-level aligned features
for Ii, {Al

i}
3
l=1, are obtained.

Warping results at lower levels tend to preserve detailed
local motions, while those at higher levels contain global
shifts between target and reference images. To explore
these multi-level features effectively, the feature warping
module combines them based on RCAB [23]. Specifi-
cally, multi-level aligned features are concatenated along
the channel dimension, and then the concatenated fea-
ture sequentially passes through one convolution layer and
three RCABs to form the combined aligned feature Ai.
Since RCAB is the channel attention block, it can gen-
erate more effective feature for SR from the concate-
nated feature. Unlike the reference images, the multi-level
SR features for the target frame are combined without the
deformable convolution, since the SR features for the target
frame do not need the warping processing. To this end, the
feature warping module provides the set of aligned features
{Ai}

9
i=1 for all view images.

3) FEATURE MIXING MODULE
Figure 6 illustrates the detailed structure of the feature
mixing module. The feature mixing module combines the
aligned features of the reference images to explore sub-pixel

FIGURE 6. Structure of the feature mixing module.

information for SR of the target image. However, some ref-
erence images have the low reliability to use sub-pixel infor-
mation. For instance, as in Figure 3(b), reference images are
filled zero images, when the target image is on the bound-
ary of LF. To alleviate the impact of those dummy images,
we compute similarity scores between the target image and
reference images.

For each reference image Ii, i 6= 5, the feature mixingmod-
ule compares aligned features A5 and Ai through point-wise
dot product. Thus, the similarity score si is defined as

si = 8
exp(Tr(Ã5 × ÃT

i ))∑9
i=1,i6=5 exp(Tr(Ã5 × ÃT

i ))
(3)

where Tr(·) denotes a trace operation and Ãi ∈ RHW×C is the
reshaped matrix ofAi. Then, the similarity scores are used for
weights of aligned features.

Given weighed aligned features of reference images,
{siAi}

9
i=1,i6=5, the feature mixing module combines them

using several RCABs. The weighed aligned features of ref-
erence images are concatenated, and then the concatenated
feature sequentially passes through one convolution layer and
ten RCABs to obtain mixed features. The feature mixing
module extracts mixed features from every two RCABs.
To this end, the feature mixing module produces multi-level
mixed features {Ml

}
5
l=1.

4) UPSCALING MODULE
The upscaling module takes A5 and the multi-level mixed
features {Ml

}
5
l=1 to increase the spatial resolution of the

target image I5. Figure 7 illustrates the architecture of the
upscaling module. To consider the multi-level mixed features
sequentially, we use several U-blocks, each of which is com-
posed of one convolution layer and three residual blocks.
Each U-block takes the mixed feature of each level and the
output of the previous U-block as an input and sequentially
processes it to extract the higher-level feature.

Also, we adopt the information pool [37] to combine
multi-level outputs of U-blocks. The information pool ana-
lyzes outputs of the first to fifth U-blocks to extract a infor-
mation feature P. The information feature P is used in the
last four U-blocks as in Figure 7. U-blocks at the same level
are linked with skip connections as done in U-net [38]. The
upscaling module adds the output of the last U-block to A5,
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FIGURE 7. Structure of the upscaling module. Red bordered features are fed to information pool to generate the information feature.

TABLE 1. List of LF images in the test set.

and the pixel-shuffle layer [39] generates a super-resolved
residual image 4IHR5 , whose spatial resolution is rH × rW .
Finally, the super-resolved image for the target image IHR5 is
defined as

IHR5 = IBilnear5 +4IHR5 , (4)

where IBilnear5 is a up-sampled target image using bilinear
interpolation.

5) IMPLEMENTATION DETAILS
As done in [14]–[16], [33], we convert RGB color space
into YCbCr color space and try to super=resolve only
Y color space. Cb and Cr colors are up-sampled using bicu-
bic interpolation. We use the L1 loss function between the
predicted super-resolved image and the ground-truth. We use
the Adam [40] optimizer and the leakyReLU [41] with the
slope of 0.2 for negative input as the activation function. The
batch size is set 32. Also, the learning rate is initially set

to 0.001 and decreased by a factor of 0.5 for every 50 epochs.
We stop the training after 300 epochs.

IV. EXPERIMENTAL RESULTS
We first perform ablation studies to demonstrate the com-
ponents in the proposed network. Next, we compare
the proposed network with the state-of-the-arts networks,
including [14], [16].

A. DATASET AND METRIC
For experiments, we use HCI [9], HCI2 [10], EPFL [12],
Stanford [11], and INRIA [7]. Here, HCI and HCI2 are
synthetic datasets, whereas EPFL, Stanford, and INRIA are
real-world datasets. For the fair comparison, we use the
same training set as [14], [16], which is composed of 246 LF
images. Also, Table 1 lists test LF images used in our exper-
iments. For each scene in the test set, 9× 9 view images are
used for the evaluation. For quantitative evaluation, we use
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TABLE 2. Ablation studies on the proposed network.

TABLE 3. Comparison of the proposed network with the existing networks in terms of PSNR/SSIM scores for scale factor ×2 and for all view images. The
best results are boldfaced, and the second best ones are underlined.

FIGURE 8. Bar plots of PSNR/SSMI scores for comparisons.

the PSNR/SSIM scores between the original high-resolution
image and the super-resolved image.

B. ABLATION STUDIES
We perform ablation studies to demonstrate the effectiveness
of the components in the proposed algorithm. Table 2 shows
the comparative results between the proposed network and its
variations.

1) WITHOUT REFERENCE IMAGES
We do not use reference images to enhance the spatial reso-
lution of the target image. In other words, the network takes
only the target image as an input. Also, in this setting, the
feature warping module and the feature mixing module are
excluded from the proposed network, since there are no refer-
ence features. As in Table 2, without sub-pixel information in
reference images, the network provides unreliable SR results.
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FIGURE 9. Qualitative comparison of the proposed network with Bicubic, ResLF [14], and LFSR_AFR [16] on the real-world datasets.

2) WITHOUT FEATURE WARPING MODULE
We remove the feature warping module from the pro-
posed network to validate the effectiveness of the fea-

ture warping module. Without the feature warping mod-
ule, features of reference images are not aligned to the
target image, and thus sub-pixel information between the
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FIGURE 10. Qualitative comparison of the proposed network with Bicubic, ResLF [14], and LFSR_AFR [16] on the synthetic datasets.
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TABLE 4. Comparison of the number of network parameters and run time.
Here, we super-resolve 187 × 270 × 9 × 9 LF images to 374 × 540 × 9 × 9.

target and reference images cannot be precisely exploited.
To this end, incorrect sub-pixel information degrades the SR
performance as in Table 2.

3) WITHOUT FEATURE MIXING
wemeasure the performance of the proposed networkwithout
the featuremixingmodule.In Table 2, we observe that the per-
formance is degraded severely for all datasets. This indicates
that the featuremixingmodule is designed to combine various
features in the target and reference images effectively.

4) WITHOUT MULTI-LEVEL STRUCTURE
we remove all multi-level structures in the proposed net-
work. Specifically, in the feature extractor, only single-
level (highest-level) feature is extracted from each view
image. Also, in feature warping module, the warping pro-
cess is performed on the single-level feature for each image.
Finally, only single-level mixed feature (M5) is extracted
from the feature mixing module. Then, the upscaling module
increases the resolution using the single-level mixed feature.
This variation degrades the performance of the proposed
network, since receptive fields of various sizes cannot be
available.

C. COMPARISON WITH STATE-OF-THE-ARTS
Table 3 and Figure 8 compare the proposed network with
the existing LFSR networks (LFNet [33], ResLF [14],
and LFSR_AFR [16]), the SISR network (EDSR [42]) the
SISR network (EDSR [42]), and the video SR network
(SOF-VSR [43]). The PSNR and SSIM scores of the existing
algorithms on the HCI, HCI2, EPFL, and Stanford datasets
are from LFSR_AFR [16]. For the INRIA datset, we compare
SR results using the source codes, provided by the respective
authors.

In Table 3, we observe that the proposed network achieves
the best performance on all datasets. Especially, the proposed
network outperforms the state-of-the-art [16] with signifi-
cant margins on the real-world LF dataset (EPFL, Stanford,
INRIA). Figure 9 and Figure 10 illustrate qualitative LFSR
results for real-world and synthetic images, respectively.
The proposed network generates visually pleasing results as
comapred with the existing networks. Finally, Table 4 shows
the number of network parameters and run time of the pro-
posed algorithm and the state-of-the-arts [14], [16]. The pro-
posed network requires the smallest number of parameters.
It is worth pointing out that the proposed network surpasses
the state-of-the-arts, even though the proposed network uses
the minimum network parameters. Also, the proposed net-
work is faster than LFSR_AFR [16].

V. CONCLUSION
In this paper, we proposed the LFSR network based on multi-
level structures. The proposed network extracts multi-level
features to estimate sub-pixel information from reference
images effectively. It then provides multi-level mixed fea-
tures by combining reference features based on the similarity
between the target and reference images. Using multi-level
mixed features, the proposed network gradually reconstructs
a residual image for SR. Experimental results demonstrated
that the proposed network outperforms the state-of-the-art
LFSR methods on various LF datasets.
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