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ABSTRACT Wind energy is one of the fastest-growing renewable energy sources in the world. However,
wind power is variable in all timescales. This variability is difficult to predict with perfect certainty, with
potentially significant financial implications when rare extreme forecast errors occur. This paper focuses
on three key aspects associated with the extreme errors of geographically distributed wind farms: suitable
parametric distribution representation, effects of diurnality, seasonality and larger atmospheric circulations,
and modeling multivariate distribution. The paper shows that some of the distributions commonly used for
modeling forecast errors may be inappropriate in representing extreme errors. As the first contribution, this
paper fits a Generalized Pareto distribution (GPD) from extreme value theory to achieve a better estimation of
extreme errors. In the second contribution, this paper splits extreme errors by hour, month, and atmospheric
states to investigate the statistical regularities of GPD parameters along diurnal and seasonal timescales
and larger atmospheric circulations. In the third contribution, this paper uses copula functions to model
multivariate extreme error distribution and investigates their effectiveness in providing a regional view of
extreme errors. This paper tests the proposed methodology using the forecast error data obtained from
29 wind farms in South Africa. The results show that GPD outperforms commonly used distributions.
Extreme errors have strong diurnal and seasonal components and vary significantly between SOM nodes.
Copulas can be useful in providing a regional view of extreme errors. This paper improves the estimation of
extreme errors, which is an important step toward better operating reserve allocation.

INDEX TERMS Atmospheric state, copula, extreme value theory, Generalized Pareto distribution, wind
power forecast error.

NOMENCLATURE
u Threshold
Fu(.) Cumulative distribution function of

exceedances over threshold
P(.) Probability operator
F(.) Cumulative distribution function
N Sample size
Gξ,β (.) Cumulative distribution function of

Generalized Pareto distribution
ξ Shape parameter
β Scale parameter
Nu Number of exceedances over threshold
yi Exceedance over threshold
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l(.) Log-likelihood
xm Return level
m Return period
ζu Proportion of observations that are

greater than threshold
Pn(.) Weight vector for each node
ϕ(.) Number of nodes in a neighborhood

stretching between nodes j and i for
the t’th iteration

ρ(.) Temporally decreasing learning function
R (.) Randomly selected feature vector
C(.) Copula
D, S Forecast errors of clusters 1 and 2,

respectively
FD (.) ,FS (.) Marginal distribution functions of

clusters 1 and 2, respectively
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FD,S (.) Joint distribution function with marginal
distribution functions FD (.) and FS (.)

d
′

, s
′

Forecast error thresholds for clusters 1 and 2,
respectively

I. INTRODUCTION
The use of wind energy for electricity generation is increasing
worldwide. This is because there is a need to decarbonize
the electricity industry and wind energy is becoming cost-
competitive. However, unlike conventional thermal power,
wind power varies over time. This is a source of concern
for system operators, who must ensure that supply matches
demand at all times. One way of mitigating the impacts of
wind power variations in power system operations is wind
power forecasting. These forecasts provide system operators
with an estimate of future wind power generation, but they
are rarely perfect. Small forecast errors are not always a
concern for system operators since power systems can accom-
modate a certain level of variability and uncertainty from the
load demand. However, during significant wind power ramp
events, forecast errors from a day-ahead prediction can be
as high as 60-80% of total wind capacity [1], [2]. If there
is insufficient operating reserve to deal with these extreme
forecast errors, the system operator may have to implement
wind generation curtailment or load shedding – scenarios that
system operators try to avoid due to the associated finan-
cial implications. In deregulated markets, extreme forecast
errors can also affect energy traders since inaccurate bids
during these events can result in costly penalties. As an
example, on February 26, 2008, Electric Reliability Council
of Texas reported a high forecast error event, forcing them
to declare a system emergency, which is a high-cost system
condition [3]. These potential implications justify the need
for understanding and characterizing the magnitude and fre-
quency of extreme wind power forecast errors, towards better
operational decisions such as dynamic operating reserve allo-
cation to account for wind power uncertainty.

In this paper, we analyze the tails of forecast error distribu-
tions of geographically distributed wind farms. We focus on
three main aspects associated with extreme forecast errors;
1) suitable parametric distribution representation, 2) effects
of diurnality, seasonality, and large atmospheric circulations,
and 3) modeling the multivariate distribution.

The studies in the literature frequently used the normal
distribution to model wind power forecast errors [4]–[11].
Other distributions considered in the literature include
beta [12], Weibull [13], [14], Cauchy [14], [15] and hyper-
bolic [15], [16]. While these distributions are relatively
suitable for representing the body of the forecast error dis-
tribution, the same assertion is not valid for the tails of
the forecast error distribution. According to the findings in
[1], [10]–[12], [17], normal, beta, and Weibull distributions
are not fat-tailed enough, and therefore often underestimate
the frequency of extreme forecast errors. On the other hand,
the study in [15] demonstrated that the Cauchy distribution is
overly fat-tailed and over-represents the frequency of extreme

forecast errors. According to the findings in [14], [15], the
hyperbolic distribution seems to perform better compared to
normal, beta, Weibull, and Cauchy distributions in modeling
extreme forecast errors. Given the severe financial implica-
tions of extreme forecast errors, finding models that best
represent these extreme forecast errors remains critical. As a
result, other studies in the literature have considered non-
parametric approaches for modeling wind power forecast
errors [18], [19]. While non-parametric approaches can be
accurate, extreme forecast errors often do not occur fre-
quently enough to make accurate non-parametric inferences
[15], [20]. This paper will investigate whether extreme fore-
cast errors can be modeled accurately using the Extreme
Value Theory (EVT) by fitting the Generalized Pareto distri-
bution (GPD) on the extreme forecast errors. Recent literature
has used the same approach to model the tail behavior of
wind speed [21], [22] and wind power ramp [23], however,
the approach has not been explored for wind power forecast
error.

The second aspect of this paper is investigating the
influence of diurnality, seasonality, and large atmospheric
circulations on extreme forecast errors. Several studies
(e.g. [24]–[30]) in the literature have demonstrated that wind
power profiles exhibit a high degree of statistical regularity
along diurnal and seasonal timescales. In addition, the study
in [31] revealed that large atmospheric circulations are the
major cause of wind power variations over timescales ranging
from hours to days. These variables are the basis used to
understand wind power variability and ultimately improve
wind power forecasting (e.g. [32]–[34]). However, there is
little to no investigation in the literature on how these vari-
ables affect forecast errors – towards improved estimation
of extreme forecast errors. To investigate the diurnal and
seasonal patterns of extreme forecast errors, this paper inves-
tigates the tail distribution (or fitted GPD) associated with
each hour and month. Additionally, this paper assigns atmo-
spheric states, derived from self-organizing maps (SOMs),
to each historical forecast scenario and investigates the tail
distribution associated with each state.

The third aspect of this paper is modeling multivariate
forecast error distribution. While univariate analysis can be
useful in certain applications (e.g. congestion management),
other operational decisions such as operating reserve allo-
cation need to consider all wind farms within a region.
It is thus important to evaluate the dependence structure of
forecast errors from geographically distributed wind farms.
Copula theory is widely used to model dependence struc-
ture between variables, mostly in financial market analysis,
portfolio investments, and risk assessments [35]. In recent
years, copula theory has been applied in wind power analyses
(e.g. [21], [32], [33], [35]–[38]). The majority of these stud-
ies used copula theory to model the spatial dependency of
regional wind speeds or power outputs. However, there is
little to no investigation on using copula theory to model fore-
cast errors. This paper uses copula functions to model multi-
variate extreme forecast error distribution and investigates if
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FIGURE 1. Paper overview.

this is effective in providing a region-wide view of extreme
forecast errors using numerical examples. Fig. 1 shows an
overview of this paper.

The remainder of this paper is organized as follows:
section II provides the theoretical framework of the pro-
posed methodology. Section III introduces the case study of
29 wind farms in South Africa used for illustrating the pro-
posed methodology and presents the results and discussion.
Section IV summarizes the findings before concluding the
paper.

The main contributions of this paper can be summarized
as finding a suitable parametric distribution for represent-
ing extreme forecast errors, improving understanding on
some of the factors that may influence extreme forecast
errors, and proposing a suitable model for representing spa-
tial correlations of extreme forecast errors between wind
farms. These contributions can assist system operators with
a method of deriving conditional extreme forecast error dis-
tributions that changes based on various states (i.e. hour,
month, atmospheric and spatial configuration of wind farms).
These conditional distributions usually contain more prob-
abilistic information (as compared to unconditional distri-
bution), which can improve operating reserve allocation to
account for wind power uncertainty. In addition, the classified
atmospheric states represent larger atmospheric circulation,
allowing inputs into reserve allocation based on physical
meteorological phenomena.

II. METHODOLOGY
A. FITTING FORECAST ERROR TAIL DISTRIBUTION
In EVT, there are two ways to sample extreme events:
block maxima (BM) and peak-over-threshold (POT).

The BM method divides the data into equal blocks, extracts
the highest observation in each block, then fits a Generalized
Extreme Value (GEV) distribution to the block maxima. The
BM method has a significant limitation in that it retrieves
only one observation from each block, regardless of whether
the second-highest observation in a block exceeds the largest
observations in adjacent blocks. As a result, adopting BM
necessitates a large amount of data [43], [44]. The POT, on the
other hand, entails setting a threshold, extracting the excess
of observations over the threshold, and fitting a GPD to the
exceedances. This is a more flexible technique that typically
enables more observations to be retrieved (rather than just one
in each block), resulting in reduced uncertainty [43], [44].

As a result, the POT approach is used in this paper to
model the distribution of forecast error exceedances over a
high threshold u. Assuming that X1,X2, . . . ,XN (represent-
ing the forecast errors for individual clusters) is an indepen-
dent and identically distributed sequence of random variables
and N is the sample size, the distribution function Fu(y) of
exceedances X over a threshold u is defined by:

Fu (y) = P (X − u ≤ y |X > u) =
F (y+ u)− F(u)

1− F(u)
(1)

With high enough u, Fu(y) can be approximated by a GPD
with the following cumulative distribution function.

Gξ,β (y) =


1−

(
1+

ξy
β

)− 1
ξ

if ξ 6= 0

1− exp
(
−
y
β

)
if ξ = 0

For β > 0 and y ≥ 0 if ξ ≥ 0

0 ≤ y ≤ −
β

ξ
if ξ < 0

(2)

where ξ is the shape parameter and β is the scale param-
eter. To estimate the values of ξ and β, this paper
uses the maximum likelihood estimation (MLE) approach.
If y1, y2, . . . , yNu is a sequence of Nu exceedances over a
threshold u, the log-likelihood can be derived for ξ 6= 0 as:

l (β, ξ) = −Nulogβ − (1+
1
ξ
)
Nu∑
i=1

log
(
1+ ξ

yi
β

)
(3)

Provided
(
1+ ξyi

/
β
)
> 0 for i = 1, 2, . . . ,Nu; otherwise

l (β, ξ) = ∞. When ξ = 0, the log-likelihood can be
derived as:

l (β) = −Nulogβ − (1
/
β)

Nu∑
i=1

yi (4)

The maximum likelihood estimates for GPD distributions are
achieved by maximizing (3) and (4) with respect to parame-
ters β and ξ .

After estimating the suitable parameters of the GPD,
we can evaluate the forecast error xm that is expected to be
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FIGURE 2. Geographical locations of operating wind farms in South Africa
and clusters used for evaluating the proposed methodology.

exceeded on average once every m observations (with proba-
bility 1

/
m). The forecast error xm is also known as the return

level, while the m observations or inverse of the probability
that the forecast error xm will be exceeded is also known as
the return period. The return level and return period can be
useful to system operators to allocate reserves to account for
wind power uncertainty. The return level xm can be derived
for ξ 6= 0 as:

xm = u+
β

ξ

[
(mζu)ξ − 1

]
(5)

Provided that m is large to ensure that x > u. When ξ = 0,
the return level can be derived as:

xm = u+ βlog(mζu) (6)

The parameter ζu = Nu
/
N is the proportion of observations

that are greater than u.

B. CLASSIFICATION OF ATMOSPHERIC STATES
To investigate the relationship between large – or synoptic-
scale atmospheric circulation and extreme forecast errors,
atmospheric circulation was classified into a set of atmo-
spheric states that serve as archetypical representations
of weather regimes associated with the climatology of a
region. The classification of atmospheric circulation, as a
complexity reduction mechanism, is a common and well-
established practice in themeteorological community. Classi-
fication techniques have evolved from subjective approaches,
which are dependent on expert knowledge, toward objective
computer-assisted methodologies such as principal compo-
nent analysis, k-means clustering, and self-organizing maps
(SOMs) [39].

This paper makes use of SOMs as a classification tech-
nique. A SOM is a class of self-learning artificial neural
network that allows for the representation of high dimen-
sional data onto what is typically a 2D lattice (or map), whilst
preserving the topology of the higher dimensional data [40].
SOMs are trained using a competitive learning algorithm
represented in (7) below. During training, a set of SOM
nodes (n), established during the initialization process, are
continually updated according to which node best matches
(based on the Euclidean distance) each randomly selected

iterative input vector (R(s)), for each step (t) of the training
process. This most similar node is called the best matching
unit (BMU). Subsequently, each BMU along with a number
of nodes in a neighborhood (ϕ) stretching between nodes
j and i, are adjusted to increase their similarity to that of
the input vector. The size of the neighborhood decreases
throughout the training process based on a monotonically
decreasing learning coefficient (ρ). Therebyweight vector for
each node Pn is updated as follows:

Pn (t + 1) = Pn (t)+ ϕ (i, j, t) · ρ (t) · (R (s)− Pn (t)) (7)

C. MULTIVARIATE FORECAST ERROR DISTRIBUTION
Once the forecast error distribution of exceedances over a
high threshold for each cluster has been obtained, it is impor-
tant to link these univariate distributions (to formmultivariate
distribution) to get a system-wide view of forecast error. The
multivariate distribution should account for spatial-temporal
correlations in forecast errors between various clusters.
This paper uses copula functions to model the bivariate

joint distribution function FD,S (d, s), where D and S are
forecast errors for clusters 1 and 2, respectively. According
to the Sklar’s Theorem, if FD,S (d, s) is a two-dimensional
distribution function with marginal distributions FD (d) and
FS (s), then there exists a copula C such that:

FD,S (d, s) = C(FD (d) ,FS (s)) (8)

Conversely, if C is a copula with FD (d) and FS (s) being the
distribution functions, then the function FD,S (d, s) defined
by (8) is a joint distribution function with marginal dis-
tributions FD (d) and FS (s). Section III-D will discuss the
selection of an appropriate copula function for this particular
application.
The derived copula-based joint forecast error distribution

provides some important information about forecast error in a
region. For example, the probability that forecast errors from
both clusters exceed certain thresholds can be obtained in
terms of copulas as follows:

P (D ≥ d, S ≥ s) = 1− FD (d)− FS (s)

+C(FD (d) ,FS (s)) (9)

In addition, it may be of interest to system operators to
evaluate the forecast error distribution of cluster 1 given that
the forecast error of cluster 2 exceeds a certain threshold s′.
This conditional distribution is given by:

P
(
D ≤ d, S ≥ s′

)
=
FD (d)− C(FD (d) ,FS

(
s′
)
)

1− FS (s′)
(10)

Conversely, the conditional forecast error distribution of
Cluster 2 given that the forecast error of Cluster 1 exceeds
a certain threshold d ′ is given by:

P
(
S ≤ s,D ≥ d ′

)
=
FS (s)− C(FD

(
d ′
)
,FS (s))

1− FD (d ′)
(11)
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FIGURE 3. Q-Q plot of normal, hyperbolic, Weibull and beta distributions for both clusters.

FIGURE 4. PDF and boxplot of forecast error for both considered clusters.

III. CASE STUDY AND RESULTS
A. DESCRIPTION OF DATA USED
To test the proposed methodology, this paper uses the day-
ahead point forecast error data (between 01 January 2018 and
31 March 2021) from 29 wind farms, obtained from Eskom
(the power utility company in South Africa). However, due
to the confidentiality of individual point forecast error data,
Eskom was only able to provide the data in clusters of wind
farms summed together. This paper uses two of those clusters
(with 18 wind farms) to demonstrate the concepts proposed
in this paper. Fig. 2 shows the locations of the wind farms
within each of these clusters.

The forecast errors range between −57.04% and 54.14%
(of installed wind capacity) in Cluster 1, while the errors
range between −63.71% and 67.31% in Cluster 2. To make
comparisons between clusters easier, this paper represents
the errors that are greater or equal to zero on a scale
of [0, 1] and negative errors on a scale of [−1, 0).
Fig. 3 shows the main characteristics of the forecast error
data – the probability density function (PDF) and boxplot
of forecast errors for both considered clusters. As seen in
Fig. 3, the observed error distribution from both clusters is

positively skewed. In addition, there is a significant amount
of observations that are located outside the whiskers of box-
plots (or outliers), which can be an indication of heavy-tailed
distributions.

B. PARAMETER ESTIMATION OF THE FORECAST
ERROR TAIL DISTRIBUTION
As discussed in section I, common distributions used for rep-
resenting forecast errors include, normal, hyperbolic,Weibull
and beta. To see if these distributions can also represent the
forecast error data described in section III-A, we consider the
quantile-quantile (Q-Q) plot. This plot shows the quantiles of
hypothesized distributions (in this case normal, beta, Weibull
and beta) as a function of the observed quantiles. If the
observed data is drawn from the hypothesized distribution,
then the Q-Q plot is linear with a slope of 45 degrees.
Fig. 4 shows the Q-Q plot of normal, hyperbolic,Weibull, and
beta distributions for both considered clusters. As seen from
Fig. 4, the considered distributions are relatively suitable
for representing forecast errors in ranges −0.53 to 0.36 and
−0.47 to 0.45 for clusters 1 and 2, respectively. However, the
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FIGURE 5. Q-Q plot of GPD compared with Q-Q plot of considered theoretical distributions for both clusters.

FIGURE 6. Comparison of cumulative distribution functions of observed data and considered theoretical distributions
for both clusters.

TABLE 1. Comparison of MAE and RMSE between cumulative distribution
functions for both clusters.

normal, Weibull, and beta distributions underestimate the
extreme forecast errors in both clusters, while the hyperbolic
distribution tends to overestimate the extreme forecast errors

(except for negative extreme errors in Cluster 1). In other
words, the observed data has heavier tails than estimates from
the normal, Weibull, and beta distributions, and lighter tails
than estimates from hyperbolic distribution.

In this paper, we propose fitting the tails of the fore-
cast error distribution with a GPD. The forecast error data,
as shown in Fig. 3 and Fig. 4, have both left and right tails.
This study uses the right tail as an example; however, it is
possible to apply the same approach to the left tail. The first
step in the proposed approach is to identify the forecast error
threshold above which we can fit the GPD. If the threshold
is set too high, there will be few observations that exceed it,
resulting in a significant variance [43]. If the threshold is too
low, data with ordinary values will be included as extremes,
making the asymptotic assumption less valid [43]. In this
paper, the mean excess and parameter threshold stability plots
(also used for example in [43], [46], [47]) are used to identify
the right tail thresholds of 0.33 and 0.37 for clusters 1 and 2,
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FIGURE 7. Conditional return level associated with each hour at different return periods for both considered clusters.

FIGURE 8. Conditional return level associated with each month at different return periods for both considered clusters.

respectively. After determining the thresholds, the parameters
of the GPD for both clusters are calculated as outlined in
section II-A.

Fig. 5 shows the Q-Q plots of the GPD for both clusters.
For comparative purposes, Fig. 5 also shows the Q-Q plots of
normal, hyperbolic, Weibull, and beta distributions (focused
on the tails of the distribution) for both clusters. One can
notice a significant improvement in fitting the GPD on the
extreme forecast errors compared to the other distributions.

To emphasize this finding, Fig. 6 illustrates the cumula-
tive distribution functions of observed data, normal, hyper-
bolic, Weibull, beta, and GPD for both clusters. The GPD
is noticeably closer to the observed cumulative distribution
function, whereas the other distributions significantly under-
or overestimate the probabilities of extreme forecast errors as

already observed on the Q-Q plots.We also examine themean
absolute error (MAE) and root mean squared error (RMSE)
between cumulative distribution functions of normal, hyper-
bolic, Weibull, beta, and GPD in relation to the observed
cumulative distribution function – see Table 1. This can be
seen as a numerical confirmation that the GPD is closest to
the observed data.

C. EFFECTS OF DIURNALITY, SEASONALITY, AND
ATMOSPHERIC STATES ON TAIL DISTRIBUTION
With the estimated parameters of the GPD in Section III-B,
we can calculate the return levels using (5) and (6). For
example, the expectation is that the forecast error will exceed
0.53 and 0.45 on overage once every 48 hours (or a probability
of 0.021) for clusters 1 and 2, respectively.

VOLUME 10, 2022 58553



N. Mararakanye et al.: Characterizing Wind Power Forecast Error Using Extreme Value Theory and Copulas

FIGURE 9. SOM geospatial heights together with frequency of SOM node occurrence over
South Africa.

TABLE 2. Conditional return level for each SOM node at different return
periods for both clusters.

Similarly, if we split the data according to hour, month,
and atmospheric state, we can estimate the parameters of
the conditional GPD (and associated return level) to assess
the impact of diurnality, seasonality, and larger atmospheric
circulation on tail distribution of forecast errors. Fig. 7 and
Fig. 8 show the return level associated with each hour
and month at different return periods (48 hours or 2 days,
168 hours or week, and 744 hours or month), respectively.
The return level of both clusters fluctuates dramatically

across different hours of the day. Cluster 1 has considerable
spikes in return levels at 9h and 17h, while Cluster 2 has a dip
at 10h. The return level of cluster 1 is often high during the
day and low at night, whereas the return level of Cluster 2 is
the reverse. The return level of Cluster 1 has a visible seasonal
pattern – it drops during the winter months (May to July) and
it is at its highest during the summer months (December to
February). On the other hand, the return level of Cluster 2
remains relatively flat throughout the months, except for the
noticeable dip in October.

To assess the impact of larger atmospheric circulations on
extreme forecast errors, this paper selected a 4-by-5 SOM
node lattice, resulting in a 20 node SOM. The SOM was
trained in two phases using the batch training algorithm on
a rectangular lattice – firstly a rough training phase con-
sisting of 1000 iterations which was followed by a fine-
tuning phase of 5000 iterations. During the rough training
phase, the neighborhood function decreased from 5-to-1 and
during the fine-tuning phase, it decreased from 2-to-1. Both
training phases use the Epanechnikov neighborhood function,
as recommended for small SOMs [45]. Once the training
process was completed, and the SOM has been created, each
input vector (i.e. each geopotential height time step) was
assigned a ‘label’ based on which SOM node it is most
similar to, likewise using the Euclidean distance as with the
training phase. Accordingly, this allows firstly each time step
in the input geopotential height time series, along with the
corresponding wind power prediction error time series, to be
clustered based on the atmospheric state that was concurrent
to each time step.

Fig. 9 shows the 20 (4× 5) node SOM representing classi-
fied atmospheric states together with the frequency of SOM

58554 VOLUME 10, 2022



N. Mararakanye et al.: Characterizing Wind Power Forecast Error Using Extreme Value Theory and Copulas

FIGURE 10. Conditional forecast error distribution of clusters 1 and 2, given that the forecast error of clusters 2 and 1
exceeds s′ and d ′ , respectively.

node occurrence as a percentage above each node. Table 2
shows the return level associated with each SOM node at
different return periods. It is evident from Table 2 that the
return level can change significantly due to changes in the
SOM node. For example, the return level drops significantly
(for all return periods) at SOM nodes (2, 5), (3, 4), and (4, 2)
for Cluster 1, while the same happens at (1, 5) and (2, 4)
for Cluster 2. Each of these nodes illustrates dominant high-
pressure circulation over the respective clusters, particularly
the ridging of the Indian Ocean High-Pressure System.

D. COPULAS APPLICATION
As seen in Section III-C, the results from different clusters
can be contradictory and it can be challenging for system
operators to make system-wide decisions based on the uni-
variate analysis. This paper uses copula functions to model
the bivariate joint distribution from the univariate distribu-
tions obtained in Section III-B.

To obtain a joint distribution using copulas, the first
step is to select the appropriate copula function. The Gaus-
sian copula is widely used due to its simplicity [21], [48].
However, the Gaussian copula lacks the flexibility to model
the tail dependence. As a result, this paper uses the t-Student
copula, which is a realistic function for modeling tail
dependence [21], [48].

Once obtaining the bivariate joint distribution, we can
conduct a wide range of probabilistic analyses on system-
wide forecast error without losing spatial-temporal corre-
lations between clusters. For example, we can analyze the
probability that both clusters simultaneously exceed certain
thresholds (s and d) using (9). If d = s = 0.44, then FD (d),
FS (s) andC (FD (d) ,FS (s)) are equal to 0.96, 0.98 and 0.94,
respectively. Therefore, the probability that the forecast error
of both clusters will exceed 0.44 is 0.0035.

TABLE 3. Average running time of the proposed models.

With copulas, it is also easy to derive the conditional
forecast error distribution of Cluster 1 given that the forecast
error of Cluster 2 exceeds a certain threshold, and vice versa.
Fig. 10 illustrates the conditional forecast error distribution
of clusters 1 and 2, given that clusters 2 and 1 exceed vari-
ous forecast error thresholds (s′ and d ′), respectively. From
Fig. 10 we can deduce, for example, that the probability that
the forecast error of Cluster 1 is less than 0.37 given that the
forecast error of Cluster 2 exceeds 0.64 is equal to 0.83.

E. RUNNING TIME
To assess the computational cost, the average running times
of the models that are part of the proposed methodology are
listed in Table 3. All models were tested on a Windows PC
with 2 GHz and 8 GB RAM. The creation of the SOM-map
can be a slow process especially when working with large
datasets and depends on the SOM set-up, initialization and
training parameters (i.e. number of training iterations, num-
ber of SOM nodes, size of neighborhood function, training
algorithm etc.). It took approximately 48 hours to create the
SOMmap used in this study. It should however be noted that,
in the implementation of the methodology described in this
paper, the creation of the initial SOM is a once off procedure.
The operational application of the proposed methodology
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will be in classifying each atmospheric state based on the set
of SOM nodes already created, the average running time of
which is described in Table 3.

IV. CONCLUSION
This paper has demonstrated that some of the common dis-
tributions (normal, hyperbolic, Weibull, and beta) currently
used for modeling wind power forecast errors can be inap-
propriate in representing extreme forecast errors. The paper
then modeled the extreme forecast errors using the EVT by
fitting the GPD. The GPD showed a superior representation
of extreme forecast errors as compared to the commonly
used distributions. The paper also estimated the conditional
GPDs associated with each hour of day, month of year, and
SOM node. It was found that extreme forecast errors can
have strong diurnal and seasonal components depending on
the location of wind farms under consideration. Therefore,
diurnal and seasonal cycles play an important role in the
occurrence of extreme forecast errors and can improve esti-
mation thereof. In addition, extreme forecast errors can also
change significantly from one SOM node to the other. The
dominant high-pressure circulation, particularly the ridging
of the Indian Ocean High-Pressure System is associated with
reduced extreme forecast errors. This not only improves the
estimation of extreme forecast errors but also allows for
the estimation of extreme forecast errors based on physical
meteorological phenomena. This paper then used the copula
functions to estimate the bivariate joint forecast error distri-
bution of different wind generation clusters. With numerical
examples, this paper showed that copulas could be effective
in providing a wide range of probabilistic analyses, giving
more insight into the characteristics of region-wide extreme
forecast errors.

The most significant contribution made by this paper is
in improving the estimation and understanding of extreme
forecast errors. This is an important step toward better allo-
cation of operating reserves to account for wind power uncer-
tainty. In future, one can test the proposed methodology
using individual wind farms’ data and not as clusters. This
will ensure more spatial-temporal information is extracted
from the data, which could further improve the estimation of
extreme forecast errors in a region. Furthermore, because the
power grid is often made up of a mix of variable renewable
sources, it may be valuable to evaluate the applicability of the
proposed methodology to other variable renewable sources.
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