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ABSTRACT This paper is concerned with the dissipative problem based pinning sampled-data control
scheme. We investigate the problem for function projective synchronization of neural networks with hybrid
couplings and time-varying delays. The main purpose is focused on designing a pinning sampled-data
function projective synchronization controller such that the resulting function projective synchronization
neural networks are stable and satisfy a strictly H∞,L2 − L∞, passivity and dissipativity performance
by setting parameters in the general performance index. It is assumed that the parameter uncertainties
are norm-bounded. By construction of an appropriate Lyapunov-Krasovskii containing single, double and
triple integrals, which fully utilize information of the neuron activation function and use refined Jensen’s
inequality for checking the passivity of the addressed neural networks are established in linear matrix
inequalities (LMIs). This result is less conservative than the existing results in literature. It can be checked
numerically using the effective LMI toolbox in MATLAB. Numerical examples are provided to demonstrate
the effectiveness and the merits of the proposed methods.

INDEX TERMS Dissipative, function projective synchronization, neural networks, time-varying delays,
sampled-data control.

I. INTRODUCTION
For a long time, there has been a lot of interest in the study of
artificial neural networks (NNs) because of their numerous
applications, such as pattern recognition, image and signal
processing, optimization, and so on [1]–[4]. Because time
delay frequently occurs in many classes of NNs, it causes
oscillation, degraded performance, divergence, and instabil-
ity. Furthermore, time delay can be caused by the finite speed
of information processing and the natural communication
time between neurons. As a result, fruitful researchers have
challenged the problem of delayed NNs [5]–[9].
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Furthermore, synchronization is one of many types
of neural network behaviors that have a significant and
appealing scenario. It has been studied in a variety of
sciences [10]–[12]. To date, the literature has reported a
wide range of synchronization phenomena, including com-
plete synchronization (CS) [12], generalized synchronization
(GS) [13], phase synchronization [14], anticipated synchro-
nization [15], projective synchronization (PS) [16], and so on.
Another type of function projective synchronization (FPS),
has been introduced and studied [17], [18]. FPS is a broader
definition of chaotic synchronization that encompasses both
complete and projective synchronization. It states that the
driver and response systems can be synchronized up to a
scaling function [19], [20]. FPS has drawn the interest of
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many researchers in plenty of fields [21]–[23]. FPS on mem-
ristive NNs has been proposed by Wu et al. in [21], where
master-slave dynamical systems synchronize in case of weak
and the desired scaling function. In [22], the drive-response
systems can realize in FPS with linearly chaotic nodes, and
a simple control law was applied. The exponential FPS of
mixed delayed impulsive NNs was studied [23] using the
contradiction method and analysis approach. In general, the
systems cannot achieve synchronization autonomously due
to weak coupling or variation in the NNs. As a result,
we must artificially impose control from outside. Various
control schemes can be applied in NNs such as adaptive
control [24], [25], intermittent control [26], feedback con-
trol [27], impulsive control [28]. A natural method to achieve
synchronization of networks is to input a controller to all
network topology nodes. However, coupled NNs are typi-
cally composed of many-dimensional connected nodes, and
controlling each node is difficult and expensive. To prevent
part of nodes, named pinning control, was proposed in [29],
many pining rules have been applied in the synchronization
of dynamical networks [30]–[32]. Due to, the skyrocketing
in modern computers and communication, the controllers
used to solve synchronization problems in continuous-time
systems prefer to be digital. Thus, sampled-data control sys-
tems have received a lot of attention [33]–[36]. In such
systems, digital computers are used to sample and calculate
a continuous-time scale signal to generate a discrete-time
signal, which is then converted back into a continuous-time
control input signal utilizing a zero-order hold (ZOH) [37].
It is worth noting that the control signal is kept constant
throughout the sampling period and is only allowed to change
at the sampling instant. With the benefit of pinning and
sampled-data control, so there are many of applications of
pinning sample-data control. For example, [38] studied the
problem of coupled reaction-diffusion neural networks with
added inertia and time-varying delays. It can be synchronized
by using pinning sampled-data approach. In [34], the problem
of global H∞ synchronization of complex networks based
on pinning sampled-data control has been addressed. The
H∞ pinning synchronization of Lur’e complex networks with
sampled-data control has been studied in [39]. However, few
articles have been published on pining function projective
synchronization of connected NNs with hybrid couplings and
time-varying delays at the same time. As a result, solving this
problem for NNs is challenging.

Moreover, NNs have been investigated for a variety of anal-
ysis methods. In one research, the performance of NNs has
been examined in a lot of approaches. The input and output
relationships play a vital role in real-world problems. For
example, Tang et al. [40] studied passive synchronization of
coupled reaction-diffusion NNs with multiple time-varying
delays by using an impulsive controller and Lyapunov theory.
In [41], the research of passivity for NNs with an inter-
val time-varying delay has been investigated by applying
Lyapunov–Krasovskii function with double and triple inte-
gral terms and using new Jensen inequalities. And passivity

criteria for neural networks is published in [42]. Lu et al. [43]
H∞ synchronization of directed coupled NNs with mixed
delays were examined using innovative criteria based on
exceptional sampled-data control and the Lyapunov method.
In [44], the problem of Takagi–Sugeno fuzzy NNs with
L2 − L∞ filtering was addressed via Wirtinger-type inequal-
ities, formulated in the restriction of LMI. As is known, the
ingenious concept of dissipative analysis was first introduced
by Willems [45]. It is noted that the dissipative performance
has gottenmore attention from researchers because it not only
dealt with H∞ and passivity performance [46], but it also
indicates an excellent practicable control scheme in many
varieties of sciences, including power converters [47] and
chemical process control [48]. Recently, [49]–[52] has exam-
ined into (Q,S,R)-dissipativity analysis; however, in those
works, the L2 − L∞ performance is not considered in
the (Q,S,R) -dissipativity analysis. To address this con-
cern, Zhang et al. [53] first introduced a general performance
approach known as extended dissipativity, which involves
these performances by adjusting weighting matrices in a
unified framework. Furthermore, the study of extended dis-
sipativity performance for NNs with time delays has been
obtained more attention in the references [54]–[56]. As a
result of incorporating the extended dissipative performance
into the issue of synchronization for delayed coupled NNs,
the analysis of the system will become more general, which
has not yet been investigated.

By the above motivation, function projective synchroniza-
tion and extended dissipativity performance are proposed
for NNs with hybrid couplings and time-varying delays
in this article. The main ideas of this work are given as
follows:
• For the first time, we address the FPS problem for

NNs including both discrete and distributed delays in
the hybrid asymmetric coupling, which differs from
the time-delay case in [57], [58]. Furthermore, the
above delays are not necessarily differentiable functions,
which can be easily be used into a real-world applica-
tion. The output terms include the state vector with the
disturbance and interval discrete time-varying delay.

• We develop a suitable Lyapunov–Krasovskii func-
tional (LKF) for using in FPS stability and extended
dissipativity analysis of delayed coupled NNs with new
inequalities.

• We first obtained new FPS stability and extended dissi-
pativity criteria that containH∞, L2−L∞, passivity, and
dissipativity performance. New parameters in the gen-
eral formulation has not yet been reported for delayed
coupled NNs.

• Unlike previous work [59]–[61], we carefully study the
FPS using mixed nonlinear and pinning sample-data
controls for our control method.

The rest of paper is organized as follows: Section 2 pro-
vides some mathematical preliminaries and network model.
Section 3 presents the passivity analysis of uncertain
NNs with interval and distributed time-varying delays.
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Numerical examples are given in Section 4. Finally, the con-
clusion is provided in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES
Notations: Throughout this paper,Rn denotes n-dimensional
Euclidean space andRn×n is the set of all n× n real matrices.
For any matrix X , the notation X > 0 means that the matrix X
is symmetric positive definite. λmax(X ) and λmin(X ) denote
the maximum andminimum eigenvalues ofX , sym{X}means
X + XT . The superscript T stands for the transpose. The
symbol ∗ is used to represent the term of a symmetric matrix
which can be inferred by symmetry. The symbol⊗ stands for
Kronecker product and diag{· · · } denotes the block diagonal
matrix. C([−%, 0],Rn) represents the space of all continuous
vector functions mapping [−%, 0] into Rn, where % ∈ R+.
L2[0,∞) denotes the space of functions φ : R+→ Rn with

the norm ‖φ‖L2 =
[∫
∞

0 |φ(θ )|
2 dθ

] 1
2 .

Given delayed NNs containing N identical nodes with
hybrid couplings as follows:

ẏi(t) = −Cyi(t)+ A1f (yi(t))+ A2f (yi(t − r(t)))

+A3

∫ t

t−d(t)
f (yi(s))ds+ σ1

N∑
j=1

g(1)ij B1yj(t)

+σ2

N∑
j=1

g(2)ij B2yj(t − r(t))

+σ3

N∑
j=1

g(3)ij B3

∫ t

t−d(t)
yj(s)ds+ E1ωi(t)

+ui(t),

z̄i(t) = D1yi(t)+ D2yi(t − r(t))+ E2ωi(t), (1)

i = 1, 2, . . . ,N , where yi(t) and ui(t) are the state vari-
able and the control input of the node i, respectively.
f (yi(·)) = (f1(yi1(·)), f2(yi2(·)), . . . , fn(yin(·)))T is a nonlinear
vector valued function describing the dynamics of nodes.
z̄i(t) ∈ Rl is the measured output of the ith node, C =
diag{c1, c2, . . . , cn} > 0 denotes the rate with which the cell i
resets its potential to the resting state when being isolated
from other cells and inputs. A1,A2 and A3 are connection
weight matrices, D1,D2,E1 and E2 are given real matrices,
the positive constants σ1, σ2 and σ3 are the strengths for
the constant coupling and delayed couplings, respectively,
ωi(t) is the system external disturbance which belongs to
L[0,∞), B1,B2,B3 ∈ Rn×n are inner-coupling matrices
with constant elements andB1,B2,B3 are assumed as positive
definite matrices, G(k)

= (g(k)ij )N×N (k = 1, 2, 3) are the
outer-coupling matrices and satisfy the following conditions

g(k)ij ≥ 0, i 6= j, g(k)ii = −
N∑

j=1,j6=i
g(k)ij , i, j = 1, 2, . . . ,N , k =

1, 2, 3. The interval discrete delay r(t) and distributed delay
d(t) are satisfactory to the following conditions

0 ≤ r1 ≤ r(t) ≤ r2, 0 ≤ d(t) ≤ d, (2)

where r1, r2 and d are real constants. The isolated node of
network (1) is given by the following delayed neural network:

ẇ(t) = −Cw(t)+ A1f (w(t))+ A2f (w(t − r(t)))

+A3

∫ t

t−d(t)
f (w(s))ds,

zw(t) = D1w(t)+ D2w(t − r(t)), (3)

where w(t) = (w1(t),w2(t), . . . ,wn(t))T ∈ Rn and the
parametersC,A1,A2,A3,D1,D2 and the nonlinear functions
f (·) have the same definitions as in (1). The network (1) is said
to achieve FPS if there exists a continuously differentiable
positive function α(t) > 0 such that

lim
t→∞
‖pi(t)‖ = lim

t→∞
‖yi(t)− α(t)w(t)‖, (4)

i = 1, 2, . . . ,N , where ‖.‖ stands for the Euclidean vector
norm and w(t) ∈ Rn can be an equilibrium point. Let pi(t) =
yi(t) − α(t)w(t), be the synchronization error. Then, by sub-
stituting it into network (1), it is easy to get the following:

ṗi(t) = ẏi(t)− α̇(t)w(t)− α(t)ẇ(t),

= −Cpi(t)+ A1
[
f (yi(t))− α(t)f (w(t))

]
+A2

[
f (yi(t − r(t)))− α(t)f (w(t − r(t)))

]
+A3

∫ t

t−d(t)

[
f (yi(s))− α(t)f (w(s))

]
ds

+σ1

N∑
j=1

g(1)ij B1pj(t)+ σ2
N∑
j=1

g(2)ij B2pj(t − r(t))

+σ3

N∑
j=1

g(3)ij B3

∫ t

t−d(t)
pj(s)ds− α̇(t)w(t)

+E1ωi(t)+ ui(t),

ẑi(t) = D1pi(t)+ D2pi(t − r(t))+ E2ωi(t), (5)

where ẑi(t) = z̄i(t)− zw(t).
Regarding to the pinning sampled-data control scheme,

without loss of generality, the first l nodes are chosen and
pinned with sampled-data control ui(t), expressed as the fol-
lowing form

ui(t) = ui1(t)+ ui2(t), i = 1, 2, . . . ,N , (6)

where

ui1(t) = α̇(t)w(t)

−A1
[
f (α(t)w(t))− α(t)f (w(t))

]
−A2

[
f (α(t)w(t − r(t)))

−α(t)f (w(t − r(t)))
]

−A3

∫ t

t−d(t)

[
f (α(t)w(s))− α(t)f (w(s))

]
ds,

i = 1, 2, . . . ,N , (7)

ui2(t) =

{
Kipi(tk ), tk ≤ t < tk+1, i = 1, 2, . . . , l,
, i = l + 1, l + 2, . . . ,N ,

(8)

VOLUME 10, 2022 58649



T. Botmart et al.: Dissipative Pinning Sampled-Data Control for Function Projective Synchronization of Neural Networks

where Ki is a set of the sampled-data feedback controller gain
matrices to be designed, for every i = 1, 2, ...,N , pi(tk ) is dis-
crete measurement of pi(t) at the sampling interval tk . Denote
the updating instant time of the zero-order-hold (ZOH) by tk
satisfy

0 = t0 < t1 < · · · < tk < lim
k→+∞

tk = +∞,

tk+1 − tk = τk ≤ τ, ∀k ≥ 0, (9)

where τ > 0 represents the largest sampling interval.
By substituting (6) into (5), it can be derived that

ṗi(t) = −Cpi(t)+ A1[f (yi(t))− f (α(t)w(t))]

+A2[f (yi(t − r(t)))− f (α(t)w(t − r(t)))]

+A3

∫ t

t−d(t)
[f (yi(s))− f (α(t)w(s))]ds

+σ1

N∑
j=1

g(1)ij B1pj(t)

+σ2

N∑
j=1

g(2)ij B2pj(t − r(t))

+σ3

N∑
j=1

g(3)ij B3

∫ t

t−d(t)
pj(s)ds+ E1ωi(t)

+Kipi(t − τ (t)),

i = 1, 2, . . . , l,

ṗi(t) = −Cpi(t)+ A1[f (yi(t))− f (α(t)w(t))]

+A2[f (yi(t − r(t)))− f (α(t)w(t − r(t)))]

+A3

∫ t

t−d(t)
[f (yi(s))− f (α(t)w(s))]ds

+σ1

N∑
j=1

g(1)ij B1pj(t)

+σ2

N∑
j=1

g(2)ij B2pj(t − r(t))

+σ3

N∑
j=1

g(3)ij B3

∫ t

t−d(t)
pj(s)ds+ E1ωi(t),

i = l + 1, l + 2, . . . ,N , (10)

where τ (t) = t − tk satisfies 0 ≤ τ (t) ≤ τ . The initial
condition of (10) is defined by

pi(θ ) = φi(θ ), −$ ≤ θ ≤ 0, (11)

where $ = max{r2, d, τ } and φi(θ ) ∈ C([−$, 0],Rn), i =
1, 2, . . . ,N .
Let us define

K = diag{K1, K2, . . . , , Kl︸ ︷︷ ︸
l times

, 0n, . . . , 0n︸ ︷︷ ︸
N−l times

},

p(t) =


p1(t)
p2(t)
...

pN (t)

 ,

ξ (p(·)) =


f (y1(·))− f (α(t)w(·))
f (y2(·))− f (α(t)w(·))

...

f (yN (·))− f (α(t)w(·))

 ,

ω(t) =


ω1(t)
ω2(t)
...

ωN (t)

 , z(t) =


ẑ1(t)
ẑ2(t)
...

ẑN (t)

 .
Then, with Kronecker product, we can reformulate the sys-
tem (10) as follows

ṗ(t) = −(IN ⊗ C)p(t)+ (IN ⊗ A1)ξ (p(t))

+(IN ⊗ A2)ξ (p(t − r(t)))

+(IN ⊗ A3)
∫ t

t−d(t)
ξ (p(s)) ds

+σ1(G(1)
⊗ B1)p(t)

+σ2(G(2)
⊗ B2)p(t − r(t))

+σ3(G(3)
⊗ B3)

∫ t

t−d(t)
p(s)ds+ Kp(t − τ (t))

+(IN ⊗ E1)ω(t),

z(t) = (IN ⊗ D1)p(t)+ (IN ⊗ D2)p(t − r(t))

+(IN ⊗ E2)ω(t). (12)

So far the following definitions and lemmas are introduced to
be served for the proof of the main results.
Definition 1 [54]: For given matrices F1,F2,F3, and

F4 satisfying Assumption 2, system (12) is said to be extended
dissipative, if, under the zero initial condition, there exists
a scalar δ such that the following inequality holds for any
tf ≥ 0 and all ω(t) ∈ L2[0,∞):∫ tf

0
J (s) ds ≥ sup

0≤t≤tf
zT (t)F4z(t)+ δ, (13)

where

J (s) = zT (s)F1z(s)+ 2zT (s)F2ω(s)+ ωT (s)F3ω(s). (14)
Remark 1: The inequality (13) implies that the new perfor-

mance contains more general solution by setting the weight-
ing matrices Fi, i = 1, 2, 3, 4, (i.e.)
• If F1 = 0,F2 = 0,F3 = γ 2I , F4 = I , and δ = 0 then
the inequality (13) becomes the L2 − L∞ performance;

• If F1 = −I ,F2 = 0,F3 = γ 2I , F4 = 0, and δ = 0 then
the inequality (13) determines the H∞ performance;

• If F1 = 0,F2 = I ,F3 = γ I , F4 = 0, and δ = 0 then the
inequality (13) reduces to the passivity performance;

• If F1 = Q,F2 = S,F3 = R − γ I , F4 = 0, and δ =
0 then the inequality (13) degenerates the (Q,S,R) −
γ− dissipativity performance.

The following assumptions are made throughout this paper.
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Assumption 1: The activation functions fi(·), i = 1,
2, . . . , n, satisfy Lipschitzian with the Lipschitz constants
fi > 0:

‖fi(y(θ ))− fi(α(t)w(θ ))‖ ≤ fi ‖y(θ )− α(t)w(θ )‖,

where 0 is positive constant matrix and 0 = diag{fi, i =
1, 2, . . . , n}.
Assumption 2: [54]: For given real symmetric matrices

F1 ≤ 0,F3,F4 ≥ 0, and a real matrix F2, the following
conditions are satisfied:
1. ‖E2‖ · ‖F4‖ = 0,
2. (‖F1‖ + ‖F2‖) · ‖F4‖ = 0,
3. ET2 F1E2 + E

T
2 F2 + F

T
2 E2 + F3 > 0.

Lemma 1 ([62], Cauchy Inequality): For any symmetric
positive definite matrix R ∈ Rn×n and x, y ∈ Rn we have

±2xT y ≤ xT R x + yT R−1 y.
Lemma 2 [62]: For any constant symmetric matrix

W ∈ Rm×m, W = W T > 0, b > 0, vector function
p : [0, b] → Rm such that the integrations concerned are
well defined, one has( ∫ b

0
pT (s)ds

)T
W
( ∫ b

0
p(s)ds

)
≤ b

∫ b

0
pT (s)Wp(s)ds.

Lemma 3 [63]: For a positive definite matrix S > 0 and a
function p : [a, b]→ Rn whose derivative ṗ ∈ C([a, b],Rn),
the following inequalities hold:∫ b

a
ṗT (s) S ṗ(s) ds ≥

1
b− a

5T
1 S51

+
3

b− a
5T

2 S52

+
5

b− a
5T

3 S53

+
7

b− a
5T

4 S54,∫ b

a

∫ b

ϑ

ṗT (s) S ṗ(s) ds dϑ ≥ 25T
5 S 55 + 45T

6 S 56,

where

51 = p(b)− p(a),

52 = p(b)+ p(a)−
2

b− a

∫ b

a
p(s)ds,

53 = p(b)− p(a)+
6

b− a

∫ b

a
p(s)ds

−
12

(b− a)2

∫ b

a

∫ b

ϑ

p(s)ds dϑ,

54 = p(b)+ p(a)−
12

b− a

∫ b

a
p(s)ds

+
60

(b− a)2

∫ b

a

∫ b

ϑ

p(s)ds dϑ

−
120

(b− a)3

∫ b

a

∫ b

u

∫ b

ϑ

p(s)ds dϑ du,

55 = p(b)−
1

b− a

∫ b

a
p(s) ds,

56 = p(b)+
2

b− a

∫ b

a
p(s) ds

−
6

(b− a)2

∫ b

a

∫ b

ϑ

p(s) ds dϑ.

Lemma 4 [64]: For any symmetric positive definite matrix
3 ∈ Rn×n, M1,M2 ∈ Rm×n, � ∈ R2n×m, ∀β ∈ (0, 1), the
following inequality holds:

−�T


1
β
3 0

0
1

1− β
3

 �

≤ −�T6(β)�

−sym
{
�T

[
(1− β)MT

1
βMT

2

] }
+ βM13

−1MT
1

+(1− β)M23
−1MT

2 ,

where

6(β) =
[
(2− β)3 0

0 (1+ β)3

]
.

Lemma 5 [64]: Consider a parameter dependent symmet-
ric matrix 9(β) ∈ Rm×m, such that the convex inequality

9(β) ≤ (1− β)9(0)+ β9(1),

holds for all β ∈ [0, 1]. If there exist a symmetric positive
definite matrix3 ∈ Rn×n and two matrices M1,M2 ∈ Rm×n,
such that the inequality

ϒ(β) =
[
� βM1 + (1− β)M2
∗ −3

]
< 0,

where

� = 9(β)−�T6(β)�− sym
{
�T

[
(1− β)MT

1
βMT

2

] }
,

holds for β = {0, 1}, then the following inequality holds:

9(β)−�T


1
β
3 0

0
1

1− β
3

 � < 0, ∀β ∈ (0, 1).

Lemma 6 ([62], Schur Complement Lemma): Given con-
stant symmetric matrices P,Q,R with appropriate dimen-
sions satisfying P = PT ,Q = QT > 0, one has P +
RTQ−1R < 0 if and only if[

P RT

R −Q

]
< 0 or

[
−Q R
RT P

]
< 0.

Remark 2: The merit of our method is that hybrid
couplings are considered for the first time, which contain con-
stant, discrete, and distributed delay couplings. These addi-
tional tools are more practical than the references in [10],
[57], [58]. Moreover, we obtain new FPS with extended
dissipative containing, passive, and dissipative performance.
Additionally, the conditions are more general than those
in [34]–[36], [39], [40], [43], [44], [57]–[59], and these
couplings are not inputted.We can notice that their conditions
cannot be simulated to our examples.
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Remark 3: Differing from references [10], [11], [57],
[58], we are first concerned with the FPS problem for NNs,
including both discrete and distributed delays. Moreover,
these delays are not necessarily differentiable functions that
can be easily used in a real-world application which differ-
ence from [6], [22], [32]. For the first time, we obtained new
FPS stability and extended dissipativity criteria that contain
H∞,L2 − L∞, passivity, and dissipativity performance by
setting parameters in the general formulation, which has not
yet been reported for delayed coupled NNs. Additionally,
we use mixed nonlinear and pining sampled-data controls,
which are unlike previous work [59]–[61].

III. MAIN RESULTS
In this section, we present control scheme to synchronize the
NNs (1) to the homogenous trajectory (3). Then, we will give
some sufficient conditions in the FPS of NNs with mixed
time-varying delays and hybrid coupling. Before proposing
the main results, for the sake of presentation simplicity,
we denote:

X (t) =
[
pT (t), pT (t − r1), pT (t − r2), pT (t − r(t)),

ṗ(t), pT (t − τ ), pT (t − τ (t)), η1(t), η2(t),

η3(t), η4(t)
]T
,

η1(t) =
[ 1
r1

∫ t

t−r1
pT (s) ds,

1
r(t)− r1

∫ t−r1

t−r(t)
pT (s) ds,

1
r2 − r(t)

∫ t−r(t)

t−r2
pT (s)ds

]T
,

η2(t) =
[ 1
r21

∫ t

t−r1

∫ t

ϑ

pT (s) dsdϑ,

1
(r(t)− r1)2

∫ t−r1

t−r(t)

∫ t−r1

ϑ

pT (s) dsdϑ,

1
(r2 − r(t))2

∫ t−r(t)

t−r2

∫ t−r(t)

ϑ

pT (s)dsdϑ
]T
,

η3(t) =
[ 1
r31

∫ t

t−r1

∫ t

u

∫ t

ϑ

pT (s) dsdϑdu,

1
(r(t)− r1)2

×

∫ t−r1

t−r(t)

∫ t−r1

u

∫ t−r1

ϑ

pT (s) dsdϑdu,

1
(r2 − r(t))3

×

∫ t−r(t)

t−r2

∫ t−r(t)

u

∫ t−r(t)

ϑ

pT (s)dsdϑdu
]T
,

η4(t) =
[ ∫ t

t−d(t)
pT (s) ds, ω(t)

]T
, (15)

where vi ∈ Rn×18n is defined as
vi = [0n×(i−1)n, In, 0n×(18−i)n] for i = 1, 2, . . . , 18.

A. SYNCHRONIZATION ANALYSIS WITH SAMPLE-DATA
CONTROL
The following stability theorem is given for system (12) with
ω(t) = 0.
Theorem 1: For given scalars r1, r2, d and τ if there exist

real positive matrices P ∈ R5n×5n, Q0, S0,Qi, Sk ,R1,R2 ∈
Rn×n (i = 1, 2, 3, 4; k = 1, 2, 3), M1,M2 ∈ R17n×4n,

positive constants εi (i = 1, 2, . . . , 6), and any matrices
Y = diag{Y1,Y2, . . . ,YN }, Z = diag{Z1,Z2, . . . ,ZN } with
appropriate dimensions, such that the following hold:

ϒ(β) =

ϒ11 βM1 + (1− β)M2 ϒ̃13
∗ −3 0
∗ ∗ ϒ̃33

 < 0, (16)

for β = {0, 1}, where

ϒ̃13 =

[
ϒ13 ϒ14 ϒ15 ϒ16 ϒ17 ϒ18

]
,

ϒ̃33 = diag{−
ε1

2
I ,−

ε2

2
I ,−

ε3

2
I ,−

ε4

2
I ,−

ε5

2
I ,−

ε6

2
I },

ϒ11 =

5∑
i=1

5i −�
T6(β)�

−sym
{
�T

[
(1− β)MT

1
βMT

2

] }
,

ϒ13 = IN ⊗ ZA1, ϒ14 = IN ⊗ ZA2,

ϒ15 = IN ⊗ ZA3, ϒ16 = IN ⊗ ZA1,

ϒ17 = IN ⊗ ZA2, ϒ18 = IN ⊗ ZA3,

51 = 2
T
1 P22 +2

T
2 P21 −2

T
3 S023 −2

T
4 S024

+τvT5 S0v5 + v
T
1Q0v1 − vT6Q0v6,

52 = vT1 (Q1 + 0
TQ20)v1 − vT2 (Q1 + 0

TQ20)v2
+vT2 (Q3 + 0

TQ40)v2
−vT3 (Q3 + 0

TQ40)v3,

53 = vT5 (r
2
1S1 + r

2
21S2)v5 + d

2vT1 0
T S30v1

−vT170
T S30v17 −2T

5 S125 − 32T
6 S126

−52T
7 S127 − 72T

8 S128,

54 = −22T
17R1217 − 42T

18R1218 − 22T
19R2219

−42T
20R2220 − 22T

21R2221 − 42T
22R2222,

55 = vT1 ZS0 + ST0 Z
T v1 + vT5 ZS0 + ST0 Z

T v5
+vT1 Yv4 + v

T
4 Y

T v1 + vT5 Yv4 + v
T
4 Y

T v5,

+
1
2
(ε1 + ε4)vT1 (IN ⊗ 0

T0)v1

+
1
2
(ε2 + ε5)vT4 (IN ⊗ 0

T0)v4

+
1
2
(ε3 + ε6)vT17(IN ⊗ 0

T0)v17,

S0 = [σ1(G(1)
⊗ B1)− (IN ⊗ C)]v1

+σ2(G(2)
⊗ B2)v4

+σ3(G(3)
⊗ B3)v17 − v5,

3 = diag{S2, 3S2, 5S2, 7S2},

� =
[
2T

9 2
T
10 2

T
11 2

T
12 2

T
13 2

T
14 2

T
15 2

T
16

]T
, (17)
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with

21 = [vT1 , r1v
T
8 , βr21v

T
9 − (1− β)r21vT10 ,

r21 v
T
11 , r

3
1 v

T
14]

T ,

22 = [vT5 , v
T
1 − v

T
2 , v

T
2 − v

T
3 , r1v

T
1 − r1v

T
8 ,

1
2
r21 v

T
1 − r

2
1 v

T
11]

T ,

23 = v1 − v7, 24 = v7 − v6,

25 = v1 − v2, 26 = v1 + v2 − 2v8,

27 = v1 − v2 + 6v8 − 12v11,

28 = v1 + v2 − 12v8 + 60v11 − 1200v14,

29 = v2 − v4, 210 = v2 + v4 − 2v9,

211 = v2 − v4 + 6v9 − 12v12,

212 = v2 + v4 − 12v9 + 60v12 − 1200v15,

213 = v4 − v3, 214 = v4 + v3 − 2v10,

215 = v4 − v3 + 6v10 − 12v13,

216 = v4 + v3 − 12v10 + 60v13 − 1200v16,

217 = v1 − v8, 218 = v1 + 2v8 − 6v11,

219 = v2 − v9, 220 = v2 + 2v9 − 6v12,

221 = v4 − v10, 222 = v4 + 2v10 − 6v13,

then, the system (12) with ω(t) = 0 is asymptotically stable
with the gained sampled-data feedback controller designed
as K = Z−1Y .

Proof: We consider a candidate Lyapunov-Krasovskii
functional:

V (p(t), t) =
4∑
i=1

Vi(p(t), t), (18)

where

V1(p(t), t) = PT (t) P P(t)+
∫ t

t−τ
pT (s)Q0p(s)ds

+

∫ t

t−τ

∫ t

ϑ

ṗT (s)S0 ṗ(s) ds dϑ,

V2(p(t), t) =
∫ t

t−r1

[
pT (s)Q1p(s)

+f T (p(s))Q2f (p(s))
]
ds

+

∫ t−r1

t−r2

[
pT (s)Q3p(s)

+f T (p(s))Q4f (p(s))
]
ds,

V3(p(t), t) = r1

∫ t

t−r1

∫ t

ϑ

ṗT (s)S1ṗ(s)dsdϑ

+r21

∫ t−r1

t−r2

∫ t

ϑ

ṗT (s)S2ṗ(s)dsdϑ

+d
∫ t

t−d

∫ t

ϑ

f T (p(s))S3f (p(s))dsdϑ,

V4(p(t), t) =
∫ t

t−r1

∫ t

ϕ

∫ t

ϑ

ṗT (s)R1ṗ(s) ds dϑ dϕ

+

∫
−r1

−r2

∫
−r1

ϕ

∫ t

t+ϑ
ṗT (s)R2ṗ(s) ds dϑ dϕ,

where

P(t) =
[
pT (t),

∫ t

t−r1
pT (s) ds,

∫ t−r1

t−r2
pT (s) ds,∫ t

t−r1

∫ t

ϑ

pT (s)dsdϑ,
∫ t

t−r1

∫ t

ϕ

∫ t

ϑ

pT (s)dsdϑdϕ
]T
.

By taking the derivative of V (p(t), t) along the trajectories of
the error system (12), we get

V̇1(p(t), t) = 2ṖT (t) P P(t)+ pT (t)Q0p(t)

−pT (t − τ )Q0p(t − τ )+ τ ṗT (t)S0ṗ(t)

−τ

∫ t

t−τ
ṗT (s)S0ṗ(s) ds, (19)

V̇2(p(t), t) = pT (t)Q1p(t)+ f T (p(t))Q2f (p(t))

−pT (t − r1)Q1p(t − r1)

−f T (p(t − r1))Q2f (p(t − r1))

+pT (t − r1)Q3p(t − r1)

+f T (p(t − r1))Q4f (p(t − r1))

−pT (t − r2)Q3p(t − r2)

−f T (p(t − r2))Q4f T (p(t − r2)),

≤ pT (t)(Q1 + 0
TQ20)p(t)

−pT (t − r1)(Q1 + 0
TQ20)p(t − r1)

+pT (t − r1)(Q3 + 0
TQ40)p(t − r1)

−pT (t − r2)(Q3 + 0
TQ40)p(t − r2),

= X T (t) 52 X (t), (20)

V̇3(p(t), t) = r21 ṗ
T (t)S1ṗ(t) − r1

∫ t

t−r1
ṗT (s)S1ṗ(s)ds

+r221ṗ
T (t)S2ṗ(t)

−r21

∫ t−r1

t−r2
ṗT (s)S2ṗ(s) ds

+d2 f T (p(t)S3f (p(t))

−d
∫ t

t−d
f T (p(s))S3f (p(s))ds,

≤ ṗT (t)
(
r21S1 + r

2
21S2

)
ṗ(t)

+d2 p(t)0T S30p(t)

−r1

∫ t

t−r1
ṗT (s)S1ṗ(s)ds

−r21

∫ t−r1

t−r2
ṗT (s)S2ṗ(s) ds

−d
∫ t

t−d
f T (p(s))S3f (p(s))ds, (21)

V̇4(p(t), t) =
r21
2
ṗT (t)R1ṗ(t)+

r221
2
ṗT (t)R2ṗ(t)

−

∫ t

t−r1

∫ t

ϑ

ṗT (s)R1ṗ(s) ds dϑ

−

∫
−r1

−r2

∫ t−r1

t+ϑ
ṗT (s)R2ṗ(s) ds dϑ, (22)
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where 52 is defined in (17). Applying Lemma 2 and
Lemma 3, it can be shown that

− τ

∫ t

t−τ
ṗT (s)S0ṗ(s) ds

= −τ

∫ t

t−τ (t)
ṗT (s)S0ṗ(s) ds

−τ

∫ t−τ (t)

t−τ
ṗT (s)S0ṗ(s) ds,

≤ −

[
p(t)− p(t − τ (t))

]T
S0
[
p(t)− p(t − τ (t))

]
−

[
p(t − τ (t))− p(t − τ )

]T
S0

×

[
p(t − τ (t))− p(t − τ )

]
. (23)

−r1

∫ t

t−r1
ṗT (s)S1ṗ(s) ds

≤ −2T
5 S125 − 32T

6 S126 − 52T
7 S127

−72T
8 S128. (24)

−d
∫ t

t−d
f T (p(s))S3f (p(s))ds

≤ −d
∫ t

t−d(t)
f T (p(s))S3f (p(s))ds,

≤ −

∫ t

t−d(t)
f T (p(s))ds S3

∫ t

t−d(t)
f (p(s))ds,

≤ −

∫ t

t−d(t)
pT (s)ds

(
0T S30

) ∫ t

t−d(t)
p(s)ds. (25)

−

∫ t

t−r1

∫ t

ϑ

ṗT (s)R1ṗ(s) ds dϑ

−

∫ t−r1

t−r2

∫ t−r1

ϑ

ṗT (s)R2ṗ(s) ds dϑ

≤ X T (t) 54 X (t). (26)

Let β = r(t)−r1
r21

, and applying the auxiliary function-based
inequality, Lemma 4 and Lemma 5 yields

−r21

∫ t−r1

t−r2
ṗT (s)S2ṗ(s) ds

= −r21

∫ t−r1

t−r(t)
ṗT (s)S2ṗ(s) ds

−r21

∫ t−r(t)

t−r2
ṗT (s)S2ṗ(s) ds,

≤ −
r21

r(t)− r1

(
2T

9 S229 + 32T
10S2210 + 52T

11S2211

+72T
12S2212

)
−

r21
r2 − r(t)

(
2T

13S2213 + 32T
14S2214 + 52T

15S2215

+72T
16S2216

)
,

= −
1
β

(
2T

9 S229 + 32T
10S2210 + 52T

11S2211

+72T
12S2212

)

−
1

1− β

(
2T

13S2213 + 32T
14S2214 + 52T

15S2215

+72T
16S2216

)
,

= −�T


1
β
3 0

0
1

1− β
3

 �,

≤ −�T6(β)�− sym
{
�T

[
(1− β)MT

1
βMT

2

] }
+βM13

−1MT
1 + (1− β)M23

−1MT
2 , (27)

where M1,M2 ∈ R17n×4n , 3 = diag{S2, 3S2, 5S2, 7S2} ,

� =
[
2T

9 2
T
10 2

T
11 2

T
12 2

T
13 2

T
14 2

T
15 2

T
16

]T
and

6(β) =
[
(2− β)3 0

0 (1+ β)3

]
.

On the other hand, we consider the following zero equation:

0 = 2
[
pT (t)+ ṗT (t)

]
Z
[
− (IN ⊗ C)p(t)

+(IN ⊗ A1)ξ (p(t))+ (IN ⊗ A2)ξ (p(t − r(t)))

+(IN ⊗ A3)
∫ t

t−d(t)
ξ (p(s))ds+ σ1(G(1)

⊗ B1)p(t)

+σ2(G(2)
⊗ B2)p(t − r(t))+ σ3(G(3)

⊗ B3)

×

∫ t

t−d(t)
p(s)ds+ Kp(t − τ (t))− ṗ(t)

]
. (28)

Applying Lemma 1 and Lemma 2, we have

pT (t)(IN ⊗ ZA1)ξ (p(t))

≤
1
2ε1

pT (t)(IN ⊗ ZA1AT1 Z
T )p(t)

+
ε1

2
ξT (p(t))(IN ⊗ In)ξ (p(t)),

≤
1
2ε1

pT (t)(IN ⊗ ZA1AT1 Z
T )p(t)

+
ε1

2
pT (t)(IN ⊗ 0T0)p(t),

=
1
2
pT (t)(IN ⊗ ZA1)ε

−1
1 (IN ⊗ AT1 Z

T )p(t)

+
ε1

2
pT (t)(IN ⊗ 0T0)p(t), (29)

pT (t)(IN ⊗ ZA2)ξ (p(t − r(t)))

≤
1
2ε2

pT (t)(IN ⊗ ZA2AT2 Z
T )p(t)

+
ε2

2
ξT ((t − r(t)))(IN ⊗ In)ξ (p(t − r(t))),

≤
1
2ε2

pT (t)(IN ⊗ ZA2AT2 Z
T )p(t)

+
ε2

2
pT (t − r(t))(IN ⊗ 0T0)p(t − r(t)),

=
1
2
pT (t)(IN ⊗ ZA2) ε

−1
2 (IN ⊗ AT2 Z

T )p(t)

+
ε2

2
pT (t − r(t))(IN ⊗ 0T0)p(t − r(t)), (30)

pT (t)(IN ⊗ ZA3)
∫ t

t−d(t)
ξ (p(s))ds
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≤
1
2ε3

pT (t)(IN ⊗ ZA3AT3 Z
T )p(t)

+
ε3

2

( ∫ t

t−d(t)
ξT (p(s))ds

)T
(IN ⊗ In)

×

( ∫ t

t−d(t)
ξ (p(s))ds

)
,

≤
1
2ε3

pT (t)(IN ⊗ ZA3AT3 Z
T )p(t)

+
ε3

2

( ∫ t

t−d(t)
pT (s)ds

)T
(IN ⊗ 0T0)

( ∫ t

t−d(t)
p(s)ds

)
,

=
1
2
pT (t)(IN ⊗ ZA3) ε

−1
3 (IN ⊗ AT3 Z

T )p(t)

+
ε3

2

( ∫ t

t−d(t)
pT (s)ds

)T
(IN ⊗ 0T0)

×

( ∫ t

t−d(t)
p(s)ds

)
, (31)

ṗT (t)(IN ⊗ ZA1)ξ (p(t))

≤
1
2ε4

ṗT (t)(IN ⊗ ZA1AT1 Z
T )ṗ(t)

+
ε4

2
ξT (p(t))(IN ⊗ In)ξ (p(t)),

≤
1
2ε4

ṗT (t)(IN ⊗ ZA1AT1 Z
T )ṗ(t)

+
ε4

2
pT (t)(IN ⊗ 0T0)p(t),

=
1
2
ṗT (t)(IN ⊗ ZA1)ε

−1
4 (IN ⊗ AT1 Z

T )ṗ(t)

+
ε4

2
pT (t)(IN ⊗ 0T0)p(t), (32)

ṗT (t)(IN ⊗ ZA2)ξ (p(t − r(t)))

≤
1
2ε5

ṗT (t)(IN ⊗ ZA2AT2 Z
T )ṗ(t)

+
ε5

2
ξT ((t − r(t)))(IN ⊗ In)ξ (p(t − r(t))),

≤
1
2ε5

ṗT (t)(IN ⊗ ZA2AT2 Z
T )ṗ(t)

+
ε5

2
pT (t − r(t))(IN ⊗ 0T0)p(t − r(t)),

=
1
2
ṗT (t)(IN ⊗ ZA2) ε

−1
5 (IN ⊗ AT2 Z

T )ṗ(t)

+
ε5

2
pT (t − r(t))(IN ⊗ 0T0)p(t − r(t)), (33)

ṗT (t)(IN ⊗ ZA3)
∫ t

t−d(t)
ξ (p(s))ds

≤
1
2ε6

ṗT (t)(IN ⊗ ZA3AT3 Z
T )ṗ(t)

+
ε6

2

( ∫ t

t−d(t)
ξT (p(s)) ds

)T
(IN ⊗ In)

×

( ∫ t

t−d(t)
ξ (p(s)) ds

)
,

≤
1
2ε6

ṗT (t)(IN ⊗ ZA3AT3 Z
T )ṗ(t)

+
ε6

2

( ∫ t

t−d(t)
pT (s) ds

)T
(IN ⊗ 0T0)

( ∫ t

t−d(t)
p(s) ds

)
,

=
1
2
ṗT (t)(IN ⊗ ZA3) ε

−1
6 (IN ⊗ AT3 Z

T )ṗ(t)

+
ε6

2

( ∫ t

t−d(t)
pT (s)ds

)T
(IN ⊗ 0T0)

×

( ∫ t

t−d(t)
p(s)ds

)
. (34)

Then, from V̇ (p(t), t), and (23)-(34), can be estimated as

V̇ (p(t), t)

≤ X T (t)
{ 5∑
i=1

5i −�
T6(β)�

−sym
{
�T

[
(1− β)MT

1
βMT

2

] }
+ βM13

−1MT
1

+(1− β)M23
−1MT

2 +
1
2
vT141v1 +

1
2
vT542v5

}
X (t),

(35)

where 5i, (i = 1, 2, . . . , 5) are defined in (17) and

41 = (IN ⊗ ZA1) ε
−1
1 (IN ⊗ AT1 Z

T )

+(IN ⊗ ZA2)ε
−1
2 (IN ⊗ AT2 Z

T )

+(IN ⊗ ZA3)ε
−1
3 (IN ⊗ AT3 Z

T ),

42 = (IN ⊗ ZA1)ε
−1
4 (IN ⊗ AT1 Z

T )

+(IN ⊗ ZA2)ε
−1
5 (IN ⊗ AT2 Z

T )

+(IN ⊗ ZA3) ε
−1
6 (IN ⊗ AT3 Z

T ).

Applying the Schur complement of Lemma 6, we have

V̇ (p(t), t) ≤ X T (t) ϒ(β) X (t), (36)

where ϒ(β) is defined in (16).
According to Lemma 4, if LMI (16) is verified for β = {0, 1},
then the inequality ϒ(β) < 0 holds for all β ∈ (0, 1). Then,
the system (12) with ω(t) = 0 is asymptotically stable. This
completes the proof. �
Remark 4: The FPS of NNs is implemented to mixed con-

trol in Theorem 1 where ui1(t) is a nonlinear control (not
pinning sampled-data control) and must be applied to each
node. Relying on the pinning sampled-data control principle,
ui2(t) is a pinning sampled-data control intended to apply to
the first l nodes 0 ≤ i ≤ l. The selected or unselected pinning
nodes don’t base on the estimation of node errors, where one
avoids rearranging each node errors. For further study, there
is another technique which doesn’t base on the estimation of
node errors in the reference [65].
Remark 5: It is worth noting that sampled-data control

has recently received much attention [33]–[36]. Because
computation and communication resources are frequently
limited in sampled-data implementation, reducing the data
transmission load when using a sampled-data controller
to achieve stability is critical. Furthermore, a neural net-
work is typically composed of many high-dimensional nodes,
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FIGURE 1. The trajectory of the isolated node (48) in Example 1.

and controlling all neurons is expensive and impractical.
To address this issue, we introduce pinning control, which
allows us to control a subset of all nodes. Thus, the benefits
of using pining sampled-data control include low control
equipment costs, reliability, and ease of application.

B. EXTENDED DISSIPATIVE ANALYSIS WITH SAMPLE-DATA
CONTROL
For any non zero ω(t) ∈ L2[0,∞), the extended dissi-
pativity theorem can be obtained under the condition of
assumption.
Theorem 2: For given scalars r1, r2, d, τ and a positive

scalar κ < 1, if there exist real positive matrices P ∈
R5n×5n, Q0, S0,Qi, Sk ,R1,R2 ∈ Rn×n (i = 1, 2, 3, 4;
k = 1, 2, 3), M1,M2 ∈ R18n×4n, positive constants εi (i =
1, 2, . . . , 6), and any matrices Y = diag{Y1,Y2, . . . ,YN },
Z = diag{Z1,Z2, . . . ,ZN }with appropriate dimensions, such

FIGURE 2. The chaotic behavior of the network yi (t) and the isolate node
α(t)w(t) in Example 1.

that the following holds:

ϒ̄(β) =

ϒ11 βM1 + (1− β)M2 ϒ̃13
∗ −3 0
∗ ∗ ϒ̃33

 < 0, (37)

[
κP− DT1 F4D1 −DT1 F4D2

∗ (1− κ)P− DT2 F4D2

]
≥ 0, (38)

for β = {0, 1}, where

ϒ̄11 =

4∑
i=1

5i + 5̄5 + 5̄6 −�
T6(β)�

−sym
{
�T

[
(1− β)MT

1
βMT

2

] }
,

5̄5 = vT1 Z S̄0 + S̄T0 Z
T v1 + vT5 Z S̄0 + S̄T0 Z

T v5
+vT1 Yv4 + v

T
4 Y

T v1 + vT5 Yv4 + v
T
4 Y

T v5,
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FIGURE 3. The state trajectories of the network yi (t), (i = 1,2,3) and the
isolate node α(t)w(t) in Example 1.

+
1
2
(ε1 + ε4)vT1 (IN ⊗ 0

T0)v1

+
1
2
(ε2 + ε5)vT4 (IN ⊗ 0

T0)v4

+
1
2
(ε3 + ε6)vT17(IN ⊗ 0

T0)v17,

5̄6 = −(D1v1)TF1D1v1 − (D1v1)TF1D2v4
−(D1v1)TF1E2v18 − (D2v4)TF1D1v1
−(D2v4)TF1D2v4 − (D2v4)TF1E2v18
−(E2v18)TF1D1v1 − (E2v18)TF1D2v4
−2(D1v1)TF2v18 − 2(D2v4)TF2v18
−vT18

(
ET2 F1E2 + 2ET2 F2 + F3

)
v18,

S̄0 = [σ1(G(1)
⊗ B1)− (IN ⊗ C)]v1

+σ2(G(2)
⊗ B2)v4 + σ3(G(3)

⊗ B3)v17
−v5 + E1v18,

FIGURE 4. The state trajectories of the error system without control in
Example 1, where pi (t) = yi (t)− α(t)w(t), (i = 1,2,3).

then, the system (12) is asymptotically stable and extended
dissipative with the gained sampled-data feedback controller
designed as K = Z−1Y .

Proof: To show that the system (12) is extended dissipa-
tive, first, we use the LKFs candidate (18) and the following
performance index for the system (12). Using inequality (36)
in Theorem 1, equation (14), and LMIs (16) we obtain

V̇ (p(t), t)− J (t) ≤ X̄ T (t) ϒ̄(β) X̄ (t) ≤ 0,

V̇ (p(t), t) ≤ −J (t), (39)

where ϒ̄(β) is defined in (37). Then we integrate both sides
of the inequality (39) from 0 to t ≥ 0 and letting δ ≤
−V (p(0), 0), we get∫ t

0
J (s) ds ≥ V (p(t), t)− V (p(0), 0)

≥ pT (t) P p(t)+ δ. (40)
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FIGURE 5. The state trajectories of the error system with control in
Example 1, where pi (t) = yi (t)− α(t)w(t), (i = 1,2,3).

Next, we consider two cases:
Case I: F4 = 0. For this case, from inequality (40) we

obtain ∫ tf

0
J (s) ds ≥ δ. (41)

This implies Definition 1 with F4 = 0.
Case II: F4 6= 0. From Assumption 2, it is clear that

F1 = 0,F2 = 0, F3 > 0, and E2 = 0. Then, for any
0 ≤ t ≤ tf and 0 ≤ t − λ(t) ≤ tf , (40) lead to∫ tf

0
J (s)ds ≥

∫ t

0
J (s)ds ≥ pT (t)Pp(t)+ δ, (42)

and ∫ tf

0
J (s) ds ≥

∫ t−λ(t)

0
J (s) ds

≥ pT (t − λ(t)) P p(t − λ(t))+ δ. (43)

FIGURE 6. The control input ui (t) in Example 1.

On the other hand, for t − λ(t) ≤ 0, it can be shown that

pT (t − λ(t))Pp(t − λ(t))+ δ

≤ ‖P‖ |p(t − λ(t))|2 + δ

≤ ‖P‖ sup
−δ2≤θ≤0

|φ(θ )|2 + δ

≤ −V (p(0), 0)

≤

∫ tf

0
J (s) ds. (44)

Thus, there exists a positive scalar κ < 1 such that∫ tf

0
J (s) ds ≥ δ + κpT (t)Pp(t)+ (1− κ)

×pT (t − λ(t))Pp(t − λ(t)). (45)

By the relationship of output z(t) with (38):

zT (t)F4z(t)
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FIGURE 7. The trajectory of the isolated node (48) in Example 2.

= −

[
p(t)

p(t − λ(t))

]T
×

[
κP− DT1 F4D1 −DT1 F4D2

∗ (1− κ)P− DT2 F4D2

]
×

[
p(t)

p(t − λ(t))

]
+ κpT (t)Pp(t)

+(1− κ)pT (t − λ(t))Pp(t − λ(t)). (46)

So, it is clear that for any t satisfying 0 ≤ t ≤ tf∫ tf

0
J (s) ds ≥ zT (t)F4z(t)+ δ. (47)

Taking the supremum over t in inequalities (41) and (47),
the system (12) is extended dissipative. This completes the
proof. �

FIGURE 8. Simple directed neural network in Example 2 with
5 nodes.

IV. NUMERICAL EXAMPLES
In this section, we provide three examples to illustrate the
effectiveness of the results obtained above and applicability
of the designed reliable pinning sampled-data controller in
the previous section. Now, consider the FPS problem of the
following network consisting of two-dimensional NNs (1)
and two-dimensional isolated nodes of network by the fol-
lowing equation:

ẇ(t) = −Cw(t)+ A1f (w(t))+ A2f (w(t − r(t)))

+A3

∫ t

t−d(t)
f (w(s))ds, (48)

where w(t) = [w1,w2]T ∈ Rn is the state vector of the
network and the parameters C,A1,A2,A3, r1, r2, d and the
activation functions will be specified in the following two
examples.
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FIGURE 9. The chaotic behavior of the network yi (t) and the isolate node
α(t)w(t) in Example 2.

Example 1: Consider the isolated node of network (48)
with the parameters as follows:

C =
[
1 0
0 1

]
, A1 =

[
1.8 10
0.1 1.8

]
,

A2 =
[
−1.5 0.1
0.1 −1.5

]
, A3 =

[
−0.3 0.1
0.1 −0.2

]
,

f (wi(t)) = 0.5(|wi + 1| − |wi − 1|), (i = 1, 2), r(t) = 1, and
d(t) = 0.2. Then, the trajectory of the isolated node (48) with
initial conditions w1(θ ) = 0.9,w2(θ ) = 0.6,∀θ ∈ [−1, 0] is
shown in Figure 1.
As presented in Theorem 1, the pinning sample-data con-

trol for FPS of delayed NNs (1) with ω(t) = 0, choosing the
time-varying scaling function α(t) = 0.02 + cos( 0.1π1000 t), the
coupling strength σ1 = 0.2, σ2 = 0.1, σ3 = 0.5, the positive
constants ε1 = 0.5, ε2 = 0.5, ε3 = 0.8, ε4 = 0.7, ε5 = 0.8,

FIGURE 10. The state trajectories of the network yi (t), (i = 1,2,3,4,5)
and the isolate node α(t)w(t) in Example 2.

ε6 = 0.6 the inner-coupling matrices are given by

B1 =
[
1 0
0 1

]
, B2 =

[
0.1 0
0 0.1

]
,

B3 =
[
0.2 0
0 0.2

]
,

and the outer-coupling matrices are described by

G(1)
=

−2 1 1
1 −2 1
1 1 −2

 ,
G(2)
=

−1 0 1
1 −2 1
1 0 −1

 ,
G(3)
=

−1 1 0
0 −1 1
1 1 −2

 .
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FIGURE 11. The state trajectories of the error system without control in
Example 2, where pi (t) = yi (t)− α(t)w(t), (i = 1,2,3,4,5).

By solving the LMI (16), the gain matrixes can be obtained
as

K1 =

[
−0.0684 0

0 −0.0684

]
,

K2 =

[
−0.0452 0

0 −0.0452

]
,

K3 = 0.

Moreover, the chaotic behavior of the network yi(t) and the
isolate node wi(t), (i = 1, 2) with the time-varying scaling
function α(t) are shown in Figure 2. Figure 3 shows the state
trajectories of the isolated node α(t)w(t) and the network
yi(t), (i = 1, 2, 3). Figure 4 shows errors between the states
of the isolated node α(t)w(t) and the network yi(t), where
pij(t) = yij(t) − α(t)wj(t) (i = 1, 2, 3, j = 1, 2) without
control (6). In order to illustrate the efficiency of our method,
we plot errors between the states of the isolated node α(t)w(t)

FIGURE 12. The state trajectories of the error system with control in
Example 2, where pi (t) = yi (t)− α(t)w(t), (i = 1,2,3,4,5).

and network yi(t) with control (6) shows in Figure 5, where
pij(t) = yij(t)−α(t)wj(t) (i = 1, 2, 3, j = 1, 2). And Figure 6
shows the control input ui(t).
Example 2: In this example, the extended dissipativity

performance of the FPS for delayed NNs (1) with pinning
sample-data control is considered, which links all of the
famous and important performance such as the L2 − L∞,
H∞, passivity, and dissipativity performances. We consider
the isolated node of network (48) with the parameters as
follows:

C =
[
1 0
0 1

]
, A1 =

[
2 −0.1
−5 3

]
,

A2 =
[
−1.5 0.1
−0.2 −2.5

]
, A3 =

[
−0.3 0.1
0.1 −0.2

]
,

f (wi(t)) = tanh(wi(t)), (i = 1, 2), r(t) = 1 and d(t) = 0.2.
Then, the trajectory of the isolated node (48) with initial
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FIGURE 13. The state trajectories of the error system in Example 2 with
ω(t) is Gaussian noise.

conditions w1(θ ) = 0.01,w2(θ ) = 0.01,∀θ ∈ [−1, 0] is
shown in Figure 7.
As presented in Theorem 2, we consider pinning

sample-data control for the FPS of recurrent NNs (1), consist-
ing of fifth linearly coupled identical models (48) with hybrid
couplings. Choosing the time-varying scaling function α(t) =
0.1 + cos( 0.5100 t), the coupling strength σ1 = σ2 = σ3 = 0.1,
the positive constants εi = 0.5, (i = 1, 2, . . . , 6), κ = 0.5
and the other parameters are as follows:

D1 = D2 = E1 = E2 =
[
1 0
0 1

]
,

ω(t) =
[
e−0.5t 0
0 e−0.2t

]
.

The inner-coupling matrices are given by

B1 =
[
1 0
0 1

]
,B2 =

[
0.1 0
0 0.1

]
,

FIGURE 14. The control input ui (t) in Example 2.

B3 =
[
0.1 0
0 0.1

]
.

The outer-coupling matrices are simple directed NNs as show
in Figure 8 and described by

G1 =


−2 0 0 1 1
1 −1 0 0 0
0 1 −1 0 0
0 1 0 −2 1
0 1 0 0 −1

 ,

G2 =


−1 0 0 0 1
1 −2 0 0 1
0 1 −1 0 0
0 0 1 −1 0
0 0 1 1 −2

 ,
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FIGURE 15. The trajectories of L(t) and P(t) in Example 2.

G3 =


−1 0 0 1 0
1 −2 0 0 1
0 1 −1 0 0
0 0 0 −1 1
1 0 1 0 −2

 .
By solving the LMIs (37)-(38), the gain matrixes can be
obtained as

K1 =

[
−0.0346 0

0 −0.0346

]
,

K2 =

[
−0.0090 0

0 −0.0090

]
,

K3 =

[
−0.0366 0

0 −0.0366

]
,

K4 = K5 = 0.

Moreover, the chaotic behavior of the network yi(t) and the
isolate node wi(t), (i = 1, 2) with the time-varying scaling
function α(t) are shown in Figure 9. Figure 10 shows the state
trajectories of the isolated node α(t)w(t) and the network
yi(t), (i = 1, 2, 3). Figure 11 shows errors between the states
of the isolated node α(t)w(t) and the network yi(t), where
pij(t) = yij(t) − α(t)wj(t) (i = 1, 2, 3, j = 1, 2) without
control (6). In order to illustrate the efficiency of our method,

FIGURE 16. The trajectories of H(t) and D(t) in Example 2.

we plot errors between the states of the isolated node α(t)w(t)
and network yi(t) with control (6) shows in Figure 12, where
pij(t) = yij(t) − α(t)wj(t) (i = 1, 2, 3, j = 1, 2). Figure 13
shows the response solution p(t), where ω(t) is Gaussian
noise with mean 0 and variance 1 and the initial condition
φ(t) = [−0.2 0.2]T . Figure 14 shows the control input
ui(t) and for extended dissipative analysis with sample-data
control, we consider the following four cases:
Case 1 (L2 − L∞ Performance): By using the LMIs in

Theorem 2 and letting F1 = 0, F2 = 0, F3 = γ 2I , and
F4 = I , the extended dissipativity performance is converted
into the L2 − L∞ performance. Figure 15, shows the plot of

L(t) =
√

pT (t)p(t)∫ t
0 ω

T (s)ω(s) ds
, versus time with the initial condition

φ(t) = [0.1 0.1]T . Clearly, sup
0≤t≤tf

L(t) = 1.2773 is less

than the prescribed L2 − L∞ performance index 1.5521 in
Table 1. The L2 − L∞ performance index γ can be achieved
for r1 = 0.5, and different r2, which are shown in Table 1.
Case 2 (Passivity Performance): By applying the LMIs in

Theorem 2 and taking F1 = 0, F2 = I , F3 = γ I , and
F4 = 0, the extended dissipativity performance degener-
ates the passivity performance. Figure 15, shows the plot
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TABLE 1. Minimum γ for Case 1. and Case 2. in Example 2 with r1 = 0.5,
and various r2.

TABLE 2. The maximum allowable values of r2 for Case 3. and Case 4.
in Example 2 with r1 = 0.5 and various γ .

of P(t) =
−2

∫ t
0 p

T (s)ω(s) ds∫ t
0 ω

T (s)ω(s) ds
, versus time with the initial con-

dition φ(t) = [0.1 0.1]T . Clearly, P(t) converges to 3.6932,
which is less than the prescribed passivity performance
index 4.3227 in Table 1. The passivity performance index γ
can be gained for r1 = 0.5, and various r2, which are
presented in Table 1.
Case 3 (H∞ Performance): By using the LMIs in Theorem 2

and letting F1 = −I , F2 = 0, F3 = γ 2I , and F4 = 0, the
extended dissipativity performance becomes the H∞ perfor-

mance. Figure 16, shows the plot of H (t) =

√ ∫ t
0 p

T (s)ω(s) ds∫ t
0 ω

T (s)ω(s) ds
,

versus time with the initial condition φ(t) = [0.1 0.1]T .
Clearly, H (t) converges to 0.1998. The maximum allowable
values of r2 with various γ can be obtained for r1 = 0.5,
which are depicted in Table 2.
Case 4. Dissipativity performance: By applying the LMIs

in Theorem 2 and taking F1 = −I , F2 = I , F3 = R − γ I ,
R = 8I , and F4 = 0, the extended dissipativity perfor-
mance determines the dissipativity performance. Figure 16,

shows the plot of D(t) =
∫ t
0 (−p

T (s)p(s)+2pT (s)ω(s)+8ωT (s)ω(s)) ds∫ t
0 ω

T (s)ω(s) ds
,

versus time with the initial condition φ(t) = [0.1 0.1]T .
Clearly, D(t) converges to 7.7000. The maximum allowable
values of r2 with various γ can be achieved for r1 = 0.5,
which are shown in Table 2.

V. CONCLUSION
This research carried out dissipative FPS of NNs with mixed
time-varying delays and hybrid couplings. First, we gain
novel FPS criteria for delayed hybrid coupled using an appro-
priate Lyapunov–Krasovskii functional (LKF), a refined
Wirtinger single and double integral inequality, and new con-
vex combination lemmas. Furthermore, the coupled NNs and
isolated systems could be synchronized up to the desired scal-
ing functions by applying the pinning sampled-data control
technique. The FPS result is then used to perform an extended
dissipativity analysis, including H∞, L2− L∞, passivity and
dissipativity performance, by adjusting parameters in the gen-
eral index. Eventually, numerical examples are provided to
demonstrate the effectiveness of the above theoretical results.
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