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ABSTRACT As a step towards establishing reliable broadcast wireless local area networks (WLANS), this
paper proposes acknowledgement (ACK)-less rate adaptation to alleviate reception failures at broadcast
recipient stations (STAs) using distributional reinforcement learning (RL). The key point of this study is that
the algorithms for learning the strategy of ACK-less rate adaptation are evaluated in terms of the broadcast
performance, which is composed of the data rate of the broadcast access point (AP) and the reception
success rate at the recipient STAs. ACK-less rate adaptation framework was realized using the received signal
strength (RSS) of the uplink frames transmitted by the non-broadcast STAs to the non-broadcast APs, which
correlated with the broadcast performance with a confounding effect from the deployment of the broadcast
recipient STAs. However, this rate adaptation framework has the problem that it incurs the reception
failures at a part of the broadcast recipient STAs, because deep Q-learning used in the previous framework
cannot deal with the wide distribution of the broadcast performance. To address this challenge, this paper
further discusses the rate adaptation using distributional RL, which approximates the entire distribution
of the broadcast performance. The simulations confirmed the following: 1) Using the expected broadcast
performance learned by deep Q-learning improved the performance in terms of the Pareto efficiency.
2) Learning the entire distribution of the broadcast performance enabled the broadcast AP to determine
the tail of the distribution using risk measure, and to alleviate reception failures while implementing the rate
adaptation in the same way as the method that learns only expected broadcast performance.

INDEX TERMS Broadcast, conditional value at risk, deep reinforcement learning, distributional reinforce-
ment learning, IEEE 802.11bc, rate adaptation.

I. INTRODUCTION

Broadcasting on wireless local area networks (WLANS) is
currently being examined for distributing information across
specific locations to a large number of people. As the stan-
dard for providing enhanced broadcast services (eBCS) on
WLANSs, IEEE 802.11bc is currently being considered [1].
A variety of use cases are considered in IEEE 802.11bc,
such as multi-lingual and emergency broadcasting, eSports

The associate editor coordinating the review of this manuscript and
approving it for publication was Xijun Wang.

58858 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

virtual reality video distribution, and lecture room slide
distributions [2].

In the eBCS systems, the adaptive data rate control is
more important issue than that in the existing broadcasting
systems, e.g., TV broadcasting, and a broadcast method in the
conventional WLANS. This is for the following reasons. First,
WLANS, being different from other wireless broadcast sys-
tems, e.g., TV broadcasting, are generally self-deployed. This
mandates the eBCS APs to be deployed at various locations
without as many installation designs as the current wireless
broadcast systems. Hence, for ease of deployment, as in the
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current WLANS, autonomous adaptations of the parameters
of APs to various installation locations are required. Second,
the eBCS needs to satisfy the requirements of various appli-
cations, some of which require higher rates, while the current
WLANS mainly use broadcast for control frames with low
transmission rates. This mandates the rate control method that
adapts to various environment and broadcast applications.

However, rate adaptation in the eBCS systems is more
challenging than the conventional WLAN systems. This is
because, in the eBCS systems, acknowledgement (ACK)
mechanisms are not implemented between an eBCS AP and
the recipient stations (STAs) [3] while the current unicast sys-
tems leverage them to adapt parameters to the channel condi-
tions. This could be due to the ACK implosion problem [4],
which is caused by a traffic overload while receiving many
ACK frames simultaneously. Thus, being different from cur-
rent WLANS, the eBCS AP is not notified whether the STAs
have received the eBCS data frames successfully or not. This
forces the eBCS AP to control the data rate without using
current ACK-based heuristic rate adaptation algorithms such
as ARF [5], SampleRate [6], and Minstrel [7]. Therefore, it is
quite challenging for the eBCS AP to control the data rate
adaptively to channel conditions between the eBCS AP and
recipient STAs.

In our previous work [8], we addressed this challenge
by developing an ACK-less rate adaptation framework, har-
nessing the uplink frames transmitted by the STAs that are
associated with non-eBCS APs and surrounded by the eBCS
recipient STAs. We referred to such STAs and eBCS recip-
ient STAs as non-eBCS and eBCS STAs, respectively. As it
is easily envisaged in eBCS applications, we assumed that
the non-eBCS STAs located near the eBCS STAs transmit-
ted uplink frames to the non-eBCS APs, as in the current
applications of WLANs. The assumption on the locations
of non-eBCS and eBCS STAs will easily hold, as the eBCS
reception functionality is offered in addition to the current
non-eBCS functionality. Therefore, almost all STAs can act
as both eBCS and non-eBCS, and can occasionally switch
their functionality. In this case, eBCS STAs can be placed
near non-eBCS STAs as long as the people holding the STAs
are clustered. The lecture room slide distribution scenario
satisfies the aforementioned assumptions [2]. Students with
eBCS or non-eBCS STAs may take nearby seats; some of
them may upload their lecture notes by sending non-eBCS
uplink frames to non-eBCS APs. Moreover, it is assumed
that the number of non-eBCS STAs is much smaller than
that of eBCS STAs. This assumption is not a requirement;
rather, it is a strict condition for the evaluation of ACK-less
rate-adaptation framework. In the rate adaptation framework,
by overhearing such uplink frames, an eBCS AP surveyed
the channel conditions between the eBCS AP and each
eBCS STA. To validate the feasibility of utilizing the infor-
mation obtained from the overheard uplink frames, we con-
sidered, as an example, that the eBCS AP measured received
signal strength (RSS) of the overheard uplink frames that the
non-eBCS STAs transmitted to the non-eBCS APs. Thereby,
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the eBCS AP implemented the rate adaptation for the eBCS
STAs. For learning the rate adaptation strategy, we adopted a
neural-network (NN)-based reinforcement learning. Specifi-
cally, by using deep reinforcement learning (DRL), the eBCS
AP was able to learn a mapping from the RSS of the uplink
frames to the expected value of the indicator of the perfor-
mance of broadcasting. It was based on the idea that there
would be a correlation between the RSS of the uplink frames
and the broadcast performance via the confounding effect
from the deployments of the eBCS STAs. For example, if the
eBCS STAs were far away from an eBCS AP, both the uplink
RSS and broadcast performance would be lower simultane-
ously. In this case, the eBCS AP was aware that a lower data
rate was required to be set in order to increase the eBCS STAs
with successful receptions. The broadcast performance indi-
cator was designed as a reward, which is an objective function
of reinforcement learning, such that the data rate of the eBCS
AP and the reception success rate at the e BCS STAs increased
simultaneously. Hence, by estimating the reward in correla-
tion with the uplink RSS and by maximizing it, the e BCS AP
was able to set a data rate, such that the number of eBCS STAs
with successful reception and the data rate jointly increased
for various eBCS STA deployments. However, the reception
failures occur because the reward distribution becomes wider,
which leads to that the eBCS AP cannot adapt the data rate
to a part of the eBCS recipient STAs. Since the previous
work adopted DRL as one example, the learning algorithm
for obtaining the rate adaptation strategy is not evaluated. The
maximizing problem of the broadcast performance indicator
was not addressed as a general optimization problem, as the
environmental observation was insufficient. In other words,
the RSS of the overheard uplink frames does not represent the
broadcast performance of all eBCS STAs. Therefore, in the
previous study, RL was used as an example for acquiring this
strategy.

In this paper, we studied the learning algorithms for the
ACK-less rate adaptation to use high data rate while avoiding
reception failures. The objective of this work is to identify
which algorithm is appropriate by evaluating the impact of
the difference in the targets to learn on the performance of
the ACK-less rate adaptation. As the algorithm to learn the
expected value of the broadcast performance indicator, we
evaluated deep Q-network (DQN) [9], [10].

Furthermore, as the algorithm to learn the entire distribu-
tion of the broadcast performance instead of the expected
value, we evaluated distributional reinforcement learning
(RL) [11]. Specifically, we adopted quantile regression DQN
(QR-DQN) [12] to approximate the reward distribution, given
the RSS of the overheard uplink frames. Learning the entire
distribution instead of the expected value provided eBCS
AP the ability to avoid reception failures which appears in
the tail of the performance distribution, and thus, the eBCS
system becomes reliable. To emphasize the tail of the reward
distribution, we used a risk measure [13] by referring to
an established approach that uses conditional value at risk
(CVaR), which is one of the risk measures associated with
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QR-DQN [14]. In this way, we integrated the learning of
reward distribution into the ACK-less rate adaptation frame-
work and alleviated reception failures at the eBCS STAs
by emphasizing the tail of the performance distribution.
An overview of learning the statistics/distribution of the
reward is shown in Fig. 1.

The contributions of this paper are as follows:

o In order to establish a reliable ACK-less rate adaptation
in broadcast WLANSs, we studied the benefit of apply-
ing the learned statistics of broadcast performance for
data rate,! in correlation with the RSS of non-broadcast
uplink frames transmitted by the STAs associated with
non-broadcast APs. This was formulated on the idea that
the RSS of the uplink frames possibly correlates with the
performance measure of broadcast WLANs. Hence, the
learned statistics and obtained uplink RSS would allow
a broadcast AP to be aware of the rate which would
lead to successful receptions. We confirmed that the rate
adaptation with learning the expected performance via a
standard DQN improved the success and data rates as
measured in terms of the Pareto efficiency, compared
with rate adaptation without learning the statistics.

o We further discussed a problem specific challenge where
the distribution of the broadcast performance indicator
became wider when the number of STAs that transmitted
the uplink frames was much smaller than that of the
broadcast recipient STAs. More specifically, we studied
the effectiveness of leveraging the learned distribution of
the broadcast performance itself, and not the expectation
used in standard Q-learning for ACK-less rate adapta-
tions. Simulation results showed that determining the
data rate in view of the tail of the distribution enhanced
the success rate while implementing the rate adapta-
tion in the same way as method learning only expected
broadcast performance.

In a nutshell, our key contribution is the demonstra-
tion of the feasibility and benefit of learning the statis-
tics/distributions of the broadcast performance under the
correlation with the RSS of the uplink frames transmitted
by non-eBCS STAs to non-eBCS APs. In order to achieve
these insights, throughout this paper, we have assumed the
availability of the broadcast performance during learning.
However, in real deployments, this performance may not
be available due to the ACK-less nature of the broadcast
WLANS. In order to address this challenge, our future work
will be aimed at discussing sim-to-real learning as a realistic
scenario such that the broadcast performance would be avail-
able during learning. However, to the best of our knowledge,
we believe that the present study is sufficient for shedding
light on the ACK-less rate adaptation using uplink RSS,
which itself is a novel finding. Hence, an in-depth discussion
of this problem is beyond the scope of this study.

! This broadcast performance is defined in (5) in view of the broadcast
recipient STAs with the successful reception and data rate.
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The rest of this paper is organized as follows: Section II
describes the considered eBCS system model. Section III
explains the proposed method. Section IV presents evaluation
results and discussions. Section V concludes the paper.

Il. SYSTEM MODEL

We considered an eBCS system, where one eBCS AP, I non-
eBCS APs, N eBCS STAs, and m (im < N) non-eBCS
STAs were deployed in a two-dimensional area, W C RZ.
The proposed method in Section III can be easily extended
to scenarios with multiple eBCS APs. The eBCS AP peri-
odically broadcasted eBCS frames to the eBCS STAs. The
eBCS STAs were located around the non-eBCS APs forming
clusters, and the non-eBCS STAs were located near the eBCS
STAs. The STA clusters were indexed by i € {1,2,...,1},
and were formed by N; eBCS STAs, where the total number
of eBCS STAs is denoted by N = Zle N;. The non-eBCS
STAs transmitted uplink frames, e.g., ACK frames in uni-
cast communications, to the non-eBCS APs with which they
were associated. In contrast, the eBCS STAs did not trans-
mit uplink frames, as considered in IEEE 802.11bc. Here,
we assumed that these APs and STAs were densely deployed
and focused at the clusters far from the eBCS AP, where part
of the eBCS STAs would have failed to receive the eBCS
frames. An example of a system model with one non-eBCS
AP in the environment is shown in Fig. 1. We considered that
the eBCS AP could receive the uplink frames transmitted by
the non-eBCS STAs to survey the channel conditions between
the eBCS AP and the eBCS STA clusters to learn the eBCS
performance, given the RSS of the uplink frames measured at
the eBCS AP.

IlIl. LEARNING BROADCAST PERFORMANCE USING DEEP
REINFORCEMENT LEARNING ALGORITHMS

This section provides an overview of the proposed method
that learns the expected value or the distribution of the indica-
tor of eBCS performance, given the RSS of the uplink frames
transmitted by the non-eBCS STAs. As discussed in Section I,
this is based on the idea that the deployment of eBCS
STAs has a confounding effect on both the RSS of uplink
frames and the eBCS performance: the two being correlated
with each other. Hence, learning the statistics/distributions of
broadcast performance conditioned by the RSS is useful to
assess the ongoing broadcast service correctly and determine
a better-performing data rate. We first propose the approx-
imation method based on DQN, which is the most basic
algorithm of DRL. Second, we propose the approximation
method based on QR-DQN, which is one of the distributional
RL algorithms.

A. LEARNING BROADCAST PERFORMANCE USING DEEP
Q-NETWORK

In this section, we discuss the method that learns the expected
value of the eBCS performance indicator, given RSS of the
uplink frames of the non-eBCS STAs and data rate of the
eBCS AP. To approximate the mapping from the RSS of
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FIGURE 1. An overview of the proposed methods to learn the statistics/distribution of the broadcast performance indicator that is formulated
as the reward. The agent in the eBCS AP learns the statistics/distribution exploiting the RSS of the overheard uplink frames, and selects the data
rate based on the learned statistics/distribution. DQN approximates the expected value of the reward, and QR-DQN approximates the reward

distribution.

the uplink frames and the data rate of the eBCS AP to the
expected value of the performance indicator, we used DQN.
The indicator was designed as the reward that reflected on
the data rate of the eBCS AP and the reception success rate
of the eBCS STAs, such that, via the maximization of the
reward, both performances were enhanced. The data rate con-
troller of the eBCS AP was defined as an agent, and the rate
adaptation strategy was obtained as an optimal state-action
value function and a policy. The optimal state-action value
function was modeled by a deep neural network (DNN) with
the input of state, s, and the output of the learned opti-
mal state-action value function, Q(s, a), for each action a.
The interactions between the agent and environment were
assumed to be described by the Markov decision process
(MDP). In this process, the agent observes a state, s; and
selects an action, a;, based on the policy, & with an iteration
step ¢. In response, the environment gives a reward, ;4 to the
agent. Using this reward, the agent updates the approximated
optimal state-action value function, Q(s, a) based on the
Q-learning algorithm [15].

1) STATE, ACTION, REWARD FORMULATION

While learning the broadcast performance, the eBCS AP
overhears the uplink frames transmitted by m non-eBCS
STAs associated with the non-eBCS APs. The m non-eBCS
STAs are assumed to be selected uniformly at random, from
a large number of non-eBCS STAs. The eBCS AP observes
the RSS of the uplink frames, where the observed RSS is
represented as an m-tuple given by

1 2
pi = (p§ . p} ),--~,p§m)>, (1)

where pgk) denotes the RSS of the kth uplink frame in dBm.
Moreover, for distinguishing each cluster from the others, the
eBCS AP observes the basic service set identifier (BSSID) of
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the uplink frames, which is a suitable assumption for current
WLAN systems [16]. The observed BSSID is also given as
an m-tuple:

1 2
Qt = (q; )7 CI§ )5 ‘7q§m)> ) (2)
(k)

where ¢, € {1,2,...,1} denotes the BSSID of the
kth uplink frame. Note that p, and g, are sorted by BSSID.

Given the aforementioned observation, p; and ¢, the
state s, is defined as a 2m-tuple:

st = (Prs qGr)- (3)

By observing the state s;, the agent measures the channel
conditions between the eBCS AP and eBCS STAs. The input
size of the DNN is fixed, and if m is smaller than this size, the
missing part is filled in with copied states from another part.

This action is defined as rate selection in which the eBCS
AP learns the rate adaptation strategy. Following WLAN
standardizations, the available data rates are discretized by
Ay, Ay, ..., Ak; namely, the action space A is defined as
follows:

A:={A1,A,, ..., Ag}. @)

The agent selects an action, a; from A, for each step ¢, based
on the observation s;, using the policy.

To alleviate reception failures at the eBCS STAs and trans-
mit eBCS frames at a high data rate, we designed the reward

Tt+1 as
a n
_At (1—Nt>, n < N;
Fipt = dymes v 3)
) ny = )
Amax

where n; is the number of eBCS STAs that succeed in receiv-
ing the eBCS frames transmitted by the eBCS AP in step ¢,
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and Amax 1S the available maximum data rate. We separated
the reward by n; = N, such that the reward was always
less than zero when n; < N, and greater than zero when
n; = N. Through this design, the agent would be sensitive
to reception failures due to its negative reward and would,
therefore, be able to avoid them. The reward was kept within
the range [—1, 1], which stabilized the learning of the DNN.

2) RATE SELECTION FOR DEEP Q-NETWORK DURING

TRAINING

We used the e-greedy policy that selects actions as follows:
a = iarandom W.p. &; (6)

Agreedy ~ Otherwise,

where arandom and dgreedy are the random action and greedy
action, respectively. The random action, dandom i randomly
selected from the available data rates, .A. The greedy action
is selected to maximize the approximated optimal state-action
value in each step:

dgreedy = argmax Q(s;, a). 7)
acA

The greedy action, agreedy is Optimal in terms of maximizing
the reward when the approximated optimal state-action value
has already converged. However, while the agent is in learn-
ing, selecting greedy actions each time is not optimal, and
hinders the convergence of the approximated optimal state-
action value. Hence, with probability ¢, the agent selects a
random action to explore possible experiences.

B. LEARNING BROADCAST PERFORMANCE USING
DISTRIBUTIONAL REINFORCEMENT LEARNING

In this section, we discuss the method that learns the distri-
bution of the reward, given RSS of the uplink frames of the
non-eBCS STAs. To approximate the mapping from the RSS
of the uplink frames and the data rate of the eBCS AP to the
distribution of the reward, we used QR-DQN, which is one
of the distributional RL algorithms. In QR-DQN, we used the
same state, action, and reward as described above. Since it is
different from the method based on DQN, the rate adaptation
strategy was obtained as an approximation of the reward
distribution termed as value distribution and a policy. Similar
to the optimal state-action value function in DQN, the value
distribution was modeled using a DNN with the input of state,
s, and the output of the learned value distribution, 7 (s, a), for
each action a.

1) DISTRIBUTIONAL REINFORCEMENT LEARNING

In this section, we introduce distributional RL and one of its
algorithms, QR-DQN. Distributional RL solves the following
distributional Bellman equation, which is a distributional
version of the Bellman equation in value iteration algorithms,
such as Q-learning:

Z(s,a) 2 R(s, a) + yZ(s', d), (8)
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where U 2 V indicates that the random variables U and
V are equal. The random variable, Z(s, a) represents the
return in state s with action a, which is approximated by
distributional RL. The return is defined as the cumulative sum
of discounted rewards:

o0
zi= Y vh e, C))
k=0

where y is the discount factor that decides the weight of future
rewards, and r; is the reward in the learning iteration 7. The
approximated return distribution is termed as value distribu-
tion. The expectation value of the distribution is equal to the
optimal state-action value in the DQN.

QR-DQN is based on the algorithm called quantile regres-
sion temporal difference learning (QRTD) [12]. QRTD
approximates the return distribution by following Ng
parameters:

6;:=F;'(£), i=12,...,Ng (10)
where F, !is the inverse cumulative distribution function of
the value distribution Z. The notation, f; represents midpoints
of the quantiles, 7; = i/Ng, defined as follows:

- Ti-1+ 7T
£

= (1)

where 79 = 0. The parameter 6; is updated by the following
equation:

0i(s¢, ar) < 6i(st, ar)
+0(T — L1 + Va1 < 0i(se, ar))),  (12)

where r; ~ R(sy, ar), zi+1 ~ Z(s¢, ar), n is the learning rate,
and 1 is the indicator function.

Based on the QRTD algorithm, QR-DQN approximates the
return distribution with the DNN. The input of the DNN is the
state, which is the same as that of DQN. However, the output
of the DNN is the value distribution, 6;, for each iteration,
while that of the DQN is the approximated optimal state-
action value function. The parameter, 0; is calculated for all
available actions, a;. QR-DQN uses an extended version of
Huber loss [17], termed as quantile Huber loss, as the loss
function of DNN. Quantile Huber loss is defined as

Ly (u)

pr () = |t — L(u < O)|T (13)

where L, (u) is the Huber loss often used for DQN, defined
as:

—u”, lu| < k;

L) = {2 | (14)
/<<|u| — 5/() ,  ul >k,

where u is the temporal difference error and « is the parameter
of Huber loss.
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TABLE 1. Environment settings.

Region W 300m x 300 m
Carrier frequency fc 5GHz
Bandwidth W 20 MHz
Transmit power of the e BCS AP P.pcs 10 mW
Transmit power of the non-eBCS STAs Psta 10 mW

Number of the non-eBCS APs I 2
Number of the eBCS STAs N1 = Ny = 100
Path loss model Indoor model in [18]
Break point distance of the path loss 10m
Noise power spectrum density —174dBm/Hz

2) RATE SELECTION POLICY FOR QUANTILE REGRESSION
DEEP Q-NETWORK DURING TRAINING

We used a variant of the e-greedy policy for QR-DQN while
learning the value distribution:

Qrandom W.P.é&;

a; = ) (15)
Agreedy ~ Otherwise,
|
Gesdy = AEMAX - > 6i(si, ). (16)
ae ]:1

This policy selects actions based on the expected value of the
return distribution. Since this expected value is equal to the
optimal state-action value, if DQN and QR-DQN learn
the optimal value accurately, then this variant would be equiv-
alent to the e-greedy policy used in DQN.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
methods that learn the statistics/distribution of the reward,
given the RSS of the uplink frames of the non-eBCS STAs via
simulations in the considered eBCS system. First, we eval-
uated the learned statistics/distribution of the reward using
Monte Carlo simulations. For ease of evaluation, we sampled
three levels of the RSS of the uplink frames. Second, for
demonstration, we simulated the rate adaptation of the eBCS
AP using the learned statistics/distribution.

A. SIMULATION SETTINGS
1) ENVIRONMENT SETTINGS
The simulation environment was established as shown in
Table 1. We simulated various deployments to enable the
eBCS AP to learn the statistics of the reward for them. To set
this environment, the non-eBCS APs were deployed accord-
ing to the binomial point process in the two-dimensional
area V. Therein, the eBCS and non-eBCS STAs were
deployed randomly inside circles centered at the position of
the ith non eBCS AP with radius o; and distance B;, as shown
in Fig. 2. While analyzing the statistics of the reward, the
distance B := max; B; and the radius o := Oargmax, B;» ar€
randomly selected for each deployment.

Due to carrier sensing of the eBCS AP, non-eBCS APs,
and non-eBCS STAs, it was assumed that no frame colli-
sions occurred and there was no interference among them.
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FIGURE 2. An example of deployment of the eBCS AP, non-eBCS AP, eBCS
STAs, and non-eBCS STAs in the simulation.

Therefore, reception failures were only caused due to the
SNR of the eBCS frame being lower than that required for the
eBCS STAs to successfully decode the frame. The required
SNR depends on the selected data rates of the eBCS AP.
Given a data rate, a, the required SNR I7eq is defined as
follows:

Tegla) := 2% — 1, (17)

where W is the channel bandwidth. This requirement was
derived from Shannon’s noisy-channel coding theorem, stat-
ing that the upper limit of the data rate for error-free commu-
nication is the channel capacity.

For ease of evaluation, we used several data rates defined
in IEEE 802.11ax [16]. The action space A is expressed as

A = {8.6,51.6,103.2, 143.4} Mbit/s. (18)

2) AGENT SETTINGS

Table 2 shows the agent parameter settings of DQN and
QR-DQN. Deployments of eBCS AP, non-eBCS AP, eBCS
STAs, and non-eBCS STAs were randomly generated for
each episode. By selecting m non-eBCS STAs uniformly at
random, and subsequently calculating the RSS, information
about the state of one episode is obtained. This state is
transitioned randomly and independent of the previous state.
Hence, the discount factor is set as y = 0, consistent with the
previous work [8]. For each state, we consider the problem
of determining the data rate. This implies that the value
distribution would approximate the reward distribution at the
same time as that of the return.

For comparison, the same DNN structures were used for
DQN and QR-DQN, except for the output shape since the out-
put of the DNN in DQN was different from that in QR-DQN,
as mentioned previously. The DNN was composed of six
fully connected layers, where each hidden layer consisted of
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TABLE 2. Agent settings.

Parameters DQN QR-DQN
Number of episodes 10000 10000
Number of steps 100 100
: e-greed e-greed
Policy “=0.3) E20.3)
Learning rate n 0.0001 0.0001
Discount factor ~y 0.0 0.0
Batch size 32 32
Loss function Huber loss I-(Igu%f;tﬂ)ess
Optimizer Adam [19] Adam
Replay buffer [20] capacity 10000 10000
Number of quantiles Nq - 50
Huber loss threshold 1 1
: Uniformly Uniformly
Selection of m non-eBCS STAs random random

64 units and used rectified linear unit (ReLLU) activation. This
setup was an example, i.e., any DNN having more weight
parameters than the ones in this setup can be applied to our
approximation method with the appropriate hyperparameter
tuning.

B. EVALUATED RATE ADAPTATION FRAMEWORK

In this section, we introduce the framework for rate adapta-
tion, which was used for demonstration of the eBCS AP using
the learned statistics/distribution of the reward. In this frame-
work, the DQN agent selected the data rate based only on the
greedy policy, while the QR-DQN agent selected the data rate
based on a policy associated with a risk measure. Moreover,
for comparison with the above two methods, we illustrated
another rate adaptation method that did not use the learned
statistics of the reward as a baseline.

1) RATE SELECTION USING LEARNED BROADCAST
PERFORMANCE
We introduce the ACK-less rate adaptation framework [§]
using the statistics learned by DQN and QR-DQN, in this
section. This framework consists of learning and applica-
tion phases. The agent acquires the rate-adaptation strategy
using RL and simulations during the learning phase and then
applies it to the real environment during the application phase.
In the application phase, the agent observes the state from
the environment and selects the action at every step. Notably,
in the application phase, the e BCS AP cannot determine the
success or failure of the eBCS STAs in real environments.
That is, the agent cannot observe the reward from the envi-
ronment. For the expected value of the reward learned by
DQN, we simply used the greedy policy (7). The agent simply
observed the state s; and selected the data rate a;, based on the
DQN output.

For the reward distribution learned by QR-DQN, we
used the risk-measure-based policy rather than the greedy
policy (16):

a; = argmax RM(2), (19)
acA
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where RM(Z) is the risk measure for the distribution Z.
As an example of risk measure, we used conditional value
atrisk (CVaR). CVaR is defined using the value at risk (VaR)
measure:

RM(Z) = CVaRy(Z)
= Eyey[Y | Y < VaRy(Y)], (20)

where VaR is formulated as
VaR(Y) == Fy H(a), 1)

where Fy is the cumulative distribution function of Y. VaR is
not suitable for an event with a low probability and high
risk. However, in this case, CVaR can accurately evaluate
the risk by focusing on the lower end of the distribution, Fy.
In QR-DQN, CVaR was used as follows:

[aNg]

. > (s a) (22)
a; = argmax iS¢, a),
acA |—Oqu_| j=1 ’

where 0 < o < 1 is a parameter of CVaR that represents
the importance of the lower end of the value distribution.
By using o near 0, the lower end of the distribution was
emphasized to avoid the risk of incurring a reception failure.
When o = 1, the CVaR-based policy becomes equivalent
to the greedy policy that was based on the expected value
of the distribution. The overall procedure, consisting of the
learning and application phases, is shown in Algorithm 1.
Here, Nep,1 and Nep,1 are the number of episodes and steps
in learning phase, respectively, and Nep, 5 and Ny, are those
in application phase, respectively.

Algorithm 1 Learning and Application Phases
1: # Learning phase
2: fore=1,2,..., Ny do
3 Generate locations of all APs and STAs.
4: fort =1,2,..., Nyep,1 do
5: Observe a state s; from the environment and feed
it to the DQN/QR-DQN.

6: Select an action a; using (6).
7: Observe a reward r; from the environment.
8: Update weight parameters of the DQN/QR-DQN.
9: end for
10: end for

11: # Application phase
12: fore=1,2,..., Nepado

13: Generate locations of all APs and STAs.

14: fort =1,2,..., Nyep,ado

15: Observe a state s; from the environment and feed
it to the DQN/QR-DQN.

16: Select an action a; using (7) or (22).

17: end for

18: end for
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TABLE 3. Comparison of rate adaptation methods.

TABLE 4. Simulation parameters for generating RSS.

Overhear Learn statistics
Method uplink frames? of reward?
Rule-based Yes No
DQN Yes Yes (expected value)
Proposed:
QR-DQN with risk- Yes Yes (distribution)

measure-based policy

2) COMPARED RULE-BASED METHOD

We introduce a rule-based rate adaptation method that does
not use the learned statistics. A comparison of all the methods
is shown in Table 3 Specifically, the eBCS AP selected the
data rate a, based on the following equation:

a; = max{a | eq(a) < '}, (23)

where I is the estimated received SNR at the eBCS STA that
transmits the uplink frames and is furthest from the eBCS AP.
The estimated received SNR I” was calculated from the path
loss LY, assuming symmetry between the eBCS AP and each
eBCS STA, as follows:

5 . Pepcs 1

F=—=_—— 24
max; LY - P, B @4
; PstA
LY = — (25)
Ps

where P;, is the noise power and Psta, Pepcs are the transmit
powers of the STAs and the eBCS AP, respectively. The
parameter 8 > | underestimates the received SNR to select a
lower rate and avoid transmission failures. The eBCS AP was
assumed to know Pgsta by referring to the standard settings of
the transmit power for IEEE 802.11 WLAN:S.

C. RESULTS

In this section, we illustrate some evaluation results and dis-
cuss the performance of the proposed methods. First, we eval-
uated the accuracy of the learned statistics of the reward,
given three levels of RSS: high, middle, and low, phigh, Pmids
and pjow. The ground truth of the statistics was generated by
Monte Carlo simulation. Since RSS is continuous, it required
substantial computational costs to obtain a sufficient num-
ber of samples for each level of RSS. Therefore, for ease
of computation, we loosened the scope of each level, i.e.,
we used the samples within [phigh — Ap/2, phigh + Ap/2],
[Pmid — Ap/2, pmid+ Ap/2], and [piow — Ap/2, piow + Ap/2],
where Ap is the loosened width of the RSS levels. As an
example, we set the parameters of this simulation as shown
in Table 4. Second, for demonstration purposes, we simulated
the rate adaptation of the eBCS AP, based on the learned
statistics. Therein, we used the learned parameters of the
DNN in DQN and QR-DQN, following the policy discussed
in Section IV-B1.

1) LEARNED REWARD STATISTICS
Table 5 shows the comparison between the expected value
learned by DQN and that computed by the Monte Carlo
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Number of Samples 10000
RSS level (Phigh s Pmids Plow) (—81.5,—86.5, —94.5) dBm
Loosened width of RSS level Ap 1.0dB

TABLE 5. Comparison of expected values of reward.

(RSS level, data rate (Mbit/s))  Ground truth DQN

(Phigh» 8-6) 0.060 0.060
(Phigh, 51.6) 0.32 0.33
(Phigh» 103.2) 0.36 0.37
(Phigh, 143.4) —0.71 —0.54

(pmidy 86) 0.060 0.060
(Pmid, 51.6) 0.30 0.30
(Pmid» 103.2) —0.41 —0.22
(Pmid» 143.4) —0.91 —0.78

(Plow» 8.6) 0.060 0.060

(Prow, 51.6) —0.14 —0.073
(P1ow, 103.2) —0.65 —0.46
(Plow, 143.4) —0.96 —0.83

simulation. The results indicate that DQN was able to approx-
imate the expected values. In particular, DQN output was
able to accurately approximate the actions with the highest
reward in each RSS level, which are the ones having the
most importance in rate adaptation using learned statistics.
Thus, the learned results are considered to be applicable to
the ACK-less rate adaptation. Likewise, Fig. 3 confirms that
the approximation method based on QR-DQN was able to
learn the distribution of the reward. For ease of viewing,
the distributions are only depicted for the actions that were
frequently selected for each input RSS. The ground truth
distributions generated by Monte Carlo simulations were
empirical cumulative distributions, different from the output
of QR-DQN, which directly appeared in the output layer of
the DNN. Using these learned statistics, the eBCS AP was
able to implement ACK-less rate adaptation in the considered
eBCS system.

2) ACK-LESS RATE ADAPTATION RESULTS

Using the ACK-less rate adaptation framework, we first per-
formed the simulation using various distances B and radii o.
Fig. 4 exhibits the tradeoff between the data rate and success
rate. The parameter o of CVaR and g of the rule-based
method were set to various values. Fig. 4 confirms that the
proposed DQN and QR-DQN with risk-measure-based pol-
icy were able to improve the success rate and data rate in
terms of the Pareto efficiency, compared with the rule-based
method. This indicates that ACK-less rate adaptation using
learned statistics of the reward can improve the broadcast
performance in the considered system.

Fig. 4 also demonstrates that as the CVaR parameter o
becomes larger, the success rate of the QR-DQN with risk-
measure-based policy increases while implementing a rate
adaptation in the same way as the method that learns only
expected broadcast performance. As mentioned in Section III,
setting a smaller value of o would imply emphasizing the
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FIGURE 3. Comparison of the reward distributions between the ground
truth and QR-DQN output. The ground truth is generated by Monte Carlo
simulations. The vertical axis of the DQN output displays the probabilities
of the quantiles 7;, and the horizontal axis displays the approximated
returns of the quantiles 6;. For ease of viewing, the distributions are
depicted only for the actions with wider distributions.

0.98+ a=0.04

0.97} Y

Success rate
o
e}
(=2}

=@= QR-DQN with risk-
measure-based policy

0.94}|=@= DQN
—@- Rule-based

50.0 52.5 55.0 57.5 60.0 62.5 65.0
Data rate (Mbit/s)

FIGURE 4. Data rate of the eBCS AP vs. reception success rate for the
eBCS STAs. The data rate and success rate are averaged over a variety of
distances B and radii ¢, and the value of m is fixed at 10.

lower end of the reward distribution that would enable the
eBCS AP to avoid the risk of incurring reception failures.
Hence, by making o smaller, we could achieve a higher
success rate while implementing the rate adaptation in the
same way as the method that learns only expected broadcast
performance. This confirms the feasibility of the method for
improving the success rate by utilizing the learned reward
distribution with the risk measure instead of the expected
value.

Fig. 5(a) shows that the data rate of the eBCS AP is
switched when the distance B is approximately 30, 60,
and 110 m. Note that the QR-DQN with greedy policy is
realized by @ = 1. In the simulation, m was kept fixed, and
the data rate and success rate were averaged over a variety of
distances B and radii o. The result indicates that the eBCS
AP adapted the data rate to a variety of distances between
the eBCS AP and STA cluster. More specifically, when the
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FIGURE 5. Data rate and success rate against distance B. The radius o is
fixed to 10 m, and the value of m is fixed at 10.
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FIGURE 6. Learned value distribution at distance B = 100 m. The CVaR
parameter is « = 0.04, the radius is 0 = 10, and the value of m is fixed
at 10.

distance was small, the eBCS AP selected a higher data rate,
and when the distance was large, it selected a lower data rate.
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FIGURE 7. Data rate and success rate against m. The distance B is fixed to
40 m and the radius o is fixed to 10 m.

However, Fig. 5(b) shows that reception failures occur
when the data rate is switched. In particular, the success rates
of the QR-DQN with greedy policy and DQN are seen to
drop at distances 60, 110 m, where the data rate is switched.
This arises from the fact that even when the observed states
are the same, the action to maximize the reward is different
since it is possible that the same states represent different
deployments. This is due to the existence of the eBCS STAs
whose RSS information was not contained in the uplink
frames, which rendered the reward distribution wider at such
distances. The QR-DQN with greedy policy and the DQN use
the greedy policy in the application phase; low reward with
low probability that arises from the wider reward distribution
cannot be addressed by these methods properly.

On the other hand, the QR-DQN with risk-measure-based
policy achieved a higher success rate at distances around
60, 110 m, compared to other methods. This is due to the
fact that the QR-DQN with risk-measure-based policy selects
a data rate that is one level lower even at slightly shorter
distances, i.e., at 55, 100m, as shown in Fig. 5(a). It can
be considered that the QR-DQN with risk-measure-based
policy method with CVaR-based policy addresses the risk
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of reception failures appearing at the lower end of the
distribution.

Fig. 6 shows the learned value distribution obtained using
the QR-DQN algorithm, where the vertical axis represents the
probabilities of the quantiles 7;, and the horizontal axis repre-
sents the approximated rewards of the quantiles 6;. It must
be noted that the approximated rewards, 6; directly appear
in the output of the DNN used in QR-DQN. According to
the figure, the CVaR-based policy selects a low data rate
by emphasizing the lower end of the distribution while the
greedy policy selects a high data rate because of the high
expected value. This is caused by the wider value distribu-
tion of the data rate of 51.6Mbit/s than that of the data
rate of 8.6 Mbit/s, which implies that selecting 51.6 Mbit/s
contains the potential risk of a low reward, i.e., a low success
rate. In this case, the CVaR-based policy selected 8.6 Mbit/s
as CVaRg 04(Z(ss, 8.6)) > CVaRg 04(Z(ss, 51.6) while the
greedy policy selected 51.6 Mbit/s as E[Z(s;,51.6)] >
E[Z(s;, 8.6)]. Roughly speaking, the CVaR-based policy
focused on this risk while the eBCS AP in the QR-DQN
with risk-measure-based policy avoided it by selecting the
appropriate data rates. Additionally, Fig. 7 shows the changes
in the data rate and the success rate, with respect to the
number of input RSS, m. This confirms the high success rate
of the proposed method, regardless of the value of m.

V. CONCLUSION

This paper addressed the challenge of the previous ACK-less
rate adaptation framework that it incurs the reception failures
at a part of the eBCS STAs. To address this challenge, this
paper adopted distributional RL, which approximates the
entire distribution of the broadcast performance. The impact
of the difference in the targets to learn, i.e., the statistics or the
distribution, on the broadcast performance of the ACK-less
rate adaptation is studied to use high data rate while avoiding
reception failures. The simulations confirmed that: 1) Using
learned statistics improved the success and data rates as
measured in terms of the Pareto efficiency, as compared with
the rate adaptation method. 2) Learning the entire distribu-
tion of the indicator enabled the eBCS AP to determine the
tail of the distribution using risk measure, and to alleviate
reception failures while implementing rate adaptation in the
same way, as the method that learns only expected broadcast
performance.

In this paper, we assumed that the reception success/failure
information was available while the agent was learning the
statistics. However, this is not applicable to the real environ-
ment because the eBCS AP cannot obtain this information
since ACK mechanisms would not be implemented. A fea-
sible solution to this problem would be to design a sim-to-
real framework for this ACK-less rate adaptation. Therein,
learning the statistics/distribution of the broadcast perfor-
mance is conducted via a simulation where the success/failure
information in all eBCS STAs would be available, and the
learned statistics could be applied to real-world deployments.
Hence, implementing this sim-to-real framework based on
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network simulators and demonstrating the applicability of
learning the statistics/distribution to real-world environments
is a possible future direction of this study.
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