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ABSTRACT Twitter has been an important platform for people to discuss and share health-related informa-
tion. It provides amassive amount of data for real-timemonitoring of infectious diseases (such as COVID-19)
and freeing disease-prevention organizations from the tedious labor involved in public health surveillance.
Personal health mention (PHM) detection is one of the critical methods to keep up-to-date on an epidemic’s
condition; it attempts to identify a person’s health condition based on online text information. This paper
explores PHM identification for COVID-19 through Twitter. We built a COVID-19 PHM data set containing
tweets annotated with four types of COVID-19-related health conditions. A masked attention model was
devised to classify the tweets as self-mention, other-mention, awareness, and non-health. We obtained
promising results on the PHM identification task. The classification results facilitate timely healthmonitoring
and surveillance for digital epidemiology.We also evaluate how the attentionmechanism and trainingmethod
affect the model’s predictive performance.

INDEX TERMS COVID-19, deep learning, health monitoring, social media, text mining.

I. INTRODUCTION
Diseases outbreaks like the COVID-19 pandemic have been
occurring frequently worldwide in recent years. When faced
with unexpected public health threats, it is critical to provide
warnings as early as possible to raise the alert and to prevent
harm from appearing in countries [1]. Thus, public health
surveillance has gainedmuch attention in healthcare research.
Public health surveillance consists of activities aimed at con-
tinuously and systematically collecting health-related data as
well as identifying and interpreting patterns found in the data.
However, traditional surveillance methods are costly and
time-consuming. Health-related data are usually collected
from patients and reported to a public health department for
professional analysis [2], but the entire procedure lacks time-
liness. When a society faces a rapidly spreading infectious
disease, traditional surveillance falls short in monitoring,
evaluating, and predicting the trajectory of the disease. This
prolongs the effective reaction time for the pandemic and
could cause serious consequences.

With the popularity of the internet, large amounts of health-
related data can be found on social media, blogs, online
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forums, and other platforms [3]. The number of social media
users has been growing rapidly in the past decade. People
discuss and share information and opinions on social media
platforms [4]. It has been reported that two-thirds of Amer-
ican adults use social media to post their status, opinions,
and other information on a regular basis. This provides the
opportunity for public health departments and researchers to
monitor the status of public health in real time at minimal
cost [5]. Research directed at disease surveillance was ini-
tiated to leverage social media data as a means to acquire
early warning of epidemics or infectious diseases outbreaks.
The results of the analysis aid public health departments
in providing timely medical attention and quicker health
services to communities. For example, a vast number of
tweets with the hashtag ‘‘COVID-19’’ or related keywords
have appeared in recent months. Many organizations, such
as The Atlantic, have launched COVID tracking projects to
analyze and monitor the status of COVID based on tweets
(https://covidtracking.com/). This may provide greater sup-
port for public health departments to intervene in advance
of the spread of epidemics. The World Health Organiza-
tion (WHO) even states that early detection can be found
through social media data for more than 60% of epidemics
[3]. In previous research and applications, tweets have been
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used for the early detection of infectious diseases such as
Ebola [3], E. coli [5], cholera [40], and seasonal conjunctivitis
[41]. Thus, health surveillance based on social media data is
highly important for communities and societies globally.

A massive amount of data is generated on social media
continuously, with reports that around 3.5 million English
tweets related to COVID-19 are posted every day [14],
but the majority of them are not informative or are irrele-
vant for the downstream tasks in public health surveillance.
Manual identification of useful tweets is costly and time-
consuming. Thus, a critical step in online health surveillance
is to develop an automatic way to identify personal health
mentions (PHMs) in tweets [6]. The task involves detecting
whether a particular text contains a PHM. Specifically, PHM
detection attempts to classify each post into one of four
categories: non-health, awareness, self-mention, and other-
mention. For example, the tweet ‘‘had my COVID-19 nasal
swab Saturday. Got a call last night from CDC, test was posi-
tive!’’ should be categorized as a self-mention, as it mentions
that the person who posted the tweet has a disease. The tweet
‘‘COVID-19 can be prevented. Watch for these signs and
symptoms’’ should be categorized as awareness, as the post
provides disease-related information but does not mention a
specific patient or reference the person who posted it. ‘‘Need
some corona to cure my hangover’’ should be classified as
non-health, as the word ‘‘corona’’ here is the beer brand, not
the virus.

PHMs are crucial for health surveillance. They can screen
posts to filter out those irrelevant to health and collect those
relevant to health in order to keep them for subsequent public
health data analysis and downstream public health applica-
tions. However, studying PHM detection based on tweets
has several challenges. First, tweets are usually short texts
in free form; users have no predefined template to express
their opinions or health-related information, and tweets are
characterized by informal and creative language, including
emojis and idiomatic and ambiguous expressions. Consider,
for example, ‘‘SRSLY the @LushLtd crashed at the stroke of
midnight .’’ For this tweet, it is necessary to contend
with linguistic variations and effectively extract the seman-
tic information from the free-form text. Second, though the
amount of tweet data is immense, the amount of annotated
data is usually limited due to the high cost of manual annota-
tion; this, in turn, limits the application of tools in the task of
PHM identification. Because of these challenges, researchers
have acknowledged that the methods performed for social
media text processing and mining are worse than for normal
and standard texts [7].

This paper utilizes a novel deep neural network struc-
ture and model-training strategy to address these challenges.
We built and annotated a COVID-19 PHM tweets corpus.
We encoded tweets using word embeddings. The embeddings
are fed into a bidirectional gate recurrent unit (BiGRU) layer,
which sorts and extracts semantic information from short
texts. The BiGRU layer is followed by a masked attention
layer, which fully leverages the tweets’ keywords to solve

the issue of informal and ambiguous expressions in tweets.
The outcome of this layer is then inputted into the SoftMax
classifier to identify the corresponding PHM. In addition,
we developed a novel epoch-wise moving-average-based
training method to improve the efficiency of model training.

This paper makes the following contributions. First,
we built the first COVID-19 tweet corpus for PHM iden-
tification research. We collected and annotated more than
11,000 tweets with the four types of health mentions. Second,
we modeled PHM identification as a text classification task
and proposed a masked attention model to classify each
tweet into the four categories. The mask was able to han-
dle the different-length issue seen in tweets. The attention
mechanism was able to fully utilize the keywords in tweets
and thus mitigated the challenge of informal, idiomatic,
and ambiguous expressions in tweets. Third, we proposed
a novel model-training method based on an epoch-wise
moving average of the model parameters. The newly pro-
posed method fully utilizes the information obtained at
different training stages and has achieved better results
than traditional model training. To summarize, this paper
is regarded as the first mover to address the research ques-
tion of COVID-19 PHM identification from tweets and
develop baseline methods. The code and data are released at
https://github.com/yw57721/PHM_COVID19_MaskedAtten
to promote the research along this direction.

II. RELEVANT LITERATURE
A. PHM IDENTIFICATION BASED ON SOCIAL MEDIA DATA
PHM detection in social media data is a relatively newly
defined research topic, although similar topics—such as pub-
lic health surveillance—have been studied previously. Most
existing work has used traditional machine-learning methods
and has combined domain knowledge or external resources
other than social media texts to identify PHMs. However,
the knowledge and resources may be disease-specific, and
these developed methods may be difficult to generalize to
other diseases. Lamb et al. combined linguistic features in
detection [8]. Word classes, parts of speech patterns, and
stylometry have been incorporated in Twitter texts to detect
influenza. Other researchers have investigated various fea-
tures. For example, Yin et al. applied stylistic features to
Twitter, such as emoji hashtags, to train a scalable classifier to
detect PHMs [9]. Paul and Dredze proposed an ailment topic
aspect model (ATAM) to identify ailment-related tweets [10].
This model organizes symptoms and the corresponding treat-
ments of ailments into different topics with different levels
of granularities; the combination of keywords and associated
topics is then applied to identify the ailment. Gesualdo et al.
leveraged Twitter data to detect influenza-like illnesses (ILI)
[11]. They applied the case definition from the European
Center for Disease Prevention and Control, which includes
technical jargon related to the disease. However, most of the
disease mentions are in layman’s terms. Thus, they identified
all the layman expressions related to the symptoms or to
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the disease and the corresponding technical terms or jargon,
and they trained a model based on the jargon–layman terms
data pairs to detect ILI cases mentioned on the internet.
Coppersmith et al. applied basic natural-language processing
techniques to detect four possible mental health conditions on
Twitter [12]; they found that language-model-based methods
significantly outperformed traditional methods. Karisani and
Agichtein combined four types of features in their neural
network structure: lexical features, syntactic features, word-
embedding-based features, and context features [6]. They
found that incorporating the extra knowledge could improve
performance. Iyer et al. observed the use of figurative expres-
sions in tweets and combined a figurative-speech detection
module with a PHM detection module to augment PHM
detection [13].

B. ANALYSIS OF COVID-19 BASED ON MINING SOCIAL
MEDIA DATA
Recently, much attention has been drawn to mining social
media data, such as tweets, to analyze the status and pub-
lic response to COVID-19. For example, the Workshop on
Noisy User-generated Text in EMNLP 2020 organized one
shared task on the identification of informative COVID-19
text from English tweets [14]. The participant teams of the
task were provided with a corpus containing 10k of annotated
tweets with two labels, ‘‘informative’’ and ‘‘uninformative.’’
Informative tweets included the mention of suspected cases,
confirmed cases, deaths, number of tests performed, etc.
In this shared task, most of the top-ranked teams applied a
pre-trained language model such as BERT and its variants
for this binary classification task [15]. The techniques of
adversary training and ensemble were widely used. The top
10 teams applied model-ensembling to leverage the power of
different models [16]. It should be noted that the informa-
tive tweets in this shared task covered three classes in the
PHM identification task studied in this paper, namely self-
mention, other-mention, and awareness. The uninformative
tweets corresponded to the non-health class in this paper.
Thus, the research question in this paper is finer in granu-
larity. We argue that PHM identification is more useful for
downstream applications of health monitoring, as the tweets
in the awareness class cannot provide much information on
the latest status of the disease.

Researchers have also sought to understand the tweets’
content related to COVID-19. Some work has been done to
characterize self-reported symptoms, experiences with test-
ing, and other activities related to COVID-19 from social
media. Alanazi et al. manually identified self-reports of
COVID-19 symptoms in tweets. They conducted an offline
interview with the posters to rank the appearance of the
first three symptoms and then identified the most common
ones [17]. However, their work mostly deals with descrip-
tive statistics and cannot identify the symptom automatically.
Mackey et al. applied a biterm topic model to identify tweets
about self-reported experiences and symptoms of COVID-19
[19]. The tweets were then clustered into fivemain categories,

such as the report of symptoms, discussion of recovery, and
confirmation of negative COVID-19 diagnoses.

Besides the characterization of symptoms and experiences,
some papers have also mined public opinion from tweets.
Feldman trained GPT-basedmodels for prompt-based queries
on public opinion toward COVID-19 [39]. Hosseini et al.
combined both manual annotation and topic-modeling tools
to identify the frequent topics [18]. They also used the frame-
work to track public responses to the pandemic and its evolu-
tion over time.

COVID-19 has had an unprecedent impact on human
beings, not only physically but also mentally. Thus,
researchers have also investigated tweets for sentiment anal-
ysis caused by COVID-19. Nemes and Kiss used RNN to
classify tweets into four emotions: weakly positive, weakly
negative, strongly positive, and strongly negative [35]. They
also used this model to determine which emotional manifes-
tations (such as hashtags) appeared on a specific topic during
a given time period. Researchers have also recognized that
emojis play a critical role in representing emotional con-
tent. A BERT-based model was presented to predict emojis
in multilingual tweets [20]. Xue et al. used latent Dirich-
let allocation (LDA) to detect topics of sentiments, popular
unigrams, and bigrams in tweets [36]. They clustered the
topics into five categories and found that the feeling of fear
is significant in the discussion of COVID-19 cases. Similarly,
Jang et al. used topicmodeling tomine tweets and identify the
COVID-19 topics that are most relevant to public health [38].
They also applied aspect-based sentiment analysis to interpret
public sentiment on COVID-19-related issues. Kruspe used
word2vec, ELMo, and BERT to encode tweets and map the
sentiment score into a range of [0, 1] using the sigmoid func-
tion [44]. They found that the sentiment started out negative
and became positive over time. But the sentiment is still under
the average sentiment in most countries during the studied
period. To summarize, this stream of research is not well
defined. The classes of sentiments / emotions vary across
papers, and there is no common data set for researchers to
examine.

III. MATH NEURAL PHM IDENTIFICATOIN
A. PROBLEM DEFINITION
We model the detection of personal health mentions
from tweets as a text-classification task [21]. Let T =(
t1, t2, . . . , t|T |

)
∈ T represent a tweet where ti is the i-th

word in the tweet and T is the tweet space. Let C =

{c1, c2, . . . , cn} be a set of classes that represent different
classes or labels. (Note that the terms ‘label’ and ‘class’ are
used interchangeably in this paper.) There are four possible
labels for a PHM task: 1) non-health, 2) awareness, 3) other-
mention, and 4) self-mention. Given a training set of tweets
D that consists of labeled tweets 〈T , c〉 such as 〈 ‘‘I wish
my cough caused by coronavirus could stop for like five
minutes’’, self-mention 〉, where 〈T , c〉 ∈ T × C, we sought
to develop a model f : T→ C to map each tweet to a label.
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In the testing or application stage, we can use the learned
model to detect which label should be assigned to a new tweet
T ′ for a disease by f (T ′).

B. NEURAL NETWORK STRUCTURE
Deep-learning methods have been considered an efficient
method for extracting the semantic information from texts
[34]. Their performance is state-of-the-art in almost all
natural-language processing tasks. Thus, we aim to adopt a
deep-learning-based method to perform the COVID-19 PHM
identification task. Tweets are short texts; thus, complicated
deep-learning units may not function well on tweet texts.
We use a relatively simple deep-learning unit—gated recur-
rent unit (GRU)—to extract the contextual information. GRU
is a type of recurrent neural network (RNN) unit that extracts
information from text. Compared with the popular long
short-term memory (LSTM) recurrent neural network, it has
a relatively simple structure but without much decreased
effectiveness in handling various tasks. In addition, tweets
contain informal, idiomatic, and ambiguous expressions; it
is harder for a computer to understand these complicated
language usages than formal text. We use an attention mecha-
nism to emphasize the keywords in the tweets so the semantic
information in the tweets can be better extracted and repre-
sented [31].

1) ENCODING OF TWEETS USING PRETRAINED WORD
EMBEDDINGS
In this paper, we use a 300-dimension GloVe word embed-
ding developed by Stanford University to encode each word
[22]. For the tweet T =

(
t1, t2, . . . , t|T |

)
, the corresponding

embedding of the tweet is X =
(
x1, x2, . . . , x|T |

)
, where xt is

the embedding of the t-th word in the text sequence based on
GloVe encoding.

2) GRU-BASED TEXT ENCODER
AGRUunit uses a reset gate rt and an update gate zt to control
how the contextual information is updated [24]. A GRU unit
ht is updated as

ht = (1− zt ) ◦ ht−1 + zt ◦ h̃t (1)

where ◦ is the Hadamard product and h̃t is the candidate state
of ht calculated as

h̃t = tanh(Whxt + rt ◦ (Uhht−1)+ bh) (2)

The update gate controls the amount of past information that
can be kept and the amount of new information added to
the current state t . The reset gate determines the past states’
contribution to the candidate state. These are updated as

zt = σ (Wzxt + Uzht−1 + bz) (3)

rt = σ (Wrxt + Urht−1 + br ) (4)

where Wh,Wz,Wr ,Uh,Uz,Ur represent the weights of each
gate and bh, bz, br are the biases of each gate. To simplify the
notation, we use ht = GRU (ht−1, xt ) to represent the above
calculations involved in GRU at state t .

FIGURE 1. The structure of the proposed attention-based model.

3) BIDIRECTIONAL GRU (BIGRU)
Each word in a text is dependent on its previous and future
words; thus, an effective approach should capture the relevant
information from both past and future directions. To achieve
this goal, GRU can be generalized to bidirectional GRU [25].
A BiGRU network consists of two parallel layers propagating
both forward and backward. Thus, the past and future infor-
mation in the text sequence can be encoded in the network.
The forward layer is denoted as

−→
ht = GRU(

−−→
ht−1, xt ), which

reads the tweet T =
(
t1, t2, . . . , t|T |

)
from t1 to t|T |, and

the backward layer is denoted as
←−
ht = GRU(

←−−
ht+1, xt ),

which retrieves the tweet from t|T | to t1.
−→
ht and

←−
ht can

be concatenated to form the BiGRU unit at time t—i.e.,
ht = BiGRU(ht−1, xt )

(
−→
ht :
←−
ht
)
, as shown in Fig. 1. This

bidirectional network structure is able to extract the past and
future information of each word in the text.

4) MASKED ATTENTION LAYER
Keywords are the critical elements for people to understand
the text meaning in a quicker way. In tweet comprehension,
keywords play an evenmore critical role, as tweets are usually
in informal and ambiguous language. Thus, we deploy the
attention mechanism to quantify the degree of relevance or
importance of eachword in themeaning of the tweet [26]. The
intuitive idea behind the attention mechanism is to reward the
keywords by assigning a bigger weight to them. In the tradi-
tional attention mechanism, given the output of the BiGRU
ht , the weight assigned to word embedding xt is calculated as

αt =
exp(uTt · uw)∑
i exp(u

T
i · uw)

(5)

where ut = tanh(Wwht + bw) and Ww and bw are parameters
estimated in the model-training stage. uwrepresents a context
vector: it is randomly initialized and updated iteratively in the
training of the model.

It should be noted that the text lengths of the tweets in the
corpus vary. It is essential to handle tweets of different lengths
by an appropriate method. The solution is to add padding
symbols in the short text to make all the texts have the same
length. The padding is meaningless and contains no semantic
information; thus, the weight assigned to the padding should
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be 0 so that the weights for the real informative words are not
diluted. In this way, we combine masking with the attention
method to update the attention-based weights as

αt =
exp(uTt · uw +Mt )∑
i exp(u

T
i · uw +Mi)

(6)

where Mt = −∞ if the t-th word in the text is padding;
otherwise, Mt = 0. As shown in Fig. 1, the output of the
attention layer is calculated as s =

∑
t αtht = (s1, s2, . . . sn)

where n is the dimension of the word embedding. This repre-
sents the weighted sum of the BiGRU outputs. To summarize,
the attention-based model is used to encode the tweets. The
attention layer can give different levels of ‘‘attention’’ to
words with different degrees of relevance to the text.

5) SOFTMAX LAYER
The output of the attention layer is fed into a SoftMax
function to perform the classification. Specifically, we can
calculate the probability that a tweet belongs to class j as

p̂j = SoftMax(Ws)j =
exp(Wjs)∑C
k=1 exp(Wks)

(7)

whereC is the number of classes of the text. In the COVID-19
PHM identification task, C = 4, as there are four classes.
A new tweet will be assigned to the class with the highest
probability.

C. MODEL TRAINING USING EPOCH-WISE MOVING
AVERAGE OF THE PARAMETERS
All the parameters in the BiGRU units and the attention
layers (i.e., the W ,U , b from equations (1) to (7)) are esti-
mated using the annotated tweets. The whole tweet corpus
is randomly divided into training, validation, and testing
sets (with 80%, 10%, and 10% of the tweets, respectively,
in this paper). The model is trained on the training set (i.e.,
the estimation of the parameters) by minimizing the cross-
entropy loss between the true label and the predicted label
distributions—i.e., L = −

∑M
i=1

∑C
j=1 I

i
j log(p̂

i
j), where M

represents the training-set size, p̂ij is the predicted probability
calculated (based on (7)) indicating the i-th tweet having the
j-th label, and I ij is a binary variable. I

i
j=1means the i-th tweet

is correctly labeled to class j. After each training epoch, the
model is tested on the validation set. Early-stopping strat-
egy is used to avoid model overfitting [30]; specifically, the
model training stops when the training loss on the validation
set stops decreasing. The updated parameters in the current
epoch are used as the final training results. If the loss value
continues to decrease, the next training epoch is conducted.

However, during the experiment, we noticed that although
the overall performance of F1 tended to increase with the
training epochs (before the stopping epoch), the classification
performance of a particular class might not increase corre-
spondingly. For example, the overall COVID-19 identifica-
tion performance in the 4th training epoch was better than
that of the 3rd epoch; however, the performance for label 2’s

classification in the 4th epoch worsened. This means that the
parameters in the 3rd epoch were better for class 2 COVID-19
PHM identification. Thus, overall performance improvement
comes at the expense of certain classes. This may not be good
for health surveillance purposes.

These findings motivated us to consider previous epochs’
parameter values in the current epoch. Specifically, we used
the epoch-average parameters to update the current epoch’s
parameter. Let

{
W t
i ,U

t
i , b

t
i : i ∈ {h, z, r,w}

}
be the set of

parameters learned at epoch t, where t starts from 1. Then,
we reset the parameter of the current epoch as the three-period
moving average of the latest three epochs,

W t
i ←

W t
i +W

t−1
i +W t−2

i

3

U t
i ←

U t
i + U

t−1
i + U t−2

i

3

bti ←
bti + b

t−1
i + bt−2i

3
(8)

for t > 2, i ∈ {h, z, r,w}; for t ≤ 2, we simply take the
average of all the previous epochs’ parameters as the current
epoch’s parameter value.

IV. EXPERIMENT SETTINGS
A. DATA PREPARATION
We built a COVID-19 tweet corpus for PHM identifica-
tion containing 11,231 tweets posted from February to
May 2020. The tweets were collected using hashtags such
as ‘‘COVID’’, ‘‘SARS,’’ ‘‘coronavirus,’’ ‘‘corona,’’ ‘‘pan-
demic,’’ and ‘‘quarantine.’’ We further processed the tweets
to remove the mentions, hashtags, and links and only keep
the relevant textual content. Two annotators with relevant
background knowledge of medical and public health inde-
pendently annotated the 11,231 tweets. We used Fleiss’s
kappa to evaluate the inter-annotator agreement between the
annotators. The Fleiss’s kappa value was 0.76, suggesting a
substantial agreement of the annotation [32]. For the tweets
annotated with different labels, the two annotators and one
consolidator with expertise in public health conducted further
discussions to resolve the annotation disagreement. The four
labels are as follows:

1 (self-mention): The tweet mentions a disease or health
condition for the person who posted it.

2 (other-mention): The tweet mentions a disease or health
condition for a person other than the person who posted it.

3 (awareness): The tweet contains the name of the disease
but is not related to any specific people being sick.

4 (non-health): The tweet may contain the name of the
disease but is not related to health.

Table 1 shows examples of these four types of tweets.
The four labels are in descending order of importance

from a health-monitoring perspective. The first two reflect
the status of the disease and the other two do not. Thus, if a
tweet can be assigned multiple labels, we will keep the more
important label only. For example, ‘‘We got our coronavirus
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TABLE 1. Examples of PHMs in tweets.

TABLE 2. Total numbers and percentages of each label for COVID-19.

test results. I am positive. A is also positive. The basement
quarantine continues’’ should have both self-mention and
other-mention labels, but wewill only assign the self-mention
label to the more important tweet.

The numbers for the data size and the distribution of the
data among the four classes are shown in Table 2. The data
distribution is highly imbalanced. The data sizes for classes
1 and 2 are small, and class 3 has a large majority of the
data. Although the annotated tweets are not on a massive
scale due to time and cost constraints, these statistics in
Table 2 roughly indicate the proportion of different types
of COVID-19-related tweets on Twitter. It is reasonable that
significantly fewer patients will post tweets and most of the
tweets reflect people’s awareness of the disease.

B. MODEL TRAINING
The entire data set was randomly divided into training, valida-
tion, and testing sets, with 80%, 10%, and 10% of the tweets,
respectively. We used stratified splitting to make sure that the
proportion of these four labels was roughly the same in the
training, validation, and testing sets. Adam optimization was
used, with the learning rate of 0.005. The embedding dropout
rate was set at 0.3, and the hidden dropout rate was set at 0.5.
The hyperparameters were primarily set by trial based on the
performance. We lowercased all the words in the tweets and
used twikenizer to tokenize the tweets.

C. PERFORMANCE MEASURE
We use accuracy, precision, recall, and F1 as performance
measures, as they are the major metrics for classification
tasks [27]. COVID-19 PHMs are modeled as a multiple clas-
sification problem. Precision and recall for each class can be
defined as: Precisioni =

TPi
TPi+FPi

, Recalli =
TPi

TPi+FNi
, where

TPi,FPi, and FNi are the true positive, false positive, and
false negative classification results for class I, respectively.
The F1 ratio is defined as F1i =

2∗precisioni∗recalli
precisioni+recalli

. To evaluate
the overall performance across multiple classes, weighted
precision, recall, and F1 score are used. The overall accuracy

is defined as the ratio between the total number of true
positive and the size of the testing set.

V. RESULTS AND DISCUSSION
A. OVERALL PERFORMANCE
To evaluate the effectiveness of the proposed approach,
we use four popular methods as the baseline for performance
comparison. These methods are:

• fastText [23]: fastText was developed by Facebook in
2017 for text classification purposes. It has become the
de facto approach for text classification, due to its sim-
plicity and effectiveness. The embeddings of each word
in the text and the corresponding n-gram features are
fed into a hierarchical SoftMax to get the corresponding
predicted labels. For example, the 4-grams of the word
‘‘cough’’ are ‘‘<cou’’, ‘‘coug’’, ‘‘ough’’, and ‘‘ugh>’’,
where ‘‘<’’ and ‘‘>’’ indicate the start and end of aword.
A 300-dimension GloVe is used for the embeddings.

• Convolutional neural network (CNN) [28]: CNN takes
the embeddings of the text (in the format of an embed-
ding matrix) as the input. A set of convolutional kernels
is applied to the input to extract the characteristics of the
text. After certain operations, such as max-pooling and
dropout, the features are fed into a SoftMax function to
classify the text. CNN has been acknowledged to effec-
tively extract the hierarchical and ordering information
in the text [42]. In our experiment, the word embeddings
dimensionwas 64; the kernel sizes were set at 2, 3, and 4;
the dropout rate was 0.5, and the learning rate of Adam
was 0.005. All hyperparameters were optimized by trial.

• Bidirectional long short-term memory network (BiL-
STM) [29]: LSTM is a type of RNN unit that is capable
of capturing the long-range contextual dependency in a
text. Each LSTM unit contains a forget gate, an input
gate, and an output gate to control the information flow
and update in the network. BiLSTM is a parallel LSTM
structure that fully leverages the forward and backward
contextual information [37]. Similar to CNN, in our
experiment, 64-dimension embeddings and a dropout
rate of 0.5 were used, and the learning rate of Adam
optimizer was 0.005.

• Bidirectional Encoder Representations from Transform-
ers (BERT) [33]: BERT is a language model trained on
words fromBooksCorpus andWikipedia with more than
three billion words. BERT and its variants have shown
an extremely good capability of extracting the sematic
features from texts and have achieved state-of-the-art
performance in many NLP tasks [43]. This paper uses
BERTBASE to encode the tweets. The representation of
the tweets was fed to a SoftMax function to perform
the classification task. The batch size was 32 and the
learning rate was 0.00005. The BERTBASE model was
fine-tuned on the training set and tested on the testing
set.
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TABLE 3. The overall performance of the models for COVID-19 PHM
identification.

The accuracy, precision, recall, and F1 scores of all the
methods used for COVID-19 PHM identification are shown
in Table 3. The best performances are highlighted in bold.
The attention model with masking operation achieves the
best performance identification in terms of accuracy, recall,
and the F1 score. For precision, the Masked-Attn model is
outperformed only by BERT. Thus, the Masked-Attn model
achieves the best overall performance due to its efficiency at
extracting information from the text, even the short texts used
in tweets.

It should be noted that the powerful BERT model does not
achieve a satisfactory overall result, although it has the high-
est precision rate. The reason is that the BERT model is very
heavy. It has been pre-trained using the general BooksCorpus
and Wikipedia. There may be a great semantic difference
between the PHM corpus and the corpus to train BERT. The
PHM corpus built in this paper is on a small-to-medium scale.
Fine-tuning BERT using the partial PHM data may not adapt
the BERT to the PHM domain well. However, if we have
a massive amount of annotated PHM data, BERT will have
great potential to outperform existing methods.

The text length of tweets is relatively short compared with
the long text. Research in natural language processing has
observed that the same technique usually performs worse for
short texts in some tasks (such as name entity recognition) due
to the lack of sufficient contextual information in short texts
[8]. Thus, the power of other deep-learning-based methods
to extract semantic information from texts cannot be fully
exploited. Some methods’ performances are even worse than
the simple fastText.

B. THE EFFECT OF ATTENTION AND MASKING
OPERATION ON PERFORMANCE
The attention mechanism emphasizes the role of keywords
in understanding the text. To show its effectiveness, we con-
ducted the experiment using the following two network struc-
tures.

• BiGRU: The details of BiGRU can be found in
section III.B.3 of this paper. The output of the BiGRU
layer was fed directly to the SoftMax function with-
out passing the attention layer. In the experiment,
128-dimension embeddings and a dropout rate of
0.3 were used, and the learning rate of the Adam opti-
mizer was 0.0005. The training batch size was 32 and
the number of training epochs was 10.

TABLE 4. The overall performances of the models for COVID-19 PHM
identification.

FIGURE 2. Visualization of attention values of different tokens.

• BiGRU-Attn: To show the effect of the masking opera-
tion on the performance, we conducted an experiment
using the vanilla attention architecture, i.e., a BiGRU
network followed by an attention layer. Themodel archi-
tecture was the same as Fig.1, except all the masks were
removed. The hyperparameters setting was the same as
BiGRU.

The experiment results in Table 4 also show that the atten-
tion mechanism can significantly improve the performance,
asMasked-Attn outperformedBiGRUby a significantmargin
(p-value = 0.031 for the one-tailed two-sample p-test on the
overall accuracy). We also noticed that masking did improve
the performance significantly, as shown in Table 2 (p-value=
0.001 for the two-sample p-test on the overall accuracy
between BiGRU-Attn and Masked-Attn). Thus, to calculate
the attention among tokens in the text, it is better to mask out
the padding tokens so they will not decrease the contribution
of real tokens in the classification task.

According to the attention value calculated in the model,
it was found that COVID-19-related keywords tended to have
bigger attention weight. These keywords improved the per-
formance of PHM identification. The visualization of tokens’
attention in typical tweets is shown in Fig. 2. Darker shades
indicate bigger values. For the first tweets, the tokens of
‘‘tested,’’ ‘‘positive,’’ ‘‘for,’’ ‘‘corona,’’ ‘‘covid19,’’ and ‘‘me’’
have relatively big attention values. They are either directly
related to COVID-19 or pronouns (‘‘me’’). The word ‘‘for’’
also has big attention. This is because its adjacent words
(‘‘tested,’’ ‘‘positive,’’ and ‘‘corona’’) all have big attention
values. Thus, the attention of ‘‘for’’ is affected. For the
second tweets, similar findings can be observed. The words
of ‘‘i’’ (the second one), ‘‘tested,’’ ‘‘negative,’’ and ‘‘test’’
have relatively big attention value. Based on the observation,
we know the COVID-19-related keywords contribute more
in the masking attention model and thus lead to better perfor-
mance.

C. THE EFFECT OF AVERAGING-BASED MODEL TRAINING
ON PERFORMANCE
We leveraged the model parameters trained in different train-
ing epochs to update the final model parameters. To show the
effectiveness of this training strategy, we conducted another
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TABLE 5. performance comparisons between models trained with and
without epoch-wise averaging.

experiment using the same network structure as shown in
Fig. 1 but with an early-stopping-model training method,
wherein the parameters are tuned without considering pre-
vious epochs’ values, i.e., without epoch-wise averaging.
The results of PHM identification for each class are shown
in Table 5. It can be observed that the precision, recall,
and F1 scores have mostly increased across the different
labels. These increases were relatively large for classes with
fewer samples, such as class 1 (from 0.4255 to 0.6000)
and class 4 (from 0.4918 to 0.5319). For classes 2 and 3,
the F1 values are nearly unchanged (by 0.0003 and 0.006,
respectively). In addition, the overall performance combing
the outcomes of the four classification results also improved
with the use of the proposed training method. The overall F1
score increased from 0.7835 (without epoch-wise average) to
0.7942 (without epoch-wise average). It can be observed that
the overall improvement was mainly from the self-mention
class. The precision, recall, and F1 increased by 6.9%, 80.0%,
and 41.0%, respectively. In the application of public health
surveillance, it is more important to identify the posts in
self-mention and other-mention classes, as they reflect the
true public disease status. Using epoch-wise averaging of
model parameters during the training stage, the performance
of self-mention PHM identification is improved significantly,
without the significant decrease of the performance of other-
mention PHMdetection (the F1 score slightly decreased from
0.6099 to 0.6000). Thus, epoch-wise training is more suitable
for downstream tasks in public health control.

As shown in Table 5, the method tends to favor classes with
more training data—label 3 (awareness)—as the F1 score
of class 3 is the highest. Thus, with the training method
without epoch-wise average, model parameters are largely
determined by the result of the awareness label; the perfor-
mance of other labels’ classifications are not fully considered
in the training. The epoch-wise, average-based training could
compensate for such class imbalance. The advantage of the
epoch-wise average can be attributed to its generalization
capability. During model training, the parameters obtained in
each epoch are distributed on the periphery of the parameter
space. The center of space usually has a higher generaliza-
tion capability. Epoch-wise averaging makes the parameters

TABLE 6. overall performance of the models for COVID-19 PHM
identification.

closer to the center of the periphery, and thus exhibits better
generalization and PHM identification performance.

D. THE GENERALIZABILITY OF THE PROPOSED METHOD
Twitter provides a promising data source for more effec-
tively identifying PHMs for public healthmonitoring. In addi-
tion, tweets are continuously produced and updated. They
can quickly capture the latest trend in the COVID-19 pub-
lic health condition in a region. Thus, new textual and
semantic information related to COVID-19 may be gener-
ated with the emergence of new tweets. For example, the
discussion on the omicron variant of COVID-19 emerged
in 2022. In this section, we would like to explore the gen-
eralization capability of the proposed method. Specifically,
we will investigate whether the performance of the model
learned from old data can detect PHMs accurately for new
tweets.

To conduct the analysis, we collected 200 tweets posted
from January to June 2021 (denoted as testing set II; Testing
set I was the original test set used in Table 3), and 200 tweets
posted from September 2021 to March 2022 (denoted as test-
ing set III). Besides the hashtags used to build the COVID-19
corpus containing 11,231 tweets, we also used more hash-
tags such as ‘‘vaccine,’’ ‘‘lockdown,’’ ‘‘socialdistancing,’’
and ‘‘omicron.’’ The newly collected tweets were cleaned to
remove non-textual content, such as mentions, hashtags, and
links. They were annotated by two annotators independently
in the same manner as before. The annotation disagreements
were solved by a group comprising the two annotators and
two more senior experts in public health and social media
mining. The percentages of each label in the newly annotated
tweets were 5.5% (self-mention), 18% (other-mention), 67%
(awareness), and 9.5% (non-health) for testing set II and
6.5% (self-mention), 19.5% (other-mention), 64% (aware-
ness), and 10% (non-health) for testing set III. The class
imbalance issue still existed but was not as serious as the
original tweets corpus shown in Table 2.

The masked attention model trained on the original
COVID-19 tweets corpus was used to identify the PHMs in
the newly collected two data sets. The performance com-
parison on various testing sets can be found in Table 6.
Testing set I contains the tweets from the original corpus,
with postings dated from February to May 2020. It can be
noticed that the accuracy, precision, recall, and F1 score in
testing sets II and III were worse than the results for testing
set I, but not significantly (p-value = 0.647 on the test of
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difference on the accuracies between testing sets I and II;
p-value = 0.357 on the test of differences in the accuracies
of testing sets I and III). Thus, the experiment’s results show
that the model trained on the original tweets corpus has a very
satisfactory generalization capability.

VI. CONCLUSION
This paper has aimed to automate COVID-19 personal
health mention detection processes based on deep-learning
and natural-language processing techniques. We constructed
a COVID-19 tweets corpus containing 11,231 annotated
tweets. Each tweet was annotated according to non-health,
awareness, self-mention, and other-mention categories. The
COVID-19 PHM identificationwasmodeled as a text classifi-
cation task. An attention-based model was trained to classify
each tweet according to the four classes. Promising results
have been achieved in terms of the overall F1 score. Addi-
tional experiments have also been conducted to study the
effect of training data size on performance. It was found
that the methods tended to favor the classes with larger
numbers of training samples, with classes holding more data
resulting in greater reliability and a higher classification
performance. Through extensive experiment, we have also
shown that the proposed method has a good generalization
capability. Thus, the model developed using the old data set
can be applied to the new tweets data set with satisfactory
performance.

However, there are several limitations to this paper. The
methods leverage only Twitter data, which are short texts.
It is expected that incorporating domain knowledge in pub-
lic health and medicine will improve the performance of
short-text classification. In the fields of public health and
medicine, domain knowledge and resources are especially
useful, as many professional terms and instances of jargon
appear in the data set. In our future work, we will combine
information from a knowledge base for the COVID-19 PHM
identification task. In addition, new investigations will be
conducted to compensate for classes with low sample sizes.
Data resampling and even text-style transfer techniques will
be attempted to mitigate the data imbalance issue. Further-
more, the regions from which the posters are tweeting are
not considered in the paper. Thus, the developed method is a
general method and can be applied to any region in the world.
However, people in different countries may have their own
tweeting style and language expression syntactics. Another
future study would be to incorporate the regional information
into the model so that the model is more adaptive to the
regions.
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