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ABSTRACT Electronically actuated systems in internal combustion engine (ICE) vehicles provide an
opportunity for introducing partial autonomy in these vehicles. Controllers for total or partial autonomy of
vehicle motion necessitate models of vehicular systems characterized by accurate transient and steady-state
responses. We consider an ICE powertrain with a push belt type continuous variable transmission (CVT)
associated with a double pinion planetary gear set. We propose a novel model for the planetary gear set
as a differential-algebraic-equation (DAE) system with switching dynamics. We extend the dynamic torque
converter model by incorporating the dynamics of the torque converter clutch with it. We combine CVT
variator kinematics and dynamics of pulleymotion and hydraulics and develop an aggregatedmodel. Further,
we construct data-driven models for the CVT’s traction coefficient and equilibrium force ratio. To operate
the CVT, we design a rule-based controller that makes the CVT function at discrete steady-state ratios.
Furthermore, we provide a model of a directional control valve (DCV) to capture the partial flows during
the transients of the DCV. We combine these models with the existing models of powertrain components
and vehicle dynamics to study the utility of the proposed models. We consider three case study examples
with realistic scenarios resembling vehicle maneuver in traffic, stop-and-go motion, and reverse motion to
examine the models’ ability to capture transient and steady-state characteristics and compare the resulting
behaviour with the expected response.

INDEX TERMS Powertrain, automotive control, continuous variable transmission, planetary gear, vehicle
dynamics.

I. INTRODUCTION
Modern internal combustion engine (ICE) vehicles consist
of control-by-wire components to implement safety systems,
assist systems, fuel optimization control systems, ride
comfort control systems, etc. Most existing safety and
driving assistance systems are limited to alerting drivers
in adverse scenarios and do not take over the vehicle’s
control from the driver. The presence of active components
in these vehicles provides an opportunity to introduce driving
autonomy [1]. A vehicle model is essential for developing
an autonomous control system that presides over human
drivers [2]. The complexity of a vehicle model depends on
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the intended control application. For example, consideration
of vehicle motion dynamics suffices to design controllers for
driving assistance systems. In contrast, a controller for fuel
optimization needs a model describing the powertrain and
the vehicle motion. For designing self-driving controllers,
models capturing the transient response of the vehicle and
its underlying components are crucial in ensuring safe
autonomous driving.

We focus on a powertrain with a push belt continuous
variable transmission (CVT), commonly found in ICE
vehicles nowadays. The powertrain comprises a spark-
ignition engine, a torque converter, push belt CVT, a double
pinion planetary gear system for the Drive-Neutral-Reverse
operation, and required hydraulic components. The engine
module is fitted with a linear actuator for torque assist and
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the other components are operated using electro-hydraulic
actuators. The linear actuator and the electro-hydraulic
actuators allow to control the powertrain with voltage inputs.
Existing literature provides detailed and well-established
mathematical models of different automotive systems. Some
noteworthy models are the torque converter model [3], engine
model [4], steering model [5], Magic formula Tyre model [6],
among several others. Models of planetary gear systems in
the literature either ignore the transient characteristics [7] or
involve a considerable number of degrees of freedom which
is redundant for control applications [8], [9]. Analyzing the
transient response of the planetary gears is crucial in deter-
mining appropriate inputs to other powertrain components.
Additionally, an aggregated control-oriented model of a CVT
describing the variator kinematics, pulley dynamics, and
actuation mechanism cannot be found in the literature. Grey
box models like the CMM model [10], Shafaimodel [11], Ide
model [12], and white-box models in [13], [14] are available
in the literature to model push belt and chain type CVTs.
These models either focus on the variator’s working principle
or the pulleys’ combined with approximated dynamics for
the other aspects of the CVT. Apart from that, Hrovat’s
torque converter model [3] only provides dynamics for the
hydrodynamic operation without a locking clutch. The model
does not capture the dynamics for the locked mode of
operation.

We put forth a novel model for a double pinion planetary
gearbox in this work. The planetary system comprises a sun
gear, a ring gear, a carrier, two planet gears, and two clutches
for Drive and Reverse operations. The model describes
the mechanism of the gearbox using differential-algebraic
equations (DAE) with switching dynamics. It is shown how
applied torque on the planetary gears affects the switching
in the DAE system and results in a change of the algebraic
variable. The CMM model for a chain pulley type CVT [10]
is modified with rotational dynamics and other constraints.
The dynamic torque converter model by Hrovat et al. [3] is
adapted with the dynamics of torque converter clutch and
actuator dynamics.

Usage of DCVs in hydraulic circuits for controlling fluid
flow in CVT pulley cylinders can be found in [13]–[15].
In this work, we considered 3-way 3-position directional con-
trol valves (DCV) for controlling these hydraulic pressures.
Existing simple models [13], [14] explains the flow dynamics
at the steady-state positions of the valve spool and ignore the
flows during the transient stage of the spool displacement.
Detailed models such as those given in [16] require the
determination of many parameters, which is difficult to
obtain. We propose a model for the DCV considered capable
of capturing the flows during both transient and steady-state
operations.

We combine the developed models of the planetary
gearbox, the CVT, the torque converter, and the DCV
with the existing models of engine, engine actuator, clutch,
and hydraulic systems to develop an aggregated powertrain

model. We also develop a controller to determine the
input voltages to the actuator for operating the CVT.
To study the behaviour of the models, we assimilate the
powertrain model with a brake model, Tyre model, wheel
dynamics, and longitudinal dynamics of a vehicle. Finally,
the following cases resembling realistic scenarios are studied
to demonstrate the proposed models: (a) the maneuver of a
vehicle in traffic, (b) stop and go characteristics of a vehicle,
and (c) reverse motion. These case studies establish the
proposed models’ ability to capture the desired transient and
steady-state responses by comparing the ICE powertrain’s
expected outcomes and features. The voltage inputs to the
actuators are defined with a particular set of rules and in
accordance with the case study scenarios and are explained
in detail in Section XII.
The paper is organized as follows. Our contributions are

briefly highlighted in Section II. The powertrain architecture
is described in Section III. The extended model of the lockup
torque converter is explained in Section IV. The planetary
gearbox model is presented in Section V. The aggregated
CVT model is explained in Section VI. The hydraulic circuit
and the model for the DCV are described in Section VII. The
aggregated powertrain model is summarized in Section VIII.
The details of the models considered for the other powertrain
components and the vehicle dynamics are given in Section IX.
The CVT controller is described in Section X. Necessary
details for the simulation studies are provided in Section XI.
The case study examples are illustrated in Section XII, and
Section XIII concludes the work.

II. MAIN CONTRIBUTIONS
We aim to develop a model-based controller for driving
autonomy in ICE vehicles. This requires a model with the
detailed dynamics of the vehicular systems and sub-systems.
Developing a controller with a detailed complex can be
challenging. The difficulty can be avoided by following
a hierarchical approach with a distributed control strategy.
Considering this control architecture to be utilized later,
we developed the powertrain model. Our contributions are as
follows:
• In the planetary gearbox model, we determine an
algebraic constraint from the gear’s angular velocities
and use the Lagrange method to obtain their coupled
dynamics. We integrate the algebraic constraint with
the dynamics and model the system as a differential-
algebraic equations (DAE) system. Further, we describe
the change in the Drive, Neutral, and Reverse modes
with switching dynamics. We show that changing the
algebraic variable inhibits the switching of the system
dynamics and successfully describes the operation of
the planetary gearbox for all drive modes preserving the
continuity of the system states.

• We combine the CMM model [10], pulleys’ rotational
and translational dynamics, dynamics of the hydraulics
in the pulley cylinder. For the aggregation, we consider
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FIGURE 1. Schematic diagram of the powertrain.

the variator kinematics as an algebraic constraint and
include the CVT dynamics to model the CVT as a DAE
system. Further, we present data-driven models for the
CVT’s traction coefficient and equilibrium force ratio
in the CMM model to complete the aggregated CVT
model.

• Further, we integrate the dynamics of the torque con-
verter clutch (TCC) and the clutch actuation dynamics
with Hrovat’s dynamic torque converter model [3].
To integrate the TCC’s dynamics, we incorporate the
frictional torque from the TCC and the load on the
torque converter due to the TCC. To complete themodel,
we include the hydraulics in the TCC assembly with the
fluid inflow and outflow as the control variables.

• In the proposed DCV model, we define nine modes
of operation for the DCVs based on the spool position
and determine the DCV’s dynamics in these modes to
incorporate the transient responses. The approach can
also be used to model other DCVs and valves.

• We conceptualize a holistic powertrain model consisting
of a spark ignition (SI) engine, a torque converter,
a double-pinion planetary gear system, a pulley-type
push belt CVT, and associated hydraulic systems and the
corresponding electronically controlled actuators.

• Finally, we present a controller to operate the CVT at
discrete steady-state transmission ratios and maintain its
radii and pressure bounds.

III. POWERTRAIN ARCHITECTURE
In this paper, we consider a CVT-based powertrain
whose components are actuated by electromechanical or

electrohydraulic means. The powertrain is powered by a
spark ignition (SI) engine where an electronic linear actuator
controls the throttle. The transmission considered is a push
belt type CVT. The CVT primary and secondary are shifted
using directional control valves (DCV). A single-stage lockup
torque converter is chosen for power transfer from the engine
to the CVT. The torque converter clutch (TCC) operation is
controlled using solenoid valves. A double pinion planetary
gear set between the torque converter and CVT allows
forward and reverse motion. The hydraulic actuation systems,
a centrifugal gear pump powered by the SI engine and
associated pressure valves, are the powertrain’s hydraulic
system elements. Hydraulics in the TCC and the planetary
gear clutches are controlled by a set of ON-OFF solenoid
valves for each clutch. The CVT pulley displacements are
controlled using two 3-way 3-position directional control
valves. The valves and the linear actuator are operated using
voltage inputs. The hydraulic pressure is generated by a
centrifugal pump, and the pressure is maintained with a
pressure relief valve and a pressure reducing valve. The pump
and the valves are the elements of the hydraulic system in the
powertrain.

A schematic diagram of the powertrain is presented
in Fig. 1.

IV. TORQUE CONVERTER
A lock-up torque converter operates in two modes - 1) the
hydrodynamic mode, and 2) the locked mode. In the
hydrodynamic mode, torque is transferred from the impeller
to the turbine via fluid coupling. In the locked mode, the
impeller and the turbine are connected mechanically via
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a clutch. Engagement and disengagement of the lock-up
clutch or the torque converter clutch (TCC) are controlled
via an electro-hydraulic actuator. The dynamic model by
Hrovat [3] is considered here, which helps in analyzing the
operation of a torque converter with both transient and steady-
state responses. In this work, the model of Hrovat [3] is
extended with the dynamics of the TCC to incorporate the
transient behaviour during locking and unlocking. With the
dynamics of the TCC and its actuation, the dynamics during
the transition between the hydrodynamic and locked modes
are captured, and thus the continuity of the torque converter
states is preserved. Next, the models describing the unlocked
and locked models are presented.

Under the assumptions on fluid flow, effects of blade
thickness, thermal effects made in [3], the dynamics of the
lock-up torque converter for the unlocked modes are given
by

Ji
dωi
dt
+ ρtcSiAtc

dvtc
dt
= τi − τi0 − τtcc (1a)

Jt
dωt
dt
+ ρtcStAtc

dvtc
dt
= τt0−τt−Btc (ωt−ωtcc)

− ktc (θt − θtcc) (1b)

Js
dωs
dt
+ ρtcSsAtc

dvtc
dt
= τs − τs0 (1c)

Jtcc
dωtcc
dt
= τtcc − Btc (ωtcc − ωt)

− ktc (θtcc − θt) (1d)

Si
dωi
dt
+St

dωt
dt
+Ss

dωs
dt
+ltc

dvtc
dt
= ftc(ωi, ωt , ωs, vtc) (1e)

where the J ’s are the respective inertia, τ j’s are the external
torque, τ j0’s are the steady-state torque, and S’s are the
characteristic area constant of the impeller, turbine and
stator, respectively. θtcc, τ tcc, Jtcc, ωtcc,Btc, and ktc represent
the angular displacement, friction torque, inertia, angular
velocity, damping coefficient and the spring constant of the
torque converter clutch. Further, vtc, ρtc, Atc and ltc denote the
relative fluid velocity, fluid density in the torque converter,
the cross-sectional area and effective fluid inertia length of
the torque converter. The function ftc(ωi, ωt , ωs, vtc) in (1e) is
a polynomial expression of the dependent variables, derived
in [17].

During the hydrodynamic mode of operation, slight
viscous friction is present between the clutch plates, which
generates a small drag torque. In this work, we assume that
the drag torque in the disengaged mode of operation is 0 as
it is negligible compared to the torque transferred across
the torque converter. The dynamics for the locked mode of
operation can be written as

dωi
dt
=

1
Ji + Jtcc

(τi − Btc (ωi − ωt)− ktc (θi − θt)) (2a)

dωt
dt
= −

1
Jt
(τt + Btc (ωt − ωi)+ ktc (θt − θi)) (2b)

Therefore, switching between themodes occurs depending on
the angular velocities of the lockup clutch and the impeller.

Here, the input torque at the impeller is the load torque at
the engine, i.e., τ i = τ lE , and the angular velocity of the
impeller is equal to that of the engine, i.e., ωi = ωe.

A. TORQUE CONVERTER CLUTCH FRICTION
The torque converter clutch is a wet friction clutch that is
engaged to transfer torque from the engine to the transmission
with more significant efficiency. The engagement and disen-
gagement of the clutch lead to a slip-stick behaviour which
governs the friction torque generated in the clutch. Existing
models for determining clutch friction torque considers either
static or dynamic friction in the clutch plates [18]–[21].
A static clutch model is considered here with the Stribeck
friction model. The clutch torque is given as

τtcc = NtcPtccAtccRetccµ(ωrtcc )sgn(ωrtcc )

Retcc =
2
3

(
R3otcc − R

3
itcc

R2otcc − R
2
itcc

)
Atcc = π

(
R2otcc − R

2
btcc

)
µ(ωrtcc ) = µctcc +

(
µstcc − µctcc

)
exp

(
−

∣∣∣∣ωrtccωstcc

∣∣∣∣λstcc
)

+βvtcc
∣∣ωrtcc ∣∣

ωrtcc = ωtcc − ωi (3)

where Ntc,Atcc,Rotcc , Ritcc , and Rbtcc are the number of plates,
piston area, outer radius, inner radius and bore radius of
the torque converter clutch. µ(·) gives the Stribeck friction
where µctcc , µstcc , and βvtcc are the Coulomb, Stribeck and
viscous friction coefficient, respectively, and ωstcc , λstcc are
the Stribeck friction coefficients for the torque converter
clutch.

B. DYNAMICS OF THE CLUTCH ASSEMBLY
The piston pressure (Ptcp) and velocity (vtcp) dynamics in the
clutch assembly are given by [22]

dPtcp
dt
=

Bhyd
Vtcp + Atcpstcp

(
Qtco − Qtcin − Atcpvtcp

)
(4a)

dvtcp
dt
=

1
Mtcp

(
Fsprtcp − Dtcpvtcp − Fsltcpsgn(vtcp)

−Atcp
(
Ptcp + Pcftcc

) )
(4b)

whereBhyd is the bulkmodulus of the automatic transmission
fluid (ATF) andQtcin ,Qtco are the inflow and the outflow rates
of the ATF in the TCC piston chamber. The other symbols
have their usual meaning, and the subscript tcp denotes the
TCC piston.

As the clutch assembly rotates, a centrifugal force is
exerted on the clutch disks. The equivalent pressure, Pcftcc ,
due to the centrifugal force, depends primarily on the angular
velocity of the clutch assembly aswell as the fluid level height
in the piston assembly, Rsttcp . The pressure generated due to
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FIGURE 2. Schematic of the planetary gear set.

the centrifugal force, Pcftcc , is expressed as

Pcftcc =
πρhydω

2
tcc

Atcp

(
1
4

(
R4otcc − R

4
itcc

)
−

1
2

(
R2sttcp

(
R2otcc − R

2
itcc

)))
(5)

Finally, the piston seal drag force is given by [23]

Fsltcp =
(
kstcp

(
Ptcp + Pcftcc

)
+ C1tcp

)
tanh

vtcp
C2tcp

(6)

where kstcp is the static frictional resistance coefficient of the
clutch piston and C1tcp , C2tcp are constant terms.

V. PLANETARY GEARBOX
A double pinion planetary gear set is considered here along
with a clutch pack for drive and reverse mode. Fig. 2 depicts
the planetary gear system considered. The gear system
comprises a sun gear, a ring gear, a carrier and six planet
gears. The sun gear connects the turbine shaft while the
carrier connects the CVT primary pulley. In the Neutral
mode, both the clutch packs remain disengaged. When the
gear mode is changed from Neutral to Drive, the forward
clutch pack is engaged, while the reverse clutch pack is
engaged for the Reverse. As the separator disks and the
friction disks are pressed in the forward clutch pack, the
generated friction torque gradually adjusts the velocities in
the sun and the ring gear, allowing them to rotate at the same
angular velocity. Similarly, the reverse clutch mechanically
connects the clutch housing and the ring gear, restricting any
rotational motion. The kinematics of the angular velocities in
the planet gears can be written as

ωp1Rp1 = −ωsgRsg + ωcRsg (7a)

ωp2Rp2 = ωrgRrg − ωcRrg (7b)

ωp1Rp1 = −ωp2Rp2 (7c)

where ωpi (i = 1, 2) are the angular velocities of the planet
gears, i = 1 and i = 2 denote the pinions adjacent to the sun
and ring gear, respectively and Rpi is the pinion radius in the
ith level. The subscripts sg, rg and c represent the sun gear,
ring gear and carrier, respectively. Solving (7), we get

ωc(Rrg − Rsg) = ωrgRrg − ωsgRsg (8)

The algebraic relations of the gear’s angular velocities in (8)
govern the dynamics of the planetary gear set. The kinetic
energies, Ki (i = {sg, rg, c}), of the sun gear, ring gear, and
the carrier is obtained as:

Ki =
1
2
Jiω2

i , i = {sg, rg, c} (9)

where Ji (i = {sg, rg, c}) is the moment of inertia of the
respective gear. Similarly, the kinetic energies of the planet
gears can be obtained as:

Kp1 =
np
2

(
Jp1ω

2
p1 +Mp1

(
Rp1 + Rsg

)2
ω2
c

)
Kp2 =

np
2

(
Jp2ω

2
p2 +Mp2

(
Rp1 + Rp2 + Rsg

)2
ω2
c

)
(10)

where np is the number of planet gears in each level, Jpi1 ,
Jpi2 are the respective moment of inertia, and Mpi1 , Mpi2 , are
the respective masses. Here, np = 3. Assume that there are
no linear displacements along either axis of the gears, the
system’s potential energy remains unchanged, i.e., V = 0.
Therefore, the Lagrangian function for the planetary system
is given by

L = K − V

= Ksg + Krg + Kc +
3∑
i=1

Kpi1 +
3∑
i=1

Kpi2 (11)

Let the external torques and virtual displacements on the sun
gear, ring gear and the carrier be τ i(i = {sg, rg, c}) and
δθi(i = {sg, rg, c}), respectively. Then, the work done by the
planetary gear system on application of the external torque is

δW = τsgδθsg + τrgδθrg + τcδθc (12)

Hence, the system of the planetary gear set is essentially
a DAE system with two differential state variables and
2np + 1 algebraic variables.

A. DYNAMICS 1
Considering the algebraic constraint in (8) and choosing the
degrees of freedom to be θsg and θrg, (12) can be re-written
as

δW =
(
τsg −

Rsg
Rsg + Rrg

τc

)
δθsg

+

(
τrg +

Rrg
Rsg + Rrg

τc

)
δθrg (13)

Therefore, the equations of motion obtained using the
D’Alembert’s principle are

d
dt

(
∂L
∂ωsg

)
−
∂L
∂θsg
= τsg −

Rsg
Rsg + Rrg

τc (14a)

d
dt

(
∂L
∂ωrg

)
−
∂L
∂θrg
= τrg +

Rrg
Rsg + Rrg

τc (14b)

Using (7-11) in (14), we get

c1
dωsg
dt
+ c2

dωrg
dt
= τsg −

Rsg
Rsg + Rrg

τc (15a)

c2
dωsg
dt
+ c3

dωrg
dt
= τrg +

Rrg
Rsg + Rrg

τc (15b)
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where

c1 = Jsg +
R2sg
R2pg

(
J ?p + R

2
rg

2∑
i=1

Jpi
R2pi
+
Jc
np

)

c2 = −
RrgRsg
R2pg

(
J ?p + RrgRsg

2∑
i=1

Jpi
R2pi
+
Jc
np

)

c3 = Jrg +
R2rg
R2pg

(
J ?p + R

2
sg

2∑
i=1

Jpi
R2pi
+
Jc
np

)

Rpg =
1
√np

(
Rrg − Rsg

)
J ?p = Mp1 (Rp1 + Rsg)

2
+Mp2 (Rp1 + Rp2 + Rsg)

2

For the powertrain considered, τ sg = τ t , wsg = wt , wc =
wpcvt and τ c = τ pcvt where wpcvt and τ pcvt are the angular
velocity and torque supplied to the primary pulley of the CVT,
respectively.

B. DYNAMICS 2
However, when both the clutches are disengaged, i.e. in the
Neutral mode, the choice of degrees of freedom to determine
the expression for virtual work in (13) does not help in
determining the dynamics. In the Neutral mode, the external
torque acts on either the sun gear or the carrier or both
of them. Therefore, the suitable choice for degrees of
freedom is θsg and θc. The switching of modes occurs
at the zero-crossing of the external torque on the ring
gear, τ rg. In this mode, when the vehicle is at rest, i.e.
ωc = 0, the relation between the angular velocity of
the sun gear and ring gear are derived from the algebraic
constraint (8) as

ωrg = ωsg
Rsg
Rrg

(16)

and the rotational dynamics of the sun gear is given by

dωsg
dt
=

τsg

Jsg +
R2sg
R2p1

npJp1 +
R2sg
R2p2

npJp2 +
R2sg
R2rg
Jrg

(17)

Cars are provided with parking brakes which prevent any
unwantedmovement of a vehicle while parked.When parking
brakes are not applied, the wheels may rotate due to external
force even though the vehicle is kept in Neutral, such
as gravitational pull in an incline. In such scenarios, the
rotational dynamics of the gears can be derived using the
same method as shown in (13)-(15), considering θsg and θc as
the degrees of freedom. The equations of rotation are given
by:

c4
dωsg
dt
+ c5

dωc
dt
= τsg (18a)

c5
dωsg
dt
+ c6

dωc
dt
= τc (18b)

where

c4 = Jsg + Jrg
R2sg
R2rg
+ npR2sg

2∑
i=1

Jpi
R2pi

c5 = Jrg

(
Rsg(Rrg − Rsg)

R2rg

)
− npR2sg

2∑
i=1

Jpi
R2pi

c6 = Jc + np

(
J ?p + R

2
sg

2∑
i=1

Jpi
R2pi

)
+ Jrg

(Rrg − Rsg)2

R2rg

However, if the engine is turned off, then ωsg = 0 and the
algebraic constraint in (8) gives ωrg = ωc

Rrg−Rsg
Rrg

. Then, the
rotational dynamics of the carrier is given by

dωc
dt
=

τc

Jc +
R2sg
R2p1

npJp1 +
R2sg
R2p2

npJp2 +
R2pg
R2rg
npJrg

(19)

C. CLUTCH TORQUE AND CLUTCH DYNAMICS
External torque is applied to the ring gear upon engagement
of either clutch packs, which can be written as

Trg =



Bfc1ω
sg
fc + kfc1θ

sg
fc − sgn

(
1ω

rg
rc
)
τrc,

forward clutch stick

−sgn
(
1ω

rg
fc

)
τfc − sgn

(
1ω

rg
rc
)
τrc,

slip or slip-stick

−sgn
(
1ω

rg
fc

)
τfc − Brcωrc − krcθrc,

reverse clutch stick

(20)

where 1ωpq = ωp − ωq, 1θ
p
q = θp − θq (p = {sg, rg}, q =

{fc, rc}) and the subscripts ‘fc’ and ‘rc’ represent forward
and reverse clutch pack, respectively. Bi, ki, θi, ωi, τ i
(i = {fc, rc}), are the torsional damping, torsional stiffness,
angular displacement, angular velocity and friction torque in
the clutches. The friction torque can be modeled using static
or dynamic friction in the clutch plates [19]–[21].

The rotational dynamics of the clutches is given by

Jfc
dωfc
dt
= sgn

(
1ω

rg
fc

)
τfc + Bfc1ω

sg
fc + kfc1θ

sg
fc

Jrc
dωrc
dt
= sgn

(
1ωrgrc

)
τrc − Brcωrc − krcθrc (21)

where Jfc and Jrc are the moment of inertia of the forward
clutch and reverse clutch, respectively. The clutch actuation
dynamics comprises the dynamics of the hydraulic pressure
in the piston assembly and the translation of the piston. The
clutch actuation dynamics follows the same dynamics as
depicted in (4), (5) and (6).

VI. CONTINUOUS VARIABLE TRANSMISSION
A pulley-type push belt CVT is considered for the powertrain
model in this work. The primary pulley is connected to
the planetary gear set’s carrier, and the secondary pulley is
connected to the differential via the propeller shaft. Axial
clamping forces are applied on the pulleys, which changes
the pulley radii, and as a result, the gear ratio changes.
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The axial displacements of the pulley sheaves are controlled
by electro-hydraulic actuators.

A. CVT CONSTRAINTS
The geometric ratio, speed ratio and relative slip of a CVT
are defined as

rgcvt =
Rpcvt
Rscvt

, rscvt =
ωscvt

ωpcvt
, νcvt = 1−

rscvt
rgcvt

,

respectively, where Rpcvt , Rscvt are the radius and ωpcvt , ωscvt
are the angular velocities of the primary and secondary pulley.
The kinematics of the CVT originating from its geometric
relation can be written as

Lcvt = 2dcvt cos (φcvt)+ Rpcvtφpcvt + Rscvtφscvt

φcvt = arcsin
(
Rpcvt − Rscvt

dcvt

)
,

φpcvt = π + 2φcvt , φscvt = π − 2φcvt (22)

where Lcvt is the total length of the CVT belt, dcvt is the
center-to-center distance of the pulleys, and φpcvt , φscvt are
the primary and secondary angle of wrap. The algebraic
constraint in (22) holds under the assumption that there is no
spiral motion in the belt, and hence the belt runs at a constant
radius over the entire angle of wrap at each pulley.

A necessary criterion for torque transfer from the CVT
primary to the secondary is that the belt should remain
adhered to the pulleys. Hence, the pressure in the pulley
cylinders should ensure that the clamping forces on the
movable pulley sheaves are always greater or equal to the
minimumvalue. This criterion can be expressed as constraints
on the clamping forces (Ficvt ), as

Ficvt ≥ min
(
Fpcvt ,Fscvt

)
=

∣∣τicvt ∣∣ cos(βcvt )
2Ricvtµcvt (νcvt)

, i ∈ {p, s} (23)

where τ pcvt and τ scvt are the torques exerted by the belt on
the primary and secondary pulley, respectively, and µcvt is
the traction coefficient at the pulleys. For ensuring minimum
clamping force, the secondary pulley is supplemented with
an additional spring. Assuming the spring force is linearly
related to the spring displacement, the clamping forces on the
pulleys can be written as

Fpcvt = ApcvtPpcvt + cfpcvtωpcvt
Fscvt = AscvtPscvt + cfpcvtωscvt + Fks0cvt

+ kscvt xscvt (24)

where Aicvt s are the piston areas, cficvt s are the centrifugal
force coefficients of the pulleys and Picvt s are the pressure
exerted on the pulleys. Further, Fks0cvt is the pre-load force
of the spring and kscvt is the spring constant. It is coherent
that for torque transfer, the relative slip must not become
zero, i.e., rscvt 6= rgcvt . Therefore, the clamping forces
are to be determined such that the constraint νcvt 6= 0
holds. The relation between the pulley radii and the pulley

displacements xicvt (i ∈ {p, s}) caused by the clamping forces
can be obtained using the CVT geometry as

xicvt = 2 tan (βcvt)
(
Ricvt − Ricvt |min

)
, i ∈ {p, s}, (25)

where βcvt represents the pulley wedge angle, and Ricvt |min’s
are the minimum radii.

An electro-hydraulic actuation mechanism is considered
for controlling the pulley sheaves’ axial displacements. The
inputs to the pulley cylinders are the fluid input flow
rates controlled by directional control valves, described in
Section VII-A. The dynamics of the hydraulic pressures in
the pulley cylinders follow from [14].

B. VARIATOR DYNAMICS
Altogether, the CVT variator dynamics can be modeled
with the dynamics of the angular velocity and radius of
the secondary pulley, the algebraic constraint in (22), and
the inequality constraint in (23). However, due to pulley
deformation, deflections in the belt, compression of the metal
blocks, slip, etc., the clamping force does not control the
shifting of the radius in all conditions, specifically in cases of
macro slip. Here, the CMMmodel is considered for modeling
the dynamics of the geometric ratio of the CVT, which
highlights both the micro-slip and macro-slip properties of
a CVT. The dynamics of the geometric ratio is given by:

drgcvt
dt
= ωDR1cvt (FDN )

(
1+ cos2 (βcvt)

sin(2βcvt )

)
· fcvt

(
rgcvt

)
ln
(
FDR
FDN
−
FDR|eq
FDN |eq

)
fcvt

(
rgcvt

)
= rgcvt

RDRcvt
dcvt

(
F1cvt + F2cvt ln

(
rgcvt

)2) (26)

The subscripts DR and DN represent the driving pulley and
the driven pulley, respectively. 1cvt is a factor originating
due to the deformation in pulleys and is dependent on the
clamping force on the driven pulley. F1cvt and F2cvt are
constants in the function fcvt , which are to be determined
using measurements. Hence, the variator dynamics can be
described considering ωscvt and rgcvt as the differential states,
and either of the pulley radii as the algebraic state.

C. ROTATIONAL DYNAMICS
The rotational dynamics of the primary pulley are the same
as the carrier of the planetary gear set. If the torque losses and
the inertia effects of the belt are neglected, then the rotational
dynamics of the secondary pulley is given by

Jscvt
dωscvt
dt
=

1
rgcvt

τscvt − τd

τscvt =
1
rgcvt

τpcvt

=
2µcvt (νcvt)Rpcvt min

(
Fpcvt ,Fscvt

)
rgcvt cos (βcvt)

(27)

where τ d is the load torque from the differential, and Jscvt is
the inertia of the secondary pulley.
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D. CVT’s TRACTION COEFFICIENT AND EQUILIBRIUM
FORCE RATIO
In the CVT model, it is difficult to ascertain the factors
that affect the equilibrium forces (FDR|eq,FDN |eq) and the
traction coefficient (µcvt ), through a first-principles analysis.
Alternatively, it is possible to develop data-driven models
among these variables and the primary variables that can be
measured directly. The traction coefficient in the CVT, µcvt ,
depends explicitly on the slip ratio νcvt . Different functions
were fitted to model the dependency of µcvt on νcvt . The
function that gives the best fit is similar to the Magic formula
Tyre model, given by

µcvt = Dcvt sin
(
Ccvt arctan

(
Bcvtνcvt − Ecvt

·
(
Bcvtνcvt − arctan

(
Bcvtνcvt

))))
(28)

The slip and friction in the CVT originate due to relative
motion between the pulley sheaves and the variator exhibits
similar phenomena of friction and slip in the tyres. Hence,
a choice of a function similar to themagic formula is justified.
The coefficients Bcvt , Ccvt , Dcvt and Ecvt , are determined by
fitting test data with the function in (28) using the Least-
squares Regression method. The coefficient values from the
fitted model are Bcvt = 1.6359, Ccvt = 0.14978, Dcvt =
0.7195 and Ecvt = 1.0308. It is mention-worthy that the
fitting is done based upon the mean of the friction values
collected for three values of secondary pulley pressure, Pscvt .
A better approximation functionmay be obtained considering
the effect of the secondary pulley pressure.

Similarly, for the equilibrium forces, a model is fitted
where κcvt gives the ratio of the equilibrium forces

(
κcvt =

FDR|eq/FDN |eq
)
. Upon inspection, the equilibrium force ratio

is found to depend upon the geometric ratio (rgcvt ), the
secondary pulley pressure (Pscvt ), and the angular velocity
of the secondary pulley (ωscvt ). From the measurement data,
the effects of the angular velocities of the secondary pulley
are found to be insignificant and therefore mean values of
κcvt over a range of ωscvt are taken into consideration. Several
functions are chosen to fit a model where κcvt depends on rgcvt
and Pscvt . The best fit is obtained for the function given by:

κcvt =
(
1+ exp

(
−
(
B3cvtP

2
scvt + B2cvtPscvt

+B1cvt
)(
rgcvt + C1cvt + C2cvtPscvt

))−1
·
(
A1cvt + A2cvtPscvt + A3cvtP

2
scvt

)
+
(
D1cvt + D2cvtPscvt + D3cvtP

2
scvt

)
·
(
rgcvtC1cvt + C2cvtPscvt

)
−

1
2

(
A1cvt

+A2cvtPscvt + A3cvtP
2
scvt

)
+ E1cvt

+E2cvtPscvt (29)

The coefficients are obtained using the Least-squares Regres-
sion method, presented in Table 1.

VII. HYDRAULICS
Hydraulic circuits associated with an automotive powertrain
consist of numerous components and display complex

TABLE 1. Coefficients of the fitted model for κcvt .

behaviour. In this work, part of the hydraulic circuit
essential for the hydraulic operations in the powertrain is
considered. The hydraulic circuit comprises a centrifugal gear
pump, a pressure relief valve, a pressure reducing valve,
two directional control valves (DCV), and six proportional
solenoid valves. The engine powers the centrifugal gear
pump, and the fluid pressure at the pump head is limited by
using a pressure relief valve. The centrifugal pump pumps
the ATF to the piston chambers in the clutch assemblies and
the pulley cylinders in the CVT. The solenoid valves control
the fluid flow in and out of the piston chambers, and the
DCVs regulate the inflow and outflow in the pulley cylinders.
The supply pressures to the solenoid valves are limited by
a pressure reducing valve to avoid mechanical damage and
wear. Cooling systems, accumulators, and other hydraulic
components are ignored here. The schematic of the hydraulic
circuit is shown in Fig. 1.
The following assumptions are made for the hydraulic

system:
1) The tank pressure (Ptank ) is equal to atmospheric

pressure.
2) Hydraulic pressure across the accessory components

such as cooler and filter is constant.
3) The hydraulic capacitance of the pipelines is time-

invariant, and there is no pressure drop across the
pipelines.

4) The discharge coefficient of the hydraulic components
is constant.

5) The ATF’s fluid density (ρhyd ) and dynamic viscosity
(µhyd ) are time-invariant due to the fixed temperature of
the ATF.

6) Mechanical compliance of the valve spools is time-
invariant.

7) None of the valves has any flow force compensation.
A centrifugal gear pump is considered here. The empirical
model of a centrifugal gear pump, developed by D. R.
Grandall [24] is used for the powertrain model.

A. PROPORTIONAL DIRECTION CONTROL VALVE
In this hydraulic circuit, there is a 3-way 3-position DCV at
each pulley cylinder, as shown in Fig. 1. The application of
voltage on either of the solenoid displaces the DCV spool
resulting in three steady-state modes of operation (i) fill
mode: the valves allow ATF to flow from the pump to the
cylinders in this mode, (ii) hold mode: the valves restrict all
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FIGURE 3. Modes of operation of the 3/3 proportional direction control
valve.

fluid flow in this mode, and (iii) release mode: the valves
allow to drain the cylinders to the tank in this mode.

First principle models of spool valves are developed
by considering valve pressure, spool displacement, and
velocity as the system states [14], [25]. The operation of
the spool valve is expounded with the number of positions
of the valves. The number of valve positions indicates
the number of positions in which the valve operates in a
steady state. As a result, the partial fluid flows and their
effects during the transient stages are ignored. Without the
transient stages, the hydraulic pressures of the CVT’s pulley
cylinder are discontinuous and hence the CVT’s geometric
ratio becomes discontinuous. We developed a detailed model
with both the steady-state and transient characteristics of the
3-way 3-position DCVs.

The total length of the valve (Lvalve) and the length of the
rod (Lrod ) are related to the length of the spool land (Lland ),
flow length (Lflow), and width of the ports (wport ) as

Lvalve > 2Lflow + 2Lland + wport , and, (30a)

Lrod > Lflow. (30b)

Considering the relations in (30), a model is developed
with nine modes of operation, three sub-modes each for fill,
release, and hold. A pictorial overview of the 9 modes of
operation is shown in Fig. 3. Let the length of the spring
chambers be defined as Lspr . Then, if the displacement of
the spool (si) is measured w.r.t the right end of the valve, the
modes can be classified as shown in Table 2. The symbols
H , F , and R, denote hold, fill and releasemodes of operation
in the DCVs. The subscripts 0 and 1 indicate the ATF flows
freely and partially across the valve ports, respectively, in the
corresponding mode. The following ± sign in the subscripts
denotes the secondary flow in and out of the spring chambers.
If only (30a) is satisfied, then modes H1+ and H1− do not
exist. If the length Lvalve is reduced to the extent such that
both (30a) and (30b) are violated, and Lvalve = 2(Lflow +
Lland ) + wport , then only modes R0 to F0 exist. The valves
are designed and calibrated to minimize the secondary flows.
Any change in the pressures of the spring chambers gets
adjusted due to leakage flow in the valve.

TABLE 2. Proposed modes of the 3-way 3-position direction control valve.

The fluid flow area in the valve and spring chambers
depends on the spool displacement. The fluid flow areas for
the valve chambers and the spring chambers are given by

ACvalvei =


Aporti , for R0,1, F0,1, H0

α11Aporti , for R1+
α12Aporti , for F1−
0, otherwise

(31a)

α11 = (si + Llandi + Lrodi − Lspri − Lflowi
+ 0.5 wporti )w

−1
porti

α12 =
Lrodi
wporti

− α11 + 1

APvalvei =


Aporti , for F1−,0, H1+

α2Aporti , for F1
0, otherwise

(31b)

α2 = α11 −
Lflowi
wporti

ATvalvei =


Aporti , for R1+,0, H1−

α3Aporti , for R1
0, otherwise

(31c)

α3 =
(
Lspri + 0.5wporti − si − Llandi

)
w−1porti

APsprli =


Aporti , for H1−

α4Aporti , for R1+
0, otherwise

(31d)

α4 =
Lflowi − Llandi

wporti
− α11 + 1

ATsprri =


Aporti , for H1+

α5Aporti , for F1−
0, otherwise

(31e)

α5 =
(
si + 0.5 wporti − Lspri

)
w−1porti

where ACvalvei , APvalvei , and ATvalvei are the flow areas for
fluid flow from the cylinder port, pump port and tank port,
respectively. APsprli are the flow areas for flow from the pump
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to the left side spring assembly, and ATsprri are the flow areas
for flow from the right side spring assembly to the tank. The
port areas, Aporti , are defined as

Aporti = π
(
dspooli + 21Ri

)
wporti (32)

The fluid flow from one chamber to another depends on
these flow areas. For a particular flow path, when the flow
area is equal to 0, the valve is closed for that path. On the
other hand, when the flow area is equivalent to Aport , the
valve is fully open. In other scenarios, the valve is partially
open or partially closed. If radial clearance is present in
the valves, leakage flow exists from the valve chamber
towards the spring chambers. For radial clearances of
1Ri, (i ∈ {dcvp, dcvs}, the leakage areas are given by

Aleaki =
π

4

((
dspooli +1Ri

)2
− d2spooli

)
(33)

where dspooli are the diameter of the spools.
The volume of the ports, valve chamber, and spring

chambers are defined as

Vporti =
π

4

(
d2porti − d

2
valvei

)
wporti (34a)

Vvalvei =
π

4

(
d2valvei − d

2
rodi

)
Lrodi +

π

2

(
d2valvei

− d2spooli
)
Lland (34b)

Vsprri =
π

4

(
d2valvei − d

2
soli

)
Lspri

+ max
(
0,
π

4
d2valvei

(
si − Lspri

))
(34c)

Vsprli =
π

4

(
d2valvei − d

2
soli

)
Lspri

+max
(
0,
π

4
d2valvei

(
Lvalvei − Lspri − Lrodi

− 2Llandi − si
))

(34d)

where dvalvei = dspooli + 21Ri, and dsoli , Lrodi are
the diameters of the solenoid rod and the spool rod,
respectively. The hydraulic capacitance for the corresponding
fluid pressure (Pk ) is determined as Chk =

Bhyd
Vk

. Using
the expression for the volumes and the flow equations, the
dynamics of fluid pressures in the chambers and ports can be
determined from the standard expressions of pressure change
and fluid flow in hydraulics.

A detailed model for the solenoid is required for precise
and accurate control. The solenoid model in [26] with the
nonlinear current dynamics and magnetic force expression is
used here.

VIII. POWERTRAIN MODEL
The powertrain consists of
1) an SI engine actuated by a linear actuator,
2) a lockup torque converter actuated with ON-OFF

solenoid valves and a hydraulic piston,
3) a double pinion planetary gear set in which the clutches

are actuated ON-OFF solenoid valves and hydraulic
pistons,

4) a push belt type CVT whose pulley movements are
actuated using 3-way 3-position DCVs, and

5) a hydraulic system consisting of a centrifugal gear
pump, a pressure relief valve, a pressure reducing valve,
valves for actuation of the lockup torque converter,
planetary gear set, and the CVT.

We aggregate the models of the torque converter, planetary
gearbox, CVT, hydraulic systems, and the engine to develop
a model for an ICE powertrain with CVT. For modeling the
engine, the control-oriented mean value model [4], [27] is
used. A linear actuator with a ball-screw mechanism is used
for throttle actuation [28].

The aggregated model is a DAE system consisting of
69 states and 11 inputs. Fig. 1 gives an overview of the
states and inputs in each sub-system of the powertrain.
One algebraic state is obtained from the algebraic constraint
involving the angular velocities of the gears in the planetary
gear set. The other is from the algebraic constraint relating
the pulley radii and the variator length in the CVT.
The powertrain model developed exhibits state-dependent
switching triggered by external torque on the gears of the
planetary gear set. The choice of the algebraic state in the
planetary gear depends on the external gear torque(s), which
is(are) dominant over others.

IX. UNIFIED MODEL FOR LONGITUDINAL MOTION
The behaviour of a powertrain can be validated by analyzing
the longitudinal motion behaviour of a vehicle only. Here,
we combine the proposed powertrain model with a brake
model, a tyre model, wheel dynamics, and longitudinal
dynamics of a quarter car vehicle model. The longitudinal
vehicle dynamics can be expressed as

Mv
dvx
dt
= Fx − Rx −Mvg sin(θroad )− Faero (35)

where θroad is the slope of the road and Faero is the aerody-
namic drag on the vehicle. Fx and Rx are the tractive force
and rolling resistance at the tyre road contact, respectively.
Since the objective is to showcase the characteristics of the
powertrain model, any brake model capturing the transient
and steady-state characteristics of the brakes fulfills the
objective. The dynamic model of a brake operated by a
vacuum booster developed by Gerdes [29] is used here.
The wheel dynamics and the Tyre model is described in
Section IX-A.

A. TYRE MODEL
A quarter car vehicle model demonstrates an average
behaviour of a vehicle. Therefore, only the final reduction
ratio is taken for the differential, i.e., it is replaced with a fixed
gear ratio, rd , with efficiency ηd . The wheel rotation can be
described by

Jw
dωw
dt
= τw − RwFx + RwRx (36)

where ωw = rdωcvts and τw =
1

ηd rd
τ d . Here, Jw, ωw,

τw, and Rw are the tyre-wheel inertia, wheel angular velocity
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along the wheel x-axis, drive torque from the differential and
effective radius of the tyre, respectively. The drive torque at
the wheel is related to the load torque at the secondary pulley
of the CVT. Hence (36) can be rearranged and substituted
in the rotational dynamics of the CVT secondary to obtain
a single differential equation.

The Magic formula Tyre model [6] is used to obtain the
tractive force. A drawback of the Tyre model in [6] is that the
slip definition restricts the usage of the model to accelerating
conditions and steady-state velocities only. The slip definition
is modified by adding conditions for scenarios where either or
both the vehicle’s longitudinal velocity and the tyre’s angular
velocity are zero. The added conditions for slip angle and the
Magic formula are given as

Kt =



0, if vx = Rwωw

−1, if ωw = 0 and vx

{
< 0 Drive
> 0 Reverse

1, if vx = 0 and ωw

{
< 0 Drive
> 0 Reverse

K̃t , otherwise

K̃t =


−vx + Rwωw

max (vx ,Rwωw)
, Drive

vx − Rwωw
min (vx ,Rwωw)

, Reverse
(37)

X. CVT CONTROLLER
Powertrains with CVT comprise a controller that determines a
transmission ratio based on vehicle states such as the vehicle’s
velocity, throttle angle in the engine, etc. The controller
provides inputs to the inflow-outflow valves to obtain the
desired transmission ratio and alters the hydraulic pressure
in the pulley cylinders [30], [31]. As a result, the pulley
radii change, and therefore, the transmission ratio. Here, the
CVT controller sets the geometric ratio of the CVT, rgcvt ,
for the desired transmission ratio. The desired geometric
ratio is taken to be a function of the throttle angle, αe,
and the longitudinal velocity, vx . The control strategy is
contemplated to make the CVT behave like a five-stage
automatic transmission such that the powertrain model’s
behaviour can be compared with the behaviour of other
combinations of powertrains with automatic transmissions.
Here, the desired geometric ratio (rdcvt ) values are set to
five discrete values. Although CVTs can provide infinite
transmission ratios for steady-state operation, in this case, the
geometric ratio has only five steady-state values.

It is considered that when the gear mode is Neutral or
Reverse, the desired geometric ratio takes its lowest value of
0.4352, which is the same as the initial value of rgcvt . The
desired geometric ratio for the k + 1th iteration, rdcvt [k + 1],
is defined as

rdcvt [k + 1] =


fcvt (αe[k], vx[k],1αe[k]) = fcvt [k],

if Gear Mode → Drive
0.4352, otherwise

(38)

where 1αe[k] = αe[k]− αe[k − 1], and

fcvt [k] =


fds (αe[k], vx[k]) , if 1αe[k] < 0
fcvt [k − 1], if 1αe = 0
fus (αe[k], vx[k]) , if 1αe[k] > 0

The functions fds(·) and fus(·) are for downshifting and up-
shifting the gear ratios, respectively. The shifting functions
are defined in a manner such that the functions depend on
longitudinal velocity (vx), and the throttle angle (γe). These
functions are defined as

fshift [k + 1] =



0.4352, if v̄x[k] ≤ ϒ1

0.67, if ϒ2 > v̄x[k] ≥ ϒ1

0.93, if ϒ3 > v̄x[k] ≥ ϒ2

1.215, if ϒ4 > v̄x[k] ≥ ϒ3

1.6639, if v̄x[k] ≥ ϒ4

(39)

where ϒi = ϒi (γe[k]) (i = 1, 2, 3, 4), γe[k] =
⌊
10
9 αe[k]

⌋
+

1 is the scaled throttle, and v̄x = 3.6 vx , i.e., velocity
in kilometers per hour. The boundary functions ϒi(·),
i = 1, 2, 3, 4, depend on the scaled throttle but are different
for the up-shifting and downshifting functions. The boundary
functions for the up-shifting are defined as

ϒ1(x) = 25u(x)+
5
4
r(x − 50)−

5
4
r(x − 90)

ϒ2(x) = 65u(x)+
7
4
r(x − 40)−

19
16
r(x − 50)

−
9
16
r(x − 90)

ϒ3(x) = 90u(x)+
4
3
r(x − 10)+

1
6
r(x − 40)

− r(x − 50)−
1
2
r(x − 90)

ϒ4(x) = 135u(x)+
5
6
r(x − 10)+

7
6
r(x − 40)

−
5
4
r(x − 50)−

3
4
r(x − 90)

where u(·) and r(·) are unit step and ramp functions, respec-
tively. Similarly, the boundary functions for the downshifting
are defined as

ϒ1(x) = 10u(x)+
1
10
r(x − 10)+

2
5
r(x − 40)

−
3
25
r(x − 50)−

19
50
r(x − 90)

ϒ2(x) =
166
5
u(x)+

19
150

r(x − 10)+
101
150

r(x − 40)

−
49
80
r(x − 50)−

3
16
r(x − 90)

ϒ3(x) = 50u(x)+
7
15
r(x − 10)+

1
30
r(x − 40)

−
9
40
r(x − 50)−

11
40
r(x − 90)

ϒ4(x) = 70u(x)+
2
15
r(x − 10)+

29
30
r(x − 40)

−
17
20
r(x − 50)−

1
4
r(x − 90)
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Here, a simple rule-based controller with boundary con-
straints is used for achieving the task. The control strategy
together with the boundary constraints for the primary
direction control valve is elaborated as follows:

usolpl =


Esolpl , rdcvt < rgcvt or Ppcvt > Ppub or

Rpcvt > Rpub
0, otherwise

(40a)

usolpr =


Esolpr , rdcvt > rgcvt or Ppcvt < Ppsb or

Rpcvt < Rpsb
0, otherwise

(40b)

where the suffixes ub and sb represent the upper bound and
lower bound of the respective states. If both the left and right
solenoids have non-zero inputs, i.e., if usolpl = usolpr 6= 0,
then

usolpl =


Esolpl , Rpcvt > Rpub or

(
Ppcvt > Ppub

and Rpcvt ∈
(
Rpsb ,Rpub

) )
0, otherwise

(41a)

usolpr =


Esolpr , Rpcvt < Rpsb or

(
Ppcvt < Ppsb

and Rpcvt ∈
(
Rpsb ,Rpub

) )
0, otherwise

(41b)

Inputs to the secondary directional control valve are given
only to keep the hydraulic pressure and the radius of the
secondary pulley within the operating bounds, given by

usolsl =


Esolsl , Rscvt > Rsub or

(
Pscvt > Psub

and Rscvt ∈
(
Rssb ,Rsub

) )
0, otherwise

(42a)

usolsr =


Esolsr , Rscvt < Rssb or

(
Pscvt < Pssb

and Rscvt ∈
(
Rssb ,Rsub

) )
0, otherwise

(42b)

For ensuring safety, the upper and lower bounds are chosen
below the maximum radius and above the minimum radius,
respectively. It is considered that the controller achieves
the target of obtaining the desired ratio when the following
condition is satisfied for the geometric ratio:

rgcvt ∈ [0.99rdcvt , 1.01rdcvt ]

Though directional control valves are explicitly used for
controlling the flow of fluids precisely and accurately, here,
the direction control valves are provided with 10V and 0V for
ON and OFF states only.

XI. SIMULATION SETUP
For simulation studies, parameters of the engine model are
taken from [4], and parameters for the torque converter model
are taken from [3]. Parameters of models of the CVT and
the hydraulic system are taken from [14], [22], [32]. The
initial conditions are chosen based on actual scenarios in
a vehicle. After the powertrain is initiated, the vehicular
systems overcome an initial transient phase and settle down,
and the vehicle becomes ready for longitudinal motion. Thus,

a time gap is considered, after which the gearmode is changed
from Neutral to the desired gear mode. In all the case study
examples in Section XII, a time-gap of 5 seconds is used.
A small positive value is taken for the engine’s initial angular
velocity, assuming an electric motor kick-starts the engine as
the ignition turnsON. The initial conditions for the simulation
studies are tabulated in Table 3.
All the actuators used in the powertrain model, i.e., the

linear actuator of the engine, solenoid valves in the clutches,
and directional control valves in the CVT, are usually
operated using pulse width modulation (PWM) signals.
In this paper, the inputs to all the actuators are considered
direct current (DC) voltages that can easily be extended to
PWM inputs. Input to the engine actuator varies between
0-12V. While the engine is idle, the actuator’s input is 2V.
Otherwise, the minimum voltage to the engine is 2.5V. 5V
input is given to the engine actuator as the starting voltage.
5V DC input is given to the solenoid valves when turned ON,
and 0V DC input is given when they are OFF. All the inputs
are updated at intervals of 0.1 seconds. It is assumed that all
the states are system outputs, i.e., the system is completely
observable.

The clutches are considered to be fully engaged after
the clutch disks overcome the stick-slip behaviour and the
absolute difference between the angular velocities of the
clutches and the attaching component (impeller for the torque
converter clutch and ring gear for the forward and reverse
clutch) is below 10−8. However, to ensure the clutches
are engaged only when difference remains below 10−8, the
clutches are engaged after observing the difference to be
below 10−8 for multiple iterations of the ODE solver. The
clutch engagement strategy is given by

clutch −→


engaged, |ωclutch − ωac| < 10−8

and N > 200
disengaged, otherwise

whereωclutch andωac are the angular velocities of the clutches
and the attaching components, respectively, and N is the
number of iterations of the ODE solver within a sampling
interval.

XII. CASE STUDIES
We now present case studies to demonstrate the charac-
teristics of the powertrain model under different operating
conditions. The examples show the powertrain’s behaviour
during a change in gear mode, increase and decrease in
transmission ratio, engine idling, torque converter locking-
unlocking in different realistic scenarios such as a vehicle
accelerating and decelerating in traffic, stop and go at a traffic
signal and reverse motion. To be specific, the case studies
illuminate the following features:

(a) engine and torque converter responses during gear shifts
in Drive mode,

(b) torque converter locking and unlocking,
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TABLE 3. Initial conditions for some of the powertrain states.

(c) changes in the CVT ratio, radii, and angular velocities
during gear shifts,

FIGURE 4. The input to the engine actuator and the throttle angle of the
engine.

FIGURE 5. The input to the forward clutch inflow solenoid and the
hydraulic pressure in the forward clutch assembly.

(d) engine idling,
(e) engine’s and torque converter’s behaviour during brak-

ing, and
(f) continuity of the planetary gears’ angular velocities

during gear mode interchanges

A. MANEUVERING THROUGH TRAFFIC
This case study example showcases maneuvering of a vehicle
in (i) flow traffic, (ii) dense traffic, and (iii) congested traffic.
In this example,

(a) the torque converter locking and unlocking,
(b) the engine’s and torque converter’s behaviour during

gear shifts and mild braking,
(c) the CVT behaviour during gear shifts, and
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FIGURE 6. (a) The figure on the left shows the inputs to the torque converter clutch’s inflow and outflow solenoid valves. (b) The figure on the
right shows the piston displacement and hydraulic pressure in the torque converter clutch assembly.

FIGURE 7. The topmost plot shows the input voltage provided to the left solenoid of the primary DCV, the middle plot shows the
input voltage provided to the right solenoid of the primary DCV and the lowermost plot shows the spool displacement in the
primary DCV.

(d) the planetary gears’ continuity w.r.t its angular velocities
during Neutral to Drive are illustrated considering the
traffic scenarios.

1) INPUTS
The vehicle starts from rest and begins its motion in a flow
traffic scenario, and the engine input is gradually increased
until the desired speed is attained. Later as the vehicle
encounters a road stretch with dense traffic, the engine input
is steadily reduced to maintain the space (or time) headway.

Further, as the vehicle enters a congested traffic zone, the
engine actuator input is set to idle input voltage, and brakes
are applied to slow down to the space (or time) mean speed.
Subsequently, as the traffic improves from congested to dense
and flow traffic, the throttle increases, and the vehicle speeds
up. The input to the engine actuator and the corresponding
throttle angle are shown in Fig. 4.

The input to the inflow solenoid in the forward clutch
assembly and the resulting piston pressure is shown in
Fig. 5. Until 2.5 seconds after the forward clutch is engaged,
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FIGURE 8. The topmost plot shows the input voltage provided to the left solenoid of the secondary DCV, the middle plot shows
the input voltage provided to the right solenoid of the secondary DCV and the lowermost plot shows the spool displacement in
the secondary DCV.

FIGURE 9. Angular velocities of the engine, turbine, stator, torque converter clutch (TCC) and the wheel.
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FIGURE 10. Ratios in the torque converter.

no input is given to the torque converter clutch’s (TCC) inflow
solenoid to let any vibration die out that originated during
the clutch engagement. Let the time instant after 2.5 seconds
from the forward clutch engagement be tpad . When the torque
converter is locked, or the gear mode is changed to Neutral,
tpad is reset to 0. Also, the torque converter may revert to
its previous stage after it gets locked (or unlocked) due to
perturbations in the TCC piston pressure. To restrict any
fallback, the inflow solenoid and outflow solenoid are given
non-zero inputs for time intervals longer than the necessary,
denoted by ton|tcc and toff |tcc, respectively. The ton|tcc and
toff |tcc values are chosen as 5 seconds and 1.5 seconds,
respectively. The torque converter clutch’s control strategy is
given by

Etccin =



5, TCC→ 0 and rgcvt > 0.65 and t > tpad
and ubrake = 0 and ueng > 3.5

5, TCC→ 1 and t < ton|tcc and
ubrake = 0 and ueng > 3.5

0, otherwise

Etccout =


5, TCC→ 1 and

(
G.M. 6= Drive or rgcvt

< 0.65 or ueng < 3.5 or ubrake 6= 0
)

5, TCC→ 0 and t < toff |tcc
0, otherwise

where TCC values 1 and 0 indicate that the torque converter
clutch is locked and unlocked, respectively. The input voltage
applied to the torque converter is shown in Fig. 6a, and the
subsequent hydraulic pressure and displacement changes in
the clutch piston chamber are shown in Fig. 6b.

Like the torque converter, the CVT controller is let to
function after a time gap post forward clutch engagement.
The input voltages to the primary and secondary DCVs
determined by the CVT controller and the resulting spool

FIGURE 11. Angular velocities of the planetary gear system (up to
10 seconds).

displacements are shown in Fig. 7 and 8, respectively. In the
figure, the abbreviations 1st, 2nd, · · · , 5th resemble the dis-
crete values considered for the upshifting and downshifting
function in (39) in ascending order.

2) BEHAVIOUR OF THE ENGINE AND THE TORQUE
CONVERTER DURING GEAR SHIFTS AND MILD BRAKING
The engine crankshaft’s angular velocity is expected to
experience a stiff decrease due to a sudden increase in load
during every upshift of the transmission ratio. Once the
steady-state is reached, the angular velocity increases again.
The opposite behaviour is expected during transmission
downshifting. The expected behaviour is obtained, as can be
observed from the angular velocity of the engine crankshaft
shown in Fig. 9.
The stator is expected to enhance torque multiplication

whenever the torque converter is not steady. Fig. 9 shows the
stator stops rotating whenever there is torque demand from
the drivetrain, and the torque converter is not locked, such
as during shifting in gear mode from Neutral to Drive and
braking.

Whenever brakes are applied, the engine and the torque
converter have to overcome an excess load torque, and their
angular velocities suffer a rapid decrease from their current
values. The same can be observed from the angular velocities
of the engine and the torque converter shown in Fig. 9.

3) TORQUE CONVERTER LOCKING AND UNLOCKING
The torque converter clutch gets engaged at around 20 sec-
onds, as shown in Fig. 9, following the control strategy in
Section XII-A1 and shown in Fig. 6a. The torque converter
clutch is expected to disengage when the vehicle slows down,
and the CVT controller brings the transmission ratio below
0.65. The torque converter unlocks at around 115 seconds,
meeting the expected response, shown in Fig. 9.

It is expected that when the torque converter is not locked
and is in its steady-state, the torque ratio should become
one, and the speed ratio should be near one due to loss
in the torque converter. Also, when the turbine experiences
an instantaneous torque demand during gear mode change
and braking, the torque ratio of the torque converter shoots

VOLUME 10, 2022 60321



S. Kumar et al.: Aggregated Dynamic Model of Electronically Actuated ICE Powertrain

FIGURE 12. (a) The figure on the left shows the radii and angular velocities of the CVT pulleys. The figure on the right shows the geometric, speed and slip
ratio of the CVT pulleys.

FIGURE 13. The topmost plot shows the valve pressure of the primary DCV. The second plot shows the hydraulic pressure in the primary pulley
cylinder. The third plot shows the valve pressure of the secondary DCV, and the bottommost plot shows the hydraulic pressure in the secondary
pulley cylinder.

up while the speed ratio dips down. The torque and speed
ratio plots in Fig. 10 show that the response is the same as
expected.

4) CONTINUITY OF THE PLANETARY GEAR RATIOS
Since the gear ratios are inversely related to their angular
velocities, ensuring the latter’s continuity is sufficient.
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FIGURE 14. The topmost plot shows the input braking force, the middle
plot shows the longitudinal displacement of the vehicle, and the
lowermost plot shows the longitudinal velocity of the vehicle.

FIGURE 15. The input to the engine actuator and the throttle angle of the
engine.

Continuous gear angular velocities can be obtained by incor-
porating the clutch dynamics and modeling the mechanism
of the planetary gears as a DAE. However, it is not sufficient
since the constraints on the algebraic state require switching
and the dynamics during a change in gear mode.

The continuity in the angular velocities of the planetary
gears is shown in Fig. 11. It can be seen that, as the
forward clutch starts engaging, the carrier-primary pulley
starts rotating, initially in the reverse direction and gradually
in the forward direction. Eventually, all the planetary gears
attain equal angular velocity, reaching a steady state. The
sinusoidal behaviour while approaching steady-state is due to
the stick-slip behaviour of the clutch plates. The plots show
how Direct Drive with gear ratio one is obtained as it should
occur.

5) CVT BEHAVIOUR
During transmission upshift, the primary pulley radius
increases while that of the secondary decreases. The inverse
happens during transmission downshift. Moreover, due to
discrete steady-state values of the up and downshifting

FIGURE 16. The applied braking force.

functions, the radii are expected to attain steady-state values
when the geometric ratio reaches steady-state. Plots of the
radii and the angular velocities of the CVT pulleys, depicted
in Fig. 12a, illustrate that the response is consistent with the
expected outcome. The angular velocity of the secondary
pulley does not encounter the transitions during gear shifts
contrary to that of the primary, which exhibits the expected
smooth gear shifting feature of a CVT.

The geometric ratio and the speed ratio vary when the
DCV inputs are altered and reach discrete steady-state values
given in (39) when the condition in (42) is met. Additionally,
the speed ratio experiences stiff variations during gear mode
changes, braking, and when the tyres start rolling from
rest. The exact behaviour can be observed in Fig. 12b. The
variation of the geometric ratio also highlights the efficacy
of the rule-based CVT controller in obtaining the desired
gear ratio. Also, as shown in the figure, the difference in
the CVT’s geometric and speed ratio develops a non-zero
slip ratio essential for torque transfer from the primary to the
secondary.

6) PRESSURE IN DCV CHAMBERS AND PULLEY CYLINDERS
The hydraulic pressures in the DCVs and the pulley cylinders
are shown in Fig. 13. The figure indicates the DCVs’ valve
pressures and the pressures in the pulley cylinders vary when
the DCV inputs change, as expected. It can be noticed that
contrary to the cylinder pressures, the DCVs’ valve pressure
suffers few stiff perturbations even when the DCV inputs
are 0. These perturbations are due to pressure variations in
the pump line, which die out in the cylinders due to damping
of the ATF.

7) LONGITUDINAL CHARACTERISTICS OF THE VEHICLE
The braking force, longitudinal displacement and velocity
of the vehicle are shown in Fig. 14. The longitudinal
displacement and the longitudinal velocity resemble a
vehicle’s usual behaviour experiencing flow traffic, dense
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FIGURE 17. Angular velocities of the engine, turbine, stator, torque converter clutch and the wheel.

traffic, and congested traffic. On the congested stretch, brakes
are applied, and the engine idles. Therefore the vehicle
decelerates and moves at the space (or time) mean speed until
it overcomes the congested stretch, after which it accelerates
upon encountering dense traffic followed by flow traffic. This
longitudinal behaviour ascertains the powertrain model for
obtaining and predicting vehicles’ motion in traffic scenarios.

To visualize these features better, we developed an ani-
mated representation which can be found in doi.org/10.6084/
m9.figshare.17950733

B. STOP AND GO
This case study example demonstrates the scenario where
a vehicle stops and goes again, for instance, in a traffic
signal or at an intersection. The powertrainmodel’s behaviour
considering a traffic signal is studied here. The case study
aims are to show the following:
(a) Idle start and stop feature, and
(b) ability to fulfill the Stop and Go behaviour of a vehicle

with the proposed model.

1) INPUTS
The vehicle starts from rest and encounters a red traffic
signal after a while. The vehicle comes to rest by applying
brakes and reducing the engine actuator input to its idling
input. When the traffic signal turns green, the braking
force is decreased gradually. After the braking input is

removed, the engine actuator input is progressively increased,
and the vehicle speeds up. The engine actuator input, the
corresponding throttle angle, and the applied braking force
are shown in Fig. 15 and Fig. 16, respectively.

For this case study, the gear ratio is kept fixed at 0.4352.
Therefore, no inputs are applied to the DCVs. The forward
clutch and the TCC are engaged following the same input
strategy mentioned in Section XII-A.

2) ENGINE IDLING
When the brakes stop the tyres from rotating, the CVT
pulleys, planetary gears, and the turbine also stop rotating.
The torque converter isolates the engine, and the engine
continues to operate at its idle speed. This engine feature
is traditionally known as the Idle Start and Stop (ISS). This
feature is obtained with the proposed model in this scenario,
as depicted in Fig. 17.
The engine starts idling from around 12.5 seconds until

the braking force diminishes at approximately 17.5 seconds.
Though no power is transmitted from the engine to the
wheels, brakes are applied to prevent any unwanted move-
ment of the vehicle, as shown in Fig. 18.

Upon applying brakes, the torque demand increases at
the turbine, and therefore, torque multiplication and speed
ratio reduction occur at the torque converter. During the
ISS behaviour, the hydrodynamic force inside the torque
converter is maximum which impacts the turbine blades
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FIGURE 18. Torque ratio and speed ratio of the torque converter.

FIGURE 19. Longitudinal displacement and longitudinal velocity of the
vehicle.

to rotate. Still, the turbine remains stationary owing to the
braking force. Hence, the torque ratio is maximum during this
period. This behaviour is obtained in this case study, as shown
in Fig. 18.

3) LONGITUDINAL MOTION CHARACTERISTICS
Fig. 19 shows that the vehicle’s longitudinal displacement and
velocity exactly match the expected outcome in a Stop-and-
Go scenario. The displacement and velocity curves show that
the vehicle slows down and stops at around 12.5 seconds and
starts moving again at approximately 17.5 seconds.

To visualize these features better, we developed an ani-
mated representation which can be found in doi.org/10.6084/
m9.figshare.17950478.

FIGURE 20. The input to the engine actuator and the throttle angle of the
engine.

FIGURE 21. The applied braking force.

C. REVERSE MOTION
This case study example illustrates a scenario of perpendicu-
lar parking where the vehicle is parked longitudinally in the
reverse direction. The vehicle starts from rest, moves to the
parking space in the reverse direction, and stops. This case
study aims to show
(a) the reverse operation of the proposed powertrain model,

and
(b) continuity of the planetary gears’ ratios during Neutral

to Reverse and vice-versa.

1) INPUTS
The gear ratio for the reverse operation is chosen as the lowest
value of fup/downshift in (39), i.e., 0.4352. In reverse operation,
the ratio of the angular velocity of the carrier and the sun gear
is

rsg
rrg − rsg

= rrev (say).

Therefore, the overall gear ratio in the reverse operation
becomes 272

675 rrev. For maintaining a constant transmission
ratio, zero inputs are given to the DCVs.
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FIGURE 22. The topmost plot shows the input voltages to the inflow and outflow solenoids for the reverse clutch and the displacements of
the solenoids, the middle plot shows the hydraulic pressure change in the reverse clutch assembly, and the bottom plot shows the
displacement and velocity of the reverse clutch piston.

The input to the engine actuator is its starting voltage from
the initial time to the gear mode shift fromNeutral toReverse.
Then it is decreased gradually and kept constant to move
the vehicle backward at a low speed. After the vehicle is in
the parking position, brakes are applied to stop the vehicle,
upon which the engine actuator input is reduced to its idling
voltage. Once the vehicle comes to rest, the braking input
is withdrawn, the gear mode is changed from Reverse to
Neutral, and the engine actuator’s input is increased. Usually,
the engine input is kept to its idling voltage once a vehicle
is parked. Here, the engine input is increased after the gear
mode is changed from Reverse to Neutral to verify that
the car is successfully parked. The applied voltage to the
engine actuator and the applied braking force are shown
in Fig. 20 and 21, respectively.

The input strategy for the inflow solenoid of the reverse
clutch is the same as that of the forward clutch described
in Section XII-A. Inputs to the inflow and outflow solenoid
valves of the reverse clutch, hydraulic pressure in the clutch
assembly, and the displacement and velocity of the clutch
piston are shown in Fig. 22. The input to the outflow solenoid
is kept non-zero until the gear mode shifts from Reverse to
Neutral.

2) RESPONSE OF POWERTRAIN COMPONENTS
With the inputs mentioned in Section XII-C1, the angular
velocities of the engine crankshaft and the torque converter’s
turbine are expected to rise until the Neutral to Reverse gear

shift and then decrease. Further, when the brakes are applied
to stop the vehicle, the turbine is expected to stop rotating
entirely, and the engine should enter its idlemode. Thewheels
(and the CVT pulleys) will rotate in the reverse direction
when the reverse clutch starts engaging until the braking
torque stops them. Fig. 23 illustrates the angular velocities
of the engine, the turbine, and stator of the torque converter,
the torque converter clutch.

The plots show all the powertrain components exhibit the
expected behaviour for a vehicle in Reverse gear. The reverse
clutch is safely disengaged since no power is passed to the
drivetrain. After the reverse clutch disengages, the gear mode
reverts toNeutral, and the torque converter starts transmitting
torque from the engine to the turbine.

The torque ratio and speed ratio of the torque converter in
this case study is expected to be similar to Section XII-B. The
same can be observed in Fig. 24.

3) CONTINUITY OF THE PLANETARY GEAR RATIOS
Ensuring continuity of the planetary gears’ angular velocities
is equivalent to ensuring the continuity of the planetary gear
ratios, which is justified in SectionXII-A4. Similar to the case
of Neutral to Drive, the algebraic state is switched from the
ring gear’s angular velocity to that of the carrier’s because,
in the Reverse mode, the ring gear is restricted to rotate by
the external torque from the reverse clutch. Fig. 25 depicts the
angular velocities of the planetary gears and their continuous
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FIGURE 23. Angular velocities of the engine, turbine, stator, torque converter clutch and the wheel.

FIGURE 24. Torque ratio and speed ratio in the torque converter.

nature during the entire operation, including the gear mode
changes.

From the time instant the ring gear goes to rest till the
end of the Reverse mode, the carrier’s angular velocity is the
same as that of the sun multiplied by − 272

675 rrev, as can be

FIGURE 25. Angular velocities of the planetary gears.

observed from the figure. For disengaging the reverse clutch,
its outflow solenoid is turned ON at 18 seconds, as shown in
Fig. 22. Around 18.8 seconds, the reverse clutch gets fully
disengaged, and the sun and ring gear starts rotating freely
while the carrier remains at rest. Then, the algebraic state
switches to ωrg from ωc and the system dynamics along
with it.
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To visualize these features better, we developed an ani-
mated representation which can be found in doi.org/10.6084/
m9.figshare.17951144.

XIII. CONCLUSION
In this work, 1) a dynamic model for a double pinion plane-
tary gearbox, 2) a model of a push belt CVT is presented, 3) a
dynamic model of a lockup torque converter, 4) a model for
a directional control valve, and 5) an aggregated model for
an ICE vehicle’s powertrain comprising a CVT is presented.
The planetary gear system is modeled as a switching DAE
system. It is shown that by incorporating the forward and
reverse clutch dynamics with the gearboxmodel, the transient
characteristics of the gear system can be captured. Contrary
to shifting gear ratios to discrete values instantaneously,
our modeling approach helps retain the continuity of the
gear ratios in the powertrain. Additionally, this technique
lowers the significant stiffness in the differential equations
of the entire system dynamics that arise due to discontinuous
discrete gear ratios. It is shown how modeling the CVT as a
DAE system allows to integrate the variator kinematics with
the dynamics of the CVT components. The response of the
torque converter shows the model preserves the continuity
in the angular velocities of the torque converter components
during the locking and unlocking of the torque converter.
Thus the transient effects in the powertrain during these
events are duly captured. It is shown how the modeling
approach for the DCVs helps to operate the DCVs with
any spool displacement, thereby making the model fit for
precise and accurate control. Moreover, the DCV model
captures the partial flows during the transient stages and
retains the continuity of the hydraulic pressures in the pulley
cylinders and the associated hydraulic lines. These models
are combined with models of other powertrain components
to obtain an aggregated powertrain model. Models of other
vehicle systems can be combined with this powertrain model,
and a complete vehicle model can be obtained to develop an
autonomous controller.

The response of the powertrainmodel is studied using three
case study examples and is found to be consistent with the
expected behaviour. The case studies illustrate the behaviour
of the proposed models under different traffic scenarios, stop-
and-go behaviour, and reverse motion. The utility of the
planetary gear model to operate the powertrain in Drive-
Neutral-Reverse gear modes and in preserving the gear ratios’
continuity during changes in gear modes are shown. The CVT
controller can also be used to compare the response of a CVT
with other automatic transmissions. Also, the control strategy
can be followed in designing CVT controllers to operate the
CVT at specific values of gear ratios.

Furthermore, the model’s modularity allows using the
individual subsystems’ model in other combinations of
powertrains. For example, the CVT model can be used
in modeling a Hybrid powertrain, the model of the plan-
etary gears can be used to model multi-stage automatic
transmission. The proposed models can be combined with

other vehicle subsystems such as steering, chassis dynam-
ics, etc. The combined model can be used with semi-
autonomous controllers and driver models for generating
vehicle behaviour to analyze the dynamics of vehiclemobility
networks comprising autonomous, semi-autonomous, and
human-driven vehicles.
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