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ABSTRACT Anomaly detection in smart environments is important when dealing with rare events, which
can be safety-critical to individuals or infrastructure. Safety-critical means in this case, that these events
can be a threat to the safety of individuals (e.g. a person falling to the ground) or to the security of
infrastructure (e.g. unauthorized access to protected facilities). However, recognizing abnormal events
in smart environments is challenging, because of the complex and volatile nature of the data recorded
by monitoring sensors. Methodologies proposed in the literature are frequently domain-specific and are
subject to biased assumptions about the underlying data. In this work, we propose the adaption of a deep
reinforcement learning algorithm, namely double deep g-learning (DDQN), for anomaly detection in smart
environments. Our proposed anomaly detector directly learns a decision-making function, which can classify
rare events based on multivariate sequential time series data. With an emphasis on improving the performance
in rare event classification tasks, we extended the algorithm with a prioritized experience replay (PER)
strategy, and showed that the PER extension yields an increase in detection performance. The adaption
of the improved version of the DDQN reinforcement learning algorithm for anomaly detection in smart
environments is the major contribution of this work. Empirical studies on publicly available real-world
datasets demonstrate the effectiveness of our proposed solution. Here specifically, we use a dataset for fall
and for occupancy detection to evaluate the solution proposed in this work. Our solution yields comparable
detection performance to previous work, and has the additional advantages of being adaptable to different
environments and capable of online learning.

INDEX TERMS Anomaly detection, human activity recognition, machine learning, pattern recognition,
safety.

I. INTRODUCTION

The Internet of Things (IoT) refers to smart objects that are
connected to the internet. Smart objects are sensor-enabled
devices that operate within an environment. The term smart
refers to the capability of automatically getting knowl-
edge about an environment, its surroundings and applying
it according to the user’s needs [1]. Smart environments
comprise interconnected smart objects. By integrating IoT
with smart environments, the environment can be controlled
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and monitored remotely [2]. Abnormal situation recognition
in smart environments is important, especially when deal-
ing with rare events, which can be safety-critical for indi-
viduals or infrastructure. Smart environments can be prone
to malfunctions, which can occur due to internal or exter-
nal factors and may have fatal consequences for the users
that interact with it [3]. Recently, various deep learning
approaches have been applied to detect these rare situa-
tions. This is done by analyzing and detecting anomalous
patterns in data, which originate from homogeneous and
heterogeneous sensor sources. Anomaly detection methods
have been investigated and proven to be well suited for
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the recognition of unwanted behaviors and safety-critical
situations within smart environments. These safety-critical
situations can also be the consequence of physical or cyber-
attacks. Among others, applications of anomaly detection
algorithms include network intrusion detection [4], fraud
detection [5], system health monitoring [6] and smart sensor
networks [7]. By enabling and improving the ability to rec-
ognize rare events, anomaly detection algorithms contribute
to the comfort and safety of inhabitants and help to pre-
vent fatal consequences. However, recognizing rare events
in smart environments is challenging, because of the com-
plex and volatile nature of the data recorded by monitor-
ing sensors. Especially if the data is noisy, multivariate and
time-dependent. The methodologies proposed in the litera-
ture are frequently domain-specific and are suspect to biased
assumptions about the underlying data [8]. By solving con-
tinuous markov decision process(es) (MDP), reinforcement
learning (RL) approaches could overcome this challenge.
The conditions under which data patterns are categorized are
often modeled as rule-based and manually defined by human
experts. This raises the need for methodologies that do not
rely on any explicit assumption about the data and events, that
can occur within smart environments. Our proposed method
directly learns to detect rare events by creating experiences in
a data-driven fashion. Recent work on anomaly detection has
considered the combination of deep learning methodologies
with the paradigms of reinforcement learning.

In this work, we propose the novel use of DDQN
for anomaly detection in smart environments. We adapted
and extended the algorithm with a prioritized experience
replay (PER) strategy, with an emphasis on increasing the
performance in rare event classification tasks. The result is
a novel anomaly detector for multivariate sequential time
series data based on the paradigms of reinforcement learning.
Evaluation of the proposed solution is performed on two inde-
pendent datasets, which contain real-world sensory data orig-
inating from smart environments. Specifically, a dataset for
fall detection [9] and a dataset for occupancy detection [10]
has been chosen. These datasets provide a good foundation
for the development of important methodologies, which can
detect events that are safety-critical for individuals (e.g. a
person falling to the ground) or for the security of infras-
tructure (e.g. unauthorized access to protected facilities). The
evaluations indicate that the use of the DDQN algorithm with
PER for anomaly detection in smart environments results
in accurate predictive performance. Our proposed method
additionally achieves superior performance on the task of
fall detection compared to the state-of-the-art. Moreover,
our proposed method does not rely on assumptions, that
are made by human experts. These assumptions are often
applied in rule-based approaches, are inherently biased, and
require human intervention. Instead, our proposed solution is
an online learning algorithm that is adaptive in the way, that
it consequently learns from experiences that are captured by
monitoring sensors.
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The next section presents work on applications of deep
reinforcement learning for anomaly detection. Section III
presents the anomaly detector proposed in this work. This
includes the definition of the anomaly detection problem in
terms of reinforcement learning, as well as the description
of the DDQN algorithm that we adapted. In Section IV, the
datasets used for the experiments conducted in this work are
described. The experimental setup and hyperparameter con-
figurations are described in Section V. Section VI presents
the results achieved by our detection algorithm, including a
comparison to state-of-the-art approaches.

Il. RELATED WORK

In recent years, anomaly detection emerged and caught the
attention of the research community for the recognition and
prevention of unforeseen events in smart environments [11].
Ensuring the security of IoT architectures is one of the
main application areas of anomaly detection in smart envi-
ronments, as shown by many surveys focusing on intrusion
detection systems (IDS) [12]-[15]. The literature reviews
include a critical review on IDS for IoT architectures [12],
security and privacy challenges in different IoT layers [13],
IDS research for IoT networks [14], as well as detailed cate-
gorizations of the IDSs in the IoT domain [15].

Anomaly detection based on machine learning has been
proven to perform well on the vast amount of sensory data
provided by smart sensor networks. However, work on rein-
forcement learning methods only constitutes a minor part
of the current research and is scarcely considered for the
task of anomaly detection and situation recognition as shown
in many surveys on deep learning based anomaly detec-
tion [8], [16]-[18]. Although, reinforcement learning meth-
ods achieve superior performance compared to humans in
decision-making tasks like game playing [19], [20].

Deep reinforcement learning has been indirectly applied
for anomaly detection in buildings. By using the deep
deterministic policy gradient (DDPG) algorithm, Wu and
Ortiz [21] explored the hyperparameter space of a
building-specific anomaly detection algorithm. However, the
authors proposed an indirect application of reinforcement
learning. The DDPG algorithm has not been used to perform
the actual detection task, but to optimize the hyperparameters
of the anomaly detection algorithm.

Similarly, the methodology suggested in Zha et al. [22] is
an indirect application of deep reinforcement learning for
anomaly detection. The authors investigated a policy selec-
tion task, that can be solved by proximal policy optimization
(PPO). The authors suggest to re-rank possible anomalies
based on information gained from anomaly verification pro-
cedures, which were performed by human anomaly analysts.
The proposed approach aims to support human domain spe-
cialists in ranking anomalous sequences in time series so that
more true anomalies can be discovered.

In contrast to [21], [22], Kurt ef al. [23] suggested a direct
application of reinforcement learning for anomaly detection.
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The authors investigated a model-free reinforcement learning
approach for the online detection of cyberattacks in smart grid
applications. They modeled the anomaly detection problem
as a partially observable markov decision process (POMDP)
and evaluated the effectiveness of a model-free SARSA algo-
rithm to produce the optimal anomaly detector for small prob-
lem sizes. In [24], Zhong et al. proposed a deep actor-critic
reinforcement learning framework for anomaly detection on
sensory data. The deep actor-critic agent proposed by the
authors dynamically selects the sensor to be tested based
on sequential process data. Oh and Iyengar [25] investigated
the effectiveness of inverse reinforcement learning (IRL) for
anomaly detection based on sequential data in safety-critical
environments. Their approach determines the agent’s reward
function by using a neural network, which they inferred via
IRL. The proposed method adopts a Bayesian approach to
take the confidence of the predicted anomaly scores into
account. The authors evaluated their method on a real-world
dataset that contains car trajectory data. Their results show
that the proposed approach performs well in detecting anoma-
lous data patterns in GPS data. However, their approach only
works in a low dimensional feature space. The work of Yu and
Sun [26] represents a comprehensive variation. The authors
proposed a general policy gradient anomaly detector, that
is based on the asynchronous advantage actor-critic (A3C)
algorithm. Although the A3C algorithm allows for continu-
ous action spaces, the authors stated that they neglected the
use of continuous action space. In [27], the authors proposed
a general, experience collecting framework for time series
anomaly detection, that is based on deep Q-learning (DQN).
They adopted a long short-term memory (LSTM) network
to model the temporal dependencies in data and applied
the Q-learning algorithm with memory replay. The authors
achieved competitive detection performance on the Numenta
dataset. However, a shortcoming of the proposed approach is
that it is limited to a one-dimensional feature space.

The previously mentioned work emphasizes the use of
reinforcement learning for anomaly detection in particu-
lar domains. Although the developments and investigations
described in this work are mainly based on the method
described in [27], our work substantially extends by adapt-
ing to multivariate sequential time series learning scenarios.
Additionally, we propose the use of DDQN for anomaly
detection, to make policy estimation more stable. Moreover,
we propose to extend DDQN with PER to emphasize learn-
ing from rare data patterns, and show that our DDQN-PER
solution yields a performance increase.

lll. METHODOLOGY

This section presents the definitions of our anomaly detector
and its’ components. Figure 1 shows a complete overview
of the processing pipeline of our proposed methodol-
ogy. Motivated by [27], we present the adaption of an
improved reinforcement learning algorithm for anomaly
detection in smart environments. Our detector is based on
the DDQN algorithm [28], which dynamically improves its’
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detection performance based on experiences. In the follow-
ing, we present the definitions of our anomaly detector. In
Section III-A we describe the DDQN algorithm we applied.
In Section III-B we present how we extended the DDQN
algorithm with PER. Finally, in Section III-C, we describe
the processing pipeline in further detail.

ANOMALY DETECTOR — =
The anomaly detector follows the policy m. Equation 1
defines the policy 7 as a conditional probability distribution.

mw:=plA|S), (1)

where S equals the set of states and A equals the set of actions
of the system. w(s,a) = p(A = a | § = s) denotes the
probability for the action a in the provided state s.

DETECTOR PERFORMANCE — V;
The performance of the anomaly detector is given by (2).

Vo= d"(5) ) Q. a)x (s, a), 6)
ses acA
where d” (s) equals the probability of the system being in
state s when acting according to the policy m. Q(s, a) rep-
resents the accumulated reward from state s with action a.
The average accumulated reward following the policy 7 is a
measure for the performance of the anomaly detector.

OPTIMAL ANOMALY DETECTOR — rn*

An optimal anomaly detector aims at maximizing its’ perfor-
mance. The maximal performance is achieved by following
the optimal policy as given by (3).

7% = argmax V. 3)
g

In the case were d” (s) is approximately the same for all
s € S and |§| is the amount of states in S, it follows that:

! Z mjlx (s, a). “4)

V¥ =maxV, = —
S T
ses

Equation 4 shows that the optimal anomaly detector that
follows the optimal policy 7* is determined by the accu-
mulated Q-value function Q(s, @). This holds true under the
assumptions that: 1) the anomaly detection problem is deter-
ministic 2) d” (s) is approximately uniform.

Q-LEARNING
Q-learning is a variant of temporal difference (TD) learning
in which the agent evaluates the utility of an action, rather
than a state. Although, methods of dynamic programming can
be used in model-based environments to derive the optimal
policy 7*, they require the full dynamics of the MDP to
be known beforehand. Q-learning represents a model-free
approach, which can be used to solve environments without
a complete environmental model.

In Q-learning the agent performs an action a; for the
current state s; according to its policy m and receives the
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FIGURE 1. The processing pipeline of our adaption of the DDQN algorithm.

resulting reward r;. From the subsequent state s; 1, the agent
assumes the most promising action a;1 as the future reward
according to its current evaluation function. Based on this
principle, the agent adjusts its evaluation function according
to equation (5).

Q"" (51, ar) < Q(sr, ar) + o -0 )
old value  learning rate TD-error

where 6; is the TD-error. The TD-error is the difference
between the estimated optimal future reward and the current
reward estimate. The TD-error is given by (6).

O = (Vt +vy-  maxQ(siy1,ar1)  — OCsy, at))’ (6)
a1 -

old value
estimate of optimal future value

new value (temporal difference target)

where y is the discount factor, that determines how much
the reinforcement learning agents cares about distant future
rewards relative to those in the immediate future [29].

EXPERIENCE

Gaining experiences from data observations is the major
factor that enables the Q-learning algorithm to improve the
policy . We define experience as a tuple of:

E =< S,,at,rt,S,Jr],Ot > .8t St+1 € S,a GA,F €R

The reward gained by choosing action a in state s at time
step ¢ is denoted by r¢, s;41 is the subsequent state and 6;
is the TD-error. The experience includes all past behaviors of
the anomaly detector. Gaining a better estimation of Q(s, a)
corresponds to the aim of the anomaly detector to consistently
learn from experience.

With the replay methodology of Q-learning and the PER
extension, the estimation of Q(s, @) can be improved more
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effectively when dealing with unequal experienced state-
action transitions. Unequally experienced state-action tran-
sitions can be a result of unbalanced training data, like in
the case of anomaly detection tasks, where commonly less
annotated anomalous training samples exist than normal sam-
ples. In the default experience replay approach, transitions are
replayed at the same frequency that they were originally expe-
rienced. However, the PER extension takes the significance
of transitions into account, such that important transitions are
replayed more frequently [30].

MARKOV DECISION PROCESS
The definition of an abstract MDP is defined by the 4-tuple
(S,A, Py, R;). The MDP as formulated in this work has been
adapted to be suitable for multivariate sequential time series
anomaly detection. The elements of the adapted MDP are
given by:
« State space S
A state s includes a feature vector v which consists of all
available time series features x;, where x is a numerical
value and i is the feature index. Furthermore, s keeps
track of the actions a, such that the anomaly detector can
be extended and applied to partially observable MDPs.
The concatenation of the feature vector v and the action
a over time ¢ represents the state of the MDP, such that
the state s at time ¢ is given by:

§r =< (Vlfhv al‘*/’l)v R (thl, at*l)’ (Vl9 Cl[)),

where the horizon /4 is a hyperparameter, defining the
number past observations and actions that are considered
in a state.

o Action space A
The anomaly detector described in this work differenti-
ates between two actions that it can choose in a specific
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state. This corresponds to a binary anomaly classifica-
tion task which is represented by the actions:

aeA:=1{0,1},

where the action 0 indicates a normal state and the action
1 indicates an anomalous state.

« Transition probabilities P(s¢, S¢11)
Under the assumption that the anomaly detection
process is deterministic, it can be concluded that
P(ss,s,41) = 1 for all actions a € A. However,
in real-world scenarios, there exists an uncertainty on the
determinism of anomaly detection tasks. Choosing the
same actions in repetitious states might lead to different
outcomes in real-world scenarios.

« Reward R(st, a¢)
In general, the reward function for MDPs is a sensi-
tive factor because the reward values directly influence
the performance of the anomaly detector. The reward
function for the approach proposed in this work is
defined by:

5 ifais TP
—1 ifais FP
—5 ifais FN
1 ifais TN.

R(s,a) =

Notice that the recognition of an anomalous state,
denoted by true positive (TP), results in the highest
reward. In the case an anomalous state is mistakenly
classified as normal, denoted by false negative (FN),
the lowest reward is obtained. A false positive (FP)
denotes a normal state that is falsely classified as
abnormal. A true negative (TN) denotes a correctly
classified normal state. By using the proposed reward
function, our learning algorithm is guided towards the
recognition of anomalous states, while avoiding mis-
classifications of anomalous states. Avoiding misclas-
sifications of anomalous states is very important in
safety-critical applications because an unrecognized
anomalous state could have fatal consequences for indi-
viduals or infrastructure.

A. DOUBLE DEEP Q-Learning

Q-learning [31] is one of the most popular RL-algorithms,
although it is suspect to unexpected high action values under
certain conditions. The overestimation problem of action
values arises from the maximization step in the Q-learning
update function, where overestimated values are automati-
cally preferred. The default DQN algorithm cannot deal with
this problem as the Q-function estimator, a multilayer percep-
tron (MLP), directly represents the bootstrapped value func-
tion for each sequential update operation. While the addition
of an uncorrelated replay memory works as an antagonist,
overestimation still occurs and results in negative effects on
the learned policy [28]. Hasselt et al. [28] proposed a latency
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Double deep Q-learning + experience replay [28]

Initialize hyperparameters:

learning-rate o € (0, 1),

epsilon > 0,

discount-factor v € (0,1) ;

Initialize replay memory D with capacity A;
Initialize online MLP Q with weights w;
Initialize target MLP Q, with weights wy;

foreach episode do
Initialize state Sy from environment E;

foreach step of episode do
Observe state s; and

choose e-greedy a; € m(s¢,a:);
Execute a; and observe s¢41,

reward 1y = R(s¢, a¢),

set done if 8,11 = terminal;

Store (s¢, az, s, St4+1,done) in
replay memory D;

end foreach

foreach update step do

sample experience

e = (8¢, at, ¢, S441,done) € D;
Compute target O-value, V;:

if done: set Yy =,

else set Yy = ry + %
Qo(st+1,argmax,, , (Q(st41,6141)))
Perform gradient descent on

MLP Q with loss L;

end foreach

if episode is updateepisode: set wy = w
end foreach

Algorithm 1: Double deep Q-learning with expe-
rience replay, where experiences are sampled uni-
formly from the replay memory D. The changes
applied to the default Q-learning algorithm are
highlighted in yellow.

update target network to further decorrelate bootstrapped
experience from the value function update.

In standard deep Q-learning the target values are calculated
in the following way:

Vi =ri + v * argmax(Q(sr+1, Ar+1)). @)

ag+1
In DDQN [28], the target network’s weights are updated
delayed and with uncorrelated experience, by bootstrapping
the target values from a periodically updated target estima-
tor Qp. Using (8), we computed the target values in DDQN.
Vi =11+ v * Qo(siq1, argmax(Q(si+1, ar41)),  (8)

ar+1

where Qp is the declaration of the target network. We use
Q for action selection and Qy for action evaluation.
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The pseudocode of the DDQN algorithm with the experience
replay addition is given by Algorithm 1. The adaption of DQN
towards DDQN is a minimal possible change. In Algorithm 1,
the changes applied to the default DQN algorithm are high-
lighted in yellow. The remaining part of the DQN algorithm
remains as proposed in the original method [31]. However,
this adaption adds a small computational overhead [28].

Furthermore, in [28] it has been shown that for large-scale
problems with deterministic MDPs the inherent estimation
of errors is a prevalent problem. DDQN offers a rather sim-
ple solution to tackle this problem. In the case of anomaly
detection, the fact of overestimation is very important to look
at. On large time series datasets, policy estimation might be
unstable during training. Overestimated Q-function values
on time series patterns can result in bad anomaly detection
strategies. As a result, the anomaly detection algorithm might
perform weakly on volatile datasets. Therefore, we improved
the DDQN algorithm with PER such that it can learn policies
on MDPs in a more stable way. This contributes to the novel
RL-based anomaly detector presented in this work. To the
best of our knowledge, DDQN with PER has never been
investigated in the context of anomaly detection, although it
leads to significant performance improvements as indicated
by our results. Our novel estimation in this direction leads
to significant performance enhancements as will be shown in
Section VI of this paper.

Prioritized experience replay [30]

foreach update step do

sample experience

e = (8, ay, Ty, 5441, done) € D with
experience probabglity P(1),

where P(t) = Zpth
kfk

Compute target Q-value, V;:

if done: set )y = ry

else set Yy = ry + %
Qp(st+1,argmax,,  (Q(st+1,at41))) 3
Perform gradient descent on

MLP QO with loss £;

end foreach

and Pt = rmnlk(t)

Algorithm 2: The prioritized experience replay
strategy involves sampling from the replay mem-
ory D using stochastic sampling [30]. Experi-
ences are prioritized, based on the sorted rank
of their importance. The importance is defined
by the TD-error 4, which is a measure of the
unexpectedness between transition [32].

B. PRIORITIZED EXPERIENCE REPLAY
Experience replay is one of the main features of deep
Q-learning. With an emphasis on rare event classification
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tasks, we suggest extending the DDQN algorithm with PER.
Schaul et al. [30] originally proposed to use PER to outper-
form the default DQN algorithm with the uniform experience
replay strategy on game playing tasks. In this work, we pro-
pose to extend DDQN with PER for rare event detection
tasks. The PER extension enables the learning algorithm to
adjust the frequency and importance of learning experiences
by priority, past transitions between states are remembered
and reused.

Normally, experiences are sampled uniformly from the
replay memory. PER proves, that the replay frequency and
importance of experiences can be adjusted by priority, regard-
less of their significance [30]. The main idea of PER is that
some experiences are more important to the agent than others.
Therefore, the relevance of transitions is measured with each
experience. In the replay phase of an agent, the experiences
are sampled with a certain strategy from the replay memory.
Nevertheless, the pitfall of losing diversity and gaining bias
on certain transitions has to be avoided. Schaul ef al. [30]
have recommended stochastic prioritization and importance
sampling as strategies against these pitfalls.

The importance factor for transitions has first been pro-
posed by Andre et al. [32]. The authors stated that the
TD-error § is a measure of the unexpectedness between
transitions. Therefore, a prioritized sampling strategy is an
intuitive extension. In the default Q-learning algorithm, the
TD-error is computed for value-function updates. Extract-
ing the importance factor § does not add any computational
overhead. However, to overcome the challenge of effectively
deciding which transition to replay, a feasible data struc-
ture is necessary. In [30] a binary heap is recommended
to effectively select the transition to replay by priority in a
memory buffer. The sample effort for the maximum error €
in a buffer of size N can then be estimated by O(log V).
Schaul et al. [30] also highlighted that PER can be prone
to overfitting. The reason for this behavior is correlated to
the priority updates, which are only applied to the sampled
transitions. Hence, less important transition (§ &~ 0) might
never be replayed in the agents’ lifetime.

Equation 9 defines stochastic sampling by a probability
value P(¢).

B

Pr - )
2k Pk
Making use of stochastic sampling results in an unbiased
sampling distribution. With the exponent g, the ratio of
sampling can be adjusted priority based. The prioritization
value p; can be either defined by the proportional calculation
p: = |8¢| + € or by a rank-based prioritization p; = #k(t)
When sampling on the sorted rank of each transition in the
replay memory, one calculates the power-law distribution
for P(¢t) with exponent B [30]. Schaul et al. [30] suggest
using the rank-based sampling variant because it is more
robust and scores a higher mean for most experiments. The
rank-based variant is also less sensitive to outliers and error
magnitudes on average. The experience replay strategy we

P@) =
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use is computed by (9) with rank-based prioritization. Algo-
rithm 2 shows the extension we applied to Algorithm 1. The
PER sampling variant we applied in each updated step is
highlighted in yellow. Experiences are prioritized based on
the sorted rank of their importance.

C. PROCESSING PIPELINE

This section presents the processing pipeline of our adaption
of the DDQN algorithm. The processing pipeline is visualized
in Figure 1. Each training episode of the algorithm consists
of two distinct phases. In the first phase, the replay memory
is filled. In the second phase, the parameters of Q-network
and the target network are updated. In step 1, a state s; is
observed. In step 2, an action a, is executed, depending on
the state s;. In step 3, the state s;, the selected action a;, the
obtained reward r;, and the subsequent state s,y are stored
in the replay memory. The steps 1-3 are repeated until the
replay memory is filled. In step 4, experiences are sampled
from the replay memory. In step 5, the expected reward based
on the observed reward r; and the Q-network estimations for
the subsequent state-action pair is computed. In step 6, gra-
dient descent is performed and the Q-network parameters are
updated. The squared distance between the observed reward
and the estimated reward serves as loss function. Steps 4-6
are repeated depending on the target network update fre-
quency. The target network update frequency denotes the
number of Q-network parameter updates performed before
the Q-network parameters are copied to the target Q-network.
Finally, in step 7, the network parameters of the Q-network
are copied to the target Q-network. On the right-hand side of
the figure, the neural network architectures of the Q-network
and target Q-network are visualized. The input provided to the
networks is a state s;, which consists of 4 samples and their
corresponding features. The output layer returns a Q-value
for each action. The Q-value is a measure of how good a
certain action is in a state. The Q-values are used to select
an action ay, that is executed in state s;, so that a reward is
obtained from the environment.

IV. DATASETS

This section presents the database that we use for the experi-
ments and evaluations conducted in this work. The database
consists of two independent datasets, a dataset for fall detec-
tion [9] and a dataset for occupancy detection [10]. The
datasets contain noisy real-world sensory data originating
from smart environments. They represent an important foun-
dation for the development of methodologies, that can detect
safety-critical events for individuals or infrastructure. The
database enables us to show the ability of the proposed
approach, to cope with noisy real-world sensory data, while
achieving high detection performance in safety-critical event
detection tasks.

A. OCCUPANCY DETECTION
Candanedo and Feldheim [10] published a dataset that con-
tains real-world sensory data for the purpose of developing
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methodologies that can accurately detect occupancy of office
rooms. Light, humidity, CO> and temperature sensor read-
ings are included. The dataset additionally contains times-
tamps and humidity ratios. A combination of these sensors is
already existing in many smart buildings nowadays. In [10],
the authors manually engineered features by exploiting the
timestamps of the sensor measurements. They extracted the
number of seconds from midnight for each day and classified
the timestamp as either a weekend or a weekday. For the
experiments conducted in this work, the timestamps are not
considered as training data because the methodology should
be able to reliably predict room occupancy by observing
the sensor measurements only, independent of the daytime.
Table 1 shows the overall distribution of training and testing
samples as well as the fraction of anomalous data samples
contained in the dataset. The ground truth labels contained
in the dataset have been automatically gathered by a video
surveillance system. For the development and evaluation of
the solution proposed in this work, only the training data has
been used for training and only the testing data for testing.

TABLE 1. The overall distribution between training and testing samples
in the occupancy detection dataset [10].

Dataset Sample Size # Features Anomalous
Training Series 8143 6

Testing Series 0 2665 6 36%
Testing Series 2~ 9752 6 21%

Effectively detecting room occupancy can contribute to
less energy consumption in future smart buildings as well
as contribute to the security of protected environments
(e.g. facilities with access control).

B. FALL DETECTION

The dataset created by Kaluza et al. [9] contains local posi-
tion data of persons. The localization system Ubisense has
been used to track the position of persons, using a set of four
localization tags. The localization tags have been placed at
four distinct body positions: chest, belt, left and right ankle.
The data has been collected with the intention to enable
the development of mechanisms, for activity recognition and
elderly healthcare. The major objective of this dataset is to
increase the safety of independently living elderly people.
For the evaluation of the proposed methodology in this work,
the dataset has been modified to be suitable for fall detection
in a binary classification scenario. The dataset consists of
134229 training samples and 30030 testing samples and is
split into 25 parts. 20 parts are only used for training and
5 parts are only used for testing. High volatility was observed
in the sensor readings, acquired and transmitted wirelessly
in a real-world scenario. The distribution of samples is less
prevalent than in the occupancy detection dataset. On aver-
age, each time series contains 5% anomalous samples. Table 2
shows the overall distribution of training and testing samples,
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TABLE 4. The hyperparameter configurations used by our adaption of the

as well as the fraction of anomalous data samples contained
in the dataset.

DDQN-PER algorithm, resulting in the best detection performance.

TABLE 2. The overall distribution between training and testing samples Hyperparameter  Occupancy Fall
in the fall detection dataset [9]. gamma 0.99 0.99
alpha 0.001 0.001
. e-fraction 10.0% 85.0%
Dataset Sample Size # Features Anomalous efinal 1.0% 5.0%
Training Samples 134229 4 4.9% e-start 100.0% 100.0%
Testing Samples 30030 4 5.4% batch size 256 512
target update freq. 1500 256
per-alpha 60.0% 80.0%
per-beta 40.0% 10.0%
episodes 15000 1000000
V. EXPERIMENTAL SETUP . . . horizon 25 256
In all experiments, the values contained in the respective hidden neurons 64 256
datasets have been min-max scaled such that the values range hidden layers 2 4

from 0.0 to 1.0. The Q-function estimator Q and the target
estimator Qpy, that are modeled as MLPs, have the same
number of feed-forward layers and neurons. Layer normaliza-
tion is enabled and the hidden layers use the rectified linear
unit (ReLLU) activation function. The final layers consist of
two output neurons and use the linear activation function,
such that normal and anomalous states can be differentiated.
Optimization is performed by the Adam optimizer, based on
the mean squared error (MSE) loss function. Table 3 provides
an overview of the relevant hyperparameters, that have been
investigated. Additionally, Table 4 lists the hyperparameter
configurations used for the fall and occupancy detection
experiments, that resulted in the best performance. The num-
ber of past actions a; and feature vectors v, represented by
the state s;, is defined by the horizon hyperparameter 4. The
data samples recorded between ¢y and #;,—1 in each time series,
have not been considered for the evaluation of the method
proposed in this work. The first prediction of our DDQN-PER
approach happens after 4 samples have been observed in each
time series.

TABLE 3. The list of hyperparameters that have been varied for the
investigations conducted in this work.

Hyperparameter  Description

gamma Discount factor

alpha Learning rate

e-fraction Exploration steps

e-final Final exploration

e-start Starting exploration

batch size Batch size

target update freq.  Number of steps between target network update
per-alpha PER a-value

per-beta PER -value

episodes Number of training episodes
horizon Horizon of the state

Number of MLP hidden neurons
Number of MLP hidden layers

hidden neurons
hidden layers

EXPERIMENT: OCCUPANCY DETECTION

The hyperparameters listed in Table 3 have been varied for
the occupancy detection experiments. Specifically, a grid
search has been conducted with hyperparameters that control
the exploration behaviour of the RL algorithm with value
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TABLE 5. The neural network architecture of the best performing
instance in the occupancy detection experiment. The particular
architecture blocks, the type of the blocks, the output shapes and the
number of required parameters are listed. * The model size is reported in
kibibyte (KiB) and computed based on the Float32 data type.

Block (type) Input Output Parameters
from Shape
Block
1. Input (InputLayer) (125) 0
2. Hidden Layer (Dense) 1 (64) 8064
3. LayerNorm 2 (64) 128
4. Hidden Layer (Dense) 3 (64) 4160
5. LayerNorm 4 (64) 128
4. Output (Dense) 3 2) 130
Total number of parameters 12,610
* Model size 49.26 KiB

ranges for e-start € [0.5, 1], per-alpha € [0.1,0.9], per-
beta € [0.1, 0.9]. Additionally, the hyperparameter variations
have been tested with PER and without PER, as well as
with a high and low target network update frequency. The
other parameters have been set to feasible default values.
In general, € is an important parameter to produce feasible
results in e-greedy Q-learning [33]. By default, the e-fraction
defines the fraction of randomly chosen experiences, which
the agent will gather during training. By randomly choosing
experiences, the agent can explore the environment. The
experiments conducted cover 28 different hyperparameter
configurations, while 14 trials use the prioritized experience
sampling strategy and the other half uses random sampling.
Out of the 14 trials, 50% use a high target network update
frequency of 256 steps, while the other 50% of the trails
use a smaller frequency of 1500 update steps. The target
network update frequency is a crucial factor for stable policy
improvement. When choosing a high frequency, the learned
policy might suffer from unstable conditions during training,
which should be avoided. Table 5 lists the neural network
architecture of our best performing instance. Although pre-
vious work did not report on the computational complexity
of the proposed approaches, we list the number of neural
network parameters and the model size of our solution.
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TABLE 6. The neural network architecture of our best performing
instance in the fall detection experiment. The particular architecture
blocks, the type of the blocks, the output shapes and the number of
required parameters are listed. * The model size is reported in
kibibyte (KiB) and computed based on the Float32 data type.

Block (type) Input Output Parameters

from Shape

Block
1. Input (InputLayer) (1024) 0
2. Hidden Layer (Dense) 1 (256) 262,400
3. LayerNorm 2 (256) 512
4. Hidden Layer (Dense) 3 (256) 65,792
5. LayerNorm 4 (256) 512
6. Hidden Layer (Dense) 5 (256) 65,792
7. LayerNorm 6 (256) 512
8. Hidden Layer (Dense) 7 (256) 65,792
9. LayerNorm 8 (256) 512
10. Output (Dense) 9 2) 130
Total number of parameters 527,746
* Model size 2061.51 KiB

EXPERIMENT: FALL DETECTION

The fall detection experiments focus on analyzing the detec-
tion performance of our approach on a larger, more volatile
dataset. The important factors that influence the detection
performance, are the neural network complexity, exploration
percentage, and the replay memory parameters. A grid search
has been conducted with values ranges for e-fraction €
[0.5,0, 85], Horizon € [5, 256], Target Update Frequency €
[512,5000]. Additional, experiments with various numbers
of neurons, layer depths, and batch sizes have been con-
ducted. A prioritization factor of « = 0.8 has been chosen for
the DDQN-PER algorithm. Hence, all DDQN-PER scenarios
prioritize 80.0% of their replayed samples in every batch. The
horizon size is a crucial factor for the agent’s performance.
Experiments with horizon sizes of up to 256 past samples
have been conducted. The € exploration factor has been set to
85.0% for most of the experiments because a high exploration
percentage during the training phase is necessary to learn
an optimal policy. The training scenario uses an annealing
€ exploration factor, to ensure that the policy learner is more
greedy in its action selection over time. At the beginning of
a learning task, especially when replay prioritization is used,
it is necessary to experience a broad range of transitions. The
DDQN-PER algorithm then ensures that relevant transitions
are replayed more frequently. Furthermore, by choosing big-
ger horizon sizes it is necessary to scale up the capacity of the
underlying neural networks. Table 6 lists the neural network
architecture of our best performing instance, as well as the
model complexity.

VI. RESULTS

RESULTS: OCCUPANCY DETECTION

The best results achieved by our DDQN approach on the
occupancy detection dataset are listed in Table 7. The per-
formance metrics of our approach are reported on both test-
ing series, with and without PER. The corresponding model
hyperparameter configuration, that has been used to achieve
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these results, are listed in Table 4. An accuracy of 96.4%
and a F1-Score of 95.1% is the best result we achieved on
testing series 0. On testing series 2 we achieved an accuracy
of 98.2% and a F1-Score of 96.0%. Overall, our adaption
of the DDQN algorithm with PER performs better on both
testing series. Only the recall of the DDQN algorithm with
PER is 0.1 percentage points lower on testing series 0 and
0.3 percentage points lower on testing series 2. The other per-
formance metrics increased with the PER extension on both
testing series. On the larger testing series 2, the observed per-
formance improvements with PER are more significant. The
overall accuracy improved by 1.5 percentage points, while the
precision improved by 6.0 percentage points. The F1-Score
improved by 3.1 percentage points on testing series 2. This
indicates the superiority of the PER sampling strategy over
the random sampling strategy. In the fall detection experi-
ment, conducted on the more volatile fall detection dataset,
the performance improvements gained by the PER sampling
strategy are even more significant.

TABLE 7. Best results achieved by the DDQN-PER algorithm with PER and
without PER on the occupancy detection dataset.

- Testing Series 0 Testing Series 2
Criteria
PER No PER PER No PER

Accuracy 96.4% 96.2% 98.2% 96.7%
Balanced Accuracy 96.5% 96.4% 98.3% 97.4%
Precision 93.2% 92.6% 93.7% 87.7%
Recall 97.1% 97.2% 98.4% 98.7%
F1 Score 95.1% 94.9% 96.0% 92.9%
Selectivity 95.9% 95.6% 98.1% 96.1%

COMPARISON: OCCUPANCY DETECTION

In this subsection, the occupancy detection performance of
the approaches found in previous work is compared to our
DDQN-PER approach. Table 8 lists the performance met-
rics and decimal places as reported in previous work. The
evaluated models in [10] include random forest (RF), linear
discriminant analysis (LDA), classification and regression
trees (CART) and gradient boosted models (GBM). The
achieved results vary from 93.06% to 97.90% accuracy on
testing series 0 and 95.14% to 98.76% accuracy on testing
series 2. Accuracy-wise, only their LDA performs slightly
better compared to our DDQN-PER method. A difference of
1.5 percentage points on testing series 0 and 0.56 percentage
points on testing series 2 can be observed. In [34] two differ-
ent approaches have been suggested. The authors proposed
a multivariate convolutional neural network (MVCNN), that
performs better on testing series 0, but is outperformed by
DDQN-PER on testing series 2. Their random forest (RF)
approach is outperformed accuracy-wise by our DDQN-PER
approach, on both testing series. Unfortunately, the perfor-
mance metrics reported in [10], [34] are limited to the accu-
racy metric and do not include precision, recall and F1-score.
These metrics however, are important in order to compare
the predictive performance of the models on the respective
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dataset, because the dataset is highly unbalanced in its’ class
distribution. In [35], the authors improved the traditional
radial basis function network (RBFN), by applying their mul-
ticolumn radial basis function network (MCRN) mechanism.
The MCRN mechanism divides the training set of the dataset
in smaller subsets, using the k-d tree algorithm. The reported
results in [35] however, only consider the testing series 0 of
the dataset. The authors achieved an accuracy of 97.60% and
93.20%, depending on the number of subsets they used for
training their method. However, the recall of 95.00% they
reported, is outperformed by our DDQN-PER approach by
2.1 percentage points. The authors also evaluated the per-
formance of a support vector machine (SVM). The SVM
scored 1.5 percentage points higher accuracy-wise compared
to our DDQN-PER approach. However, the recall has not
been reported for the SVM they evaluated.

In addition to the reported performance metrics, Table 8
lists whether or not the respective approaches are adaptable to
different environments or capable of online learning. We con-
sider an approach adaptable to different environments if it
does not require hand-crafted rules that are defined by human
experts. We consider an approach capable of online learn-
ing when the underlying model can be trained on data that
becomes available in a sequential fashion. For approaches
that are not capable of online learning, the entire training
dataset must be available at once during training to gen-
erate the best predictor. As indicated in Table 8, only our
adaption of the DDQN algorithm is capable of online learn-
ing compared to previous work that reported on the occu-
pancy detection dataset because our method is purely based
on the paradigms of reinforcement learning. Although the
other approaches suggested in previous work are adaptable
to different environments, they require that the entire training
dataset is available at once to create the best predictor.

In conclusion, our DDQN-PER approach performs by
no means inferior to the approaches found in previous
work. Although, for a better comparison it is necessary
that the authors of the respective works include the preci-
sion, recall and F1-score metrics. On testing series 0, our
DDQN-PER approach achieved competitive results. On test-
ing series 2, only the LDA performs 0.56 percentage points
better accuracy-wise. The other approaches are outperformed
by DDQN-PER on testing series 2. Additionally, our method
has the advantage of being capable of online learning com-
pared to previous work that reported on the occupancy detec-
tion dataset.

RESULTS: FALL DETECTION

The best results achieved by our DDQN-PER approach on
the fall detection dataset are listed in Table 9. The results
indicate the superiority of the PER strategy in rare event clas-
sification tasks, compared to the results achieved using the
default random sampling strategy. The difference in detection
performance in this experiment is rather large. This could be
due to the fact that the dataset for fall detection is larger and
the fraction of anomalous samples is lower compared to the
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TABLE 8. Comparison to previous work on the occupancy detection task.
The performance metrics reported in previous work are limited, only the
accuracy has been reported. The column “A” on the right-hand side
indicates, whether or not the respective algorithm is adaptable to
different environments. The column “0” indicates whether the respective
algorithm is capable of online learning.

Approach Accuracy (%)

Testing Series 0 Testing Series 2 A O
RF [10] 95.05 97.16 v X
GBM [10] 93.06 95.14 v X
CART [10] 95.57 96.47 v X
LDA [10] 97.90 98.76 v X
SVM [35] 97.90 - v X
KNN [35] 95.90 - v X
RBFN [35] 97.00 - v X
MCRN [35] 97.60/93.20 - v X
MVCNN [34] 97.40 97.72 v X
DDQN 96.20 96.70 o/
DDQN-PER 96.40 98.20 o/

occupancy detection dataset. An overall accuracy of 92.6%
and a F1-Score of 70.5% has been achieved using the PER
sampling strategy. The corresponding model hyperparameter
configuration is listed in Table 4. Although, the recall and
balanced accuracy achieved using the PER sampling strategy
is lower, the overall accuracy, precision, and F1-Score signif-
icantly dominates the results achieved using the random sam-
pling strategy. Using the PER sampling strategy, the DDQN
algorithm learns from more important state transitions. The
performance improvements gained by the PER strategy are
particularly reflected by the precision and F1-Score. The
precision increased by increased by 27.5 percentage points,
while the F1-Score increased by 13.0 percentage points.

TABLE 9. Best results achieved by the DDQN algorithm with PER and
without PER on the fall detection dataset.

Criteria PER No PER
Accuracy 92.6% 89.3%
Bal. Accuracy 81.7% 84.3%
Precision 73.3% 45.8%
Recall 69.6% 78.6%
F1 Score 70.5% 57.5%
Selectivity 93.9% 89.9%

COMPARISON: FALL DETECTION

In this section, the performance of previous work that reports
on the fall detection dataset is compared to our DDQN-
PER approach. Table 10 lists the performance metrics and
decimal places as reported in the respective research. In [9],
the authors propose an approach that is based on a set of
distinct agents. Their machine-learning agents are based on
a SVM and the C4.5 decision tree algorithm. Only if both
agents output a fall event, the event is considered a fall. The
authors report that their machine-learning agents yield an
accuracy of 72.0%. Their expert-knowledge agents can detect
four types of emergency situations, using a set of handcrafted
rules. However, handcrafted rules can potentially be biased
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TABLE 10. Comparison to previous work on the fall detection task. The
F1-Score is reported depending on the availability in the respective
research. The column “A” on the right-hand side indicates, whether or not
the respective algorithm is adaptable to different environments. The
column “0” indicates, whether or not the respective algorithm is capable
of online learning.

Approach Accuracy F1- A O
(%) Score
(%)
SVM, C4.5 (Machine-learning) [9] 72.0 - v X
Rule-based (Expert-knowledge) [9] 88.0 - X X
HMM (Meta-prediction) [9] 91.3 - X X
Confidence system (one tag) [36] 90.1 - X X
Confidence system (four tags) [36] 94.7 - X X
J48 (Decision Trees) [37] 52.0 58.0 v X
JRip (Rule-based) [37] 51.0 57.0 v X
SMO [37] 53.0 59.0 v X
RF [37] 52.0 58.0 v X
NaiveBayes [37] 40.0 53.0 v X
CDKML (initial) [37] 63.0 64.0 X X
CDKML (refined) [37] 66.0 65.0 X X
CDKML (adapted) [37] 81.0 71.0 X v
Confidence system (one tag) [38] 94.2 - X X
Confidence system (four tags) [38] 95.3 - X X
DDQN 91.5 65.6 v /
DDQN-PER 92.6 70.5 v /

by assumption and human experts are necessary in order to
define them. Additionally, the expert-knowledge agents make
use of information about the location of objects, such as beds,
chairs and tables. The object location information however,
is not contained in the respective dataset and therefore, could
not be used for the development of our approach. The authors
report that their expert-knowledge agents yield an accuracy of
88.0%. Their meta-prediction agents merge the outputs of the
machine-learning and expert-knowledge agents, and increase
the detection accuracy to 91.3%. Unfortunately, the authors
do not report precision, recall and F1-Score. In comparison,
our adaption of the DDQN-PER algorithm yields a fall detec-
tion accuracy of 92.6% and outperforms the agents proposed
in [9] accuracy-wise. Additionally, our DDQN-PER approach
does not rely on handcrafted rules defined by human experts.
Furthermore, our DDQN-PER approach was developed with-
out object location information. Similar to [9], in [36], the
authors conduct fall detection based on the data captured
from the location tags. Their confidence system is a complex
multi-agent system that consists of seven groups of intelli-
gent agents. The authors report 90.1% and 94.7% fall detec-
tion accuracy for one and four location tags, respectively.
Compared to our DDQN-PER approach, their confidence
system scores 2.1 percentage points higher accuracy-wise
based on four location tags. However, the authors did not
report precision and recall values, that are necessary for a fair
comparison. In [38] , Lustrek et. al improve their confidence
system and provide insight into the usability of the system
they propose. Regarding to the authors, the confidence system
appears to be sufficiently accurate for real life applications
and is accepted by its users. The authors improve the detec-
tion performance using additional accelerators. They report
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an accuracy of 95.3%, which improves upon our DDQN-PER
approach by 2.7 percentage points. Similarly to [9], [36]
however, their confidence system requires human experts to
define handcrafted rules. Additionally, their confidence sys-
tem makes use of context information (i.e. the location of bed,
chairs, and tables in the test environment). In [37], the authors
propose a method called combining domain knowledge and
machine learning (CDKML). Their CDKML system con-
sists of multiple phases, specifically an initialization, refine-
ment, and online adaption phase. In the initialization phase
a human-understandable classifiers is generated by making
use of traditional rule-based and decision tree algorithms.
Refinement of the initial classifier is performed using genetic
algorithms under expert supervision. The genetic algorithm
then outputs the final general rule-based classifier. In the final
phase, an online learning process is performed and the classi-
fier is adapted based on user feedback. Their method yields an
accuracy of 81.0% and a F1-Score of 71.0%. In comparison
to our DDQN-PER adaption, only the adapted version of their
CDKML method yields a slightly higher F1-Score. Similarly
to our approach, their method is based on online adaption
using a MDP. However, their approach has a major drawback
because it is based on hand-crafted rules that require the
intervention of human experts. In comparison, our adaption of
the DDQN-PER algorithm does not require humans to define
any handcrafted rules. All other methods reported by [37], are
outperformed by our DDQN-PER approach.

In conclusion, our adaption of the DDQN-PER algorithm
outperforms the majority of approaches proposed in previous
work and has a unique set of advantages. Our approaches
is both, adaptable to different environments and capable of
online learning. The approaches suggested in [9], [36]-[38]
require human supervision and are thus not adaptable to dif-
ferent environments. In addition, in comparison to previous
work, only the CDKML system [37] is capable of online
learning. However, the proposed approach requires expert
supervision as well as feedback from the users to obtain ade-
quate results. Moreover, our approach does not make use of
additional contextual information (i.e. the location of objects
in the test environment).

VIl. CONCLUSION

This work presents the novel use of an improved reinforce-
ment learning algorithm for anomaly detection in smart envi-
ronments. We adapted the DDQN algorithm for anomaly
detection, to make policy estimation more stable. Addition-
ally, we proposed to extend DDQN with the PER sampling
strategy to emphasize learning from rare data patterns, and
showed that our DDQN-PER solution yields an increase in
detection performance. Using PER, the problem of class
imbalance in the respective datasets is less prevailing, result-
ing in a more robust detector. Moreover, our work substan-
tially extends by adapting to multivariate sequential time
series learning scenarios. The evaluations conducted in this
work show, that the use of PER based on stochastic sampling,
yields detection improvement on rare event classification
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tasks. Our solution yields 98.2% accuracy and a F1-Score of
96.0% on the occupancy detection dataset. On the larger and
more volatile fall detection dataset, our solution yields 92.6%
accuracy and a F1-Score of 70.5%, outperforming the major-
ity of approaches proposed in previous work. Additionally,
our solution is adaptable to different environments, because
it does not rely on hand-crafted rules, that are defined by
human experts. Moreover, our adaption of the DDQN-PER
algorithm is an online learning algorithm, that directly learns
a decision-making function by creating experiences in a data-
driven fashion. The underlying model can be trained by
observing data in a sequential order without the need the
retrain the model based on the complete training dataset.
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