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ABSTRACT This study proposes an observer-based Composite Nonlinear Feedback (CNF) controller for
the robust tracking of uncertain singular systems with input saturation, nonlinear function, time-delay, and
disturbances. The suggested control law is designed based states reconstructed using a singular observer
so as to increase steady-state accuracy and improve robustness. The CNF controller is developed based
on Generalized Riccati Equations (GRE) and Lyapunov–Krasovskii functional. Additionally, the proposed
theorem verifies the stability conditions of the system in the presence of uncertainties and disturbances.
Among the advantages of this method, are its fewer restrictive assumptions, transient and high-speed
performance improvement and steady-state precision. The uniform boundedness of the tracking error in
the presence of the input saturation and external disturbancesis also a prominent feature of this method. The
performance of the proposed approach is assessed using a simulation study.

INDEX TERMS Generalized Riccati equation, singular systems, observer-based composite nonlinear
feedback, robust tracking, nonlinear functions.

I. INTRODUCTION
Singular systems (also called descriptive systems, low-cost
systems, implicit systems, semi-state systems, generalized
state-space systems, or differential-algebraic systems) are
systems which dynamics are governed by a combination
of algebraic and differential equations. In singular systems,
algebraic equations along with differential equations create
different properties than in ordinary systems. For example,
singular systems may not have unique answer. In addition,
they may have impulse terms in their response. Such
properties in descriptive systems require problems such
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as different types of controllability, observability, impulse
elimination, etc. in these systems. Algebraic limitations in
singular systems can considerably entangle the observer
and controller design, also the saturation limitation and
external disturbances increase the complexity of the tracking
problem. Singular systems have many applications in various
theoretical and practical fields such as aircraft dynamics,
neutral delay systems, chemical, thermal, diffusion processes,
large-scale systems, interconnected systems, optimization
problems, feedback control systems, robotics, electrical
networks, power systems, aerospace engineering, social
systems, economic systems, biological systems, network
analysis, time-series analysis, etc. [1]–[7]. The complex
nature of such systems, however, makes their control a
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challenging problem [8]–[11]. For example, in addition
to stability, other issues such as regularity and impulse-
free are also addressed in the control of singular systems.
In the last two decades, many researches have been done
on singular control systems. Most articles in this field are
based on the generalization and extension of the theory
of non-singular systems to singular systems. One of the
important factors that cause instability and weak performance
in control systems is the delay. Therefore, time-delay
control systems are one of the issues that researchers have
addressed recently. Due to the nature of these systems,
the problem of controlling singular systems with time-
delay is highly complex. On the other hand, there are
often uncertainties in systems due to errors in modeling
and changes in environmental and operating conditions.
Since uncertainties affect systems’ optimal performance it is
important to design control laws that are robust against them.
The problem of robust stability analysis, as well as robust
stabilization of indefinite singular systems and indefinite
delayed descriptive systems, has been studied in [12]–[14].
Albeit the existence of several approaches in the literature
for descriptive systems, model uncertainties and time delays
were overlooked in those designs. Stability is another
important feature of the dynamical systems that express the
system’s responsive behavior to disturbances and primary
conditions. Lyapunov stability theory is appropriate for the
stability analysis of singular systems. Unlike conventional
systems, descriptive system response may include impact
expressions that can cause saturation in the plant input and
even damage the system. So eliminating impulsive behavior
through specified feedback control is a very basic issue in
singular systems theory. In system design, not all variables
can be directly available from measurements. In these cases,
the estimation of the immeasurable variables is required for
state feedback control implementation. Designing observer-
based controllers is very desirable for stabilizing systems
[15]–[17]. Observer designs for descriptive systems have
attracted significant attention in the past decades [18]–[22].
Input saturation constraint is a common constraint in practical
systems that does not allow the control inputs to exceed
one specified limit. Ignoring the input saturation limitation
in the process of controller design for systems in many
cases can lead to undesirable system behavior and even
instability. Therefore, designing control laws that take into
consideration input saturation is essential. Robustness and
optimum performance are two desired features in control
systems.

In [23], the stability analysis and design of robust
dynamic output feedback controller and controller based
on observer for uncertain continuous singular systems with
time-delay have been investigated but the nonlinearity and
disturbances are not considered. In [24], a new controller
and a fault-tolerant observer for a class of nonlinear
continuous singular control systems are discussed regardless
of uncertainty and time delay. In [25], a H∞ control
based on observer for uncertain descriptive systems with
time-delay and actuator saturation is investigated but system

nonlinearities were overlooked. In [26], the observer design
problem for one-sided Lipschitz nonlinear continuous-time
singular systems with unknown input is considered but the
nonlinearity and time delay are not investigated. In [27],
observer design for a class of nonlinear singular systems
with multi-outputs are considered without the nonlinearity,
disturbance, and time delay. In [28], the problem of robust
passive control based on observer is applied for uncertain
singular time-delay systems with actuator saturation without
considering the nonlinearities. A new functional observers
design method is applied for descriptor systems via LMI
in [29]. In [30], a method of designing full order observers
is studied for time-delay descriptive systems with Lipschitz
nonlinearities, then the Lyapunov–Krasovskii functional and
the convexity principle are applied to investigate the stability
of the singular systems. In [31], a robust adaptive observer
is offered for a class of singular nonlinear non-autonomous
uncertain systems with unstructured unknown system and
derivative matrices, and unknown bounded nonlinearities
and no strong assumption such as Lipschitz condition is
applied on the recommended system. In [32], the linear
multivariable feedback control is used for multi-input multi-
output (MIMO), linear time-invariant (LTI) singular systems
to improve the transient response to descriptor systems and
follow a step reference with zero over-shoot. In [33], the
modified composite nonlinear feedbackmethod is considered
for output tracking of non-step signals in singular systems
with actuator saturation and external disturbances. In this
article, the composite nonlinear feedback control law is not
applied for the tracking of reference signals in singular
systems. In [34], a robust composite nonlinear feedback
controller is considered for descriptor systems with input
saturation, this method can ensure general reference tracking
for the singular systems with input saturation. In [35],
a composite nonlinear feedback control method for tracking
control problems is developed for the output regulation
problem of singular linear systems with input saturation.
In [36], an output-feedback sliding mode control is designed
for a class of nonlinear singular systems with time delay
and uncertainties, but input saturation was not considered.
In [37], the problem of stability and stabilization is examined
for singular networked control systems with short time-
varying delay. In [38], the non-step tracking control problem
is investigated for MIMO linear discrete-time descriptive
systems with input saturation. In [39], the robust stability
of uncertain fractional-order singular systems with neutral
and time-varying delays is studied. In [40], an observer-
based controller is considered for a class of singular nonlinear
systems with state and exogenous disturbance-dependent
noise. In [41], a finite-time observer-based controller is
proposed for time-delay descriptor systemswith time-varying
disturbances, model uncertainties, and one-sided Lipschitz
nonlinearities. In [42], the problem of adaptive output-
feedback neural tracking control is investigated for a class
of uncertain switched MIMO nonstrict-feedback nonlinear
systems with time delays. The adaptive intelligent asymptotic
tracking control is studied for a class of stochastic nonlinear
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systems with unknown control gains and full state constraints
in [43]. A low-conservative composite nonlinear feedback
controller is studied for singular time-delay systems with
time-varying delay in [44]. For intermittent control, its
control signal is updated in a continuous manner on control
time intervals. To overcome the limitation, time-triggered
intermittent control (TIC) is considered in [45]. In [46], the
TIC is offered to examine the exponential synchronization
issue of chaotic Lur’e systems.

Designing control approaches that ensure fast response
with reasonable transient dynamics is essential in many appli-
cations. Composite nonlinear feedback (CNF) has recently
emerged as a good solution for improving the transient
performance of tracking control problems [47]–[48]. CNF
combines a tracking control law that ensures a quick tracking
performance with a nonlinear feedback law designed to
smoothly change the damping ratio of the closed-loop
system as this latter approaches the reference input so
as to reduce the overshoots caused by the tracking law.
The CNF method requires fewer limiting assumptions and
as a result, more optimal design conditions are achieved.
However, we cannot use the CNF control technique directly
for singular systems. To overcome the problems of impulse
terms and input derivatives in singular systems, we adopt
state feedback to make the singular system free of impulses.
For this purpose, a singular observer will be designed,
based on the state variables, to estimate the states of the
singular system. Since the problem is time-delays output
tracking, the reference signal is generated by a reference
generator and the tracking problem becomes a stabilization
problem. The error vector and stability analysis will be
carried over based on the Lyapunov’s approach. Obviously,
in the CNF combination, the CNF control law leads to
a linear controller when the nonlinear phrase tends to
zero. As a result, the added nonlinear expression allows
modifying the linear control law to recover system transient
performance and then the error converges to zero. In all
the mentioned works, nonlinearity, disturbance, uncertainty,
and even time delay are not considered together. To the
best of our knowledge, no research has been performed to
improve system performance for nonlinear and uncertain
singular systems with input saturation, time delay, and
external disturbances using the observer-based CNF control
method.

This paper proposes an observer-based CNF control law
for nonlinear singular systems with time delay, distur-
bances and input saturation. Its main contributions are as
follows:

• An observer-based CNF control design for singular sys-
tems that takes into consideration time-delays, nonlinear
dynamics and control input saturation.

• Adesign that yields improved transient performance and
steady-state precision in the presence of time-delays,
nonlinearities and disturbances.

• A control scheme that guarantees the robustness and
stability of uncertain nonlinear singular systems.

The remainder of this paper is organized as follows. The
problem formulation and required assumptions are provided
in section II. The proposed observer-based composite nonlin-
ear feedback controller is derived in section III. Simulation
results are provided in section IV. Finally, some conclusions
are presented in section V.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the uncertain nonlinear singular system with input
saturation and time delay defined by:

Eẋ(t) = f (x)+ (A+1A(r(t)))x(t)

+

N∑
i=1

(Adi +1Adi (ν(t)))x(t − τi(t))

+Bsat(u(t))+ d(t),

y(t) = Cx(t), (1)

where t ∈ [t0,∞), x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the control input, A,Adi , B, C , and constant singular matrix
E are matrices of proper dimensions, where rank(E) =r < n
and τi ∈ R+ is the time-delay. In addition, d (t) ∈ Rn is the
unknown external disturbance vector. The saturation function
is described by:

sat (u (t)) =


sat (u1 (t))
sat (u2 (t))
...

sat (um (t))


sat(ui(t)) = sign(ui(t))min(|ui (t)| , ūi (t)) (2)

where ui (t) is the maximum value of the ith control input.

A. PRELIMINARIES
• Singular system (E,A,B,C) is calledregular, if there
exists a scalar s ∈ C, so that det(sE − A) 6= 0.

• Singular system (E, A, B, C) is called stable,
if σ (E,A) ⊂ C−, where σ (E,A) = {λ|λ ∈ C , where
det(λE − A) = 0}, and C−= {r|r ∈ C,Re(r) < 0}.

• Singular system (E, A, B, C) is impulse-free, if its
solution does not have impulse terms and

rank
([

E 0
A E

])
= n+ rank (E) .

• Singular system (E, A, B, C) is called admissible if it is
stable and impulse-free.

• Singular system (E, A, B, C) is called C-controllable,
if rank

[
sE − A B

]
= n for all s ∈ C̄+, s finite, where

C̄+= {s|s ∈ C,Re(s) ≥ 0.
• Singular system (E, A, B, C) is called C-observable,

if rank
[
sE − A
C

]
= n for all s ∈ C , s finite.

• Singular system (E, A, B, C) is said to impulse

controllable, if rank
[
E 0 0
A E B

]
= n+ rank(E).

• Singular system (E, A, B, C) is called impulse observ-

able, if rank

E A
0 E
0 C

 = n.
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Adequate conditions for a singular system to be stabilizable
and detectable are C-controllability and C-observability.
Lemma 1: Let V : [0,∞) × D → R be a continuously

differentiable Lyapunov functionfor the singular system (1)
so that:

η1(‖x(t) ‖) ≤ V (t, x(t)) ≤ η2(‖x(t) ‖),

∀ (t, x) ∈ [0,∞)× D (3)

V̇ (t, x (t)) ≤ −8, whenever

V (t + θ, x(t + θ )) ≤ V (t, x(t)) (4)

where η1(·) and η2(·) are class K functions,8 is a continuous
positive definite function on the open set D. Then the solution
x(t) of the system (1) for θ ∈ [−τ, 0] is uniformly ultimately
bounded.
Lemma 2: Suppose the singular system is regular and

impulse-free, then the response of such a system will be on
[0,∞) unique and the impulse-free.
Definition 1: System (E,A,B,C) is called invertible with

no zeros at s = 0.
Definition 2: System (E,A,B) is called stabilizable if there

is a matrix F, so that the pair (E,A+ BF) is stable.
Definition 3: System (E,A,C) is called detectible if there

is a matrix L, so that the pair (E,A+ LC) is stable.
Definition 4: System (E,A,B) is called impulse-

controllable if there is a matrix F, so that the pair
(E, A+ BF ) is impulse-free.
Definition 5: System (E,A,C) is called impulse-observable

if there is a matrix L, so that the pair (E,A+LC) is impulse-
free.
Assumption 1:The external disturbance vector is bounded

with ‖ d(t) ‖≤ dmax , where dmax is a known positive real
constant.
Assumption 2: The following inequality holds for the

nonlinear function f (ζ ) :

||f (ζ1)− f (ζ2)|| ≤ ||M (ζ1 − ζ2)|| (5)

where M = diag{M0,M1, . . . ,MN } and Mi ∈ Rn×n,
i = 0, 1, . . . ,N are some known matrices.
Fact 1: Let F ∈ Rn1×n2,G ∈ Rn2×n1, for any ρ > 0 the

following inequality holds :

FTG+ GTF ≤ ρFTF +
1
ρ
GTG. (6)

Remark 1: Assumption 1 is a reasonable condition
considered in practical cases and indicates that the norm of
the disturbance vector does not exceed the actuator saturation
level in each input channel.

III. MAIN RESULTS
In this section, the observer-based control law is first designed
then its stability and accuracy are proven using the Lyapunov
stability analysis for three different cases of input saturation.

A. TIME VARYING REFERENCE GENERATION
The purpose of this study is to design an observed-based CNF
lawfor the uncertain singular system so that the output y(t)

can follow the reference ym(t). The reference signal may be
created by a source generator system. The reference signal
could be described based on the basic system matrices (E, A,
B, C) as follows:

Eẋm(t) = Axm(t)+ Bum(t)+ f (xm)

ym(t) = Cxm(t), (7)

where xm(t) ∈ Rn, um(t) ∈ Rm, ym(t) ∈ Rl are the state,
the control input, and the output vectors of the reference
signal, respectively. Consider the control input defined by
um(t) = Fmxm(t) + rs(t), where Fm is a static feedback gain
that is chosen so that the pair (E,A + BFm) is stable and
impulse-free. Moreover, rs(t) is an adjustable signal elected
by the designer. As a result, the reference model is described
as follows

Eẋm(t) = (A+ BFm)xm(t)+ Brs(t)+ f (xm)

ym(t) = Cxm(t), (8)

The auxiliary state vector of the output tracking error is
specified as xe(t) =

∫ t
t0
e(t)dt and the output tracking error

as e(t) = y(t)− ym(t). The dynamic equation of the auxiliary
state vector is determined as below

ẋe(t) = y(t)− ym(t) = Cx(t)− ym(t) (9)

where xe(t) ∈ Rl . Thus, the augmented system is achieved as
follows:

E∗ẋ∗(t) = (A+1A(r (t)))∗x∗(t)

+

N∑
i=1

(Adi+1Adi (ν (t)))
∗x∗(t − τi(t))+ f ∗

(
x∗
)

+B∗sat(u(t))+ B∗r ym(t)+ d
∗(t),

y∗(t) = C∗x∗(t), (10)

where

x∗ (t) =
[
xe (t)
x (t)

]
∈ Rl+n,B∗ =

[
0
B

]
,

E∗ =
[
I 0
0 E

]
,

d∗ (t) =
[

0
d (t)

]
,

x∗(t − τi(t)) =
[
xe(t − τi(t))
x(t − τi(t))

]
,

(Adi +1Adi (ν(t)))
∗
=

[
0 0
0 Adi +1Adi (ν(t))

]
,

C∗ =
[
I 0
0 C

]
, y∗(t) =

[
xe(t)
y(t)

]
,

B∗r =
[
−I
0

]
,

f ∗(x) =
[

0
f (x)

]
,A∗ =

[
0 C
0 A

]
,

(A+1A(r(t)))∗ =
[
0 C
0 A+1A(r(t))

]
VOLUME 10, 2022 59081
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The reference model can also be written as follows:

E∗ẋ∗m (t) = A∗x∗m (t)+ B
∗um (t)+ B∗r ym (t)+ f

∗
(
x∗m
)

um (t) = [0 Fm]x∗m(t)+ rs(t)

y∗m(t) = C∗x∗m(t), (11)

where x∗m(t) =
[

0
xm(t)

]
∈ Rl+n, and tracking error vector

is defined as x̃(t) = x∗(t) − x∗m(t), therefore the dynamical
equations of tracking error are obtained as the following
equation

E∗ ˙̃x(t) = (A+1A(r(t)))∗x̃(t)

+

∑N

i=1
(Adi +1Adi (ν(t)))

∗x̃(t − τi(t))

+

∑N

i=1
(Adi +1Adi (ν(t)))

∗xm(t − τi(t))

+ (1A(r(t)))∗xm(t)+ f ∗(x∗)− f ∗(x∗m)

+B∗ (sat (u (t))− um (t))+ d∗ (t)

y∗ (t) = C∗x̃ (t)+ y∗m(t) (12)

B. SINGULAR OBSERVER DESIGN
Since full state availability is not always possible in control
system design, state estimation is often required to implement
state feedback control. That’s why the singular system must
be C-observable or detectable. The singular system must
also be impulse-observable to assure the lack of impulse
terms in the observer response. The singular observer can be
constructed for the system (10) as follows:

E∗ẋv (t) = f ∗ (xv)+
(
A∗ + LC∗

)
xv (t)

+

N∑
i=1

A∗dixv (t − τi (t))−Ly
∗

+B∗sat(u(t))+ B∗r ym(t) (13)

where xv(t) ∈ Rn+l is the state observer vector, and L is
the observer gain and should be constructed so that the pair
(E∗,A∗+LC∗) is stable and impulse-free. The observer error
is determined as x̃v(t) = xv(t) − x∗(t) and the dynamical
equations of observer error are created as the following
equation

E∗ ˙̃xv (t) =
(
A∗ + LC∗

)
x̃v (t)+

∑N

i=1
A∗di x̃v (t − τi (t))

−

∑N

i=1
(1Adi )

∗(ν (t)) x∗(t − τi(t))

− (1A)∗(r (t))x∗ (t)−d∗(t)+ f ∗ (xv)− f ∗(x∗)

(14)

C. OBSERVER-BASED CNF CONTROL LAW
The CNF includes two linear and nonlinear components. The
linear feedback part is constructed in such a way that it can
cause a slight damping ratio in the system in order to obtain
a faster response. The nonlinear feedback control is applied
to increment the damping ratio of the closed-loop system as
the system output follows the reference model to lower the
overshoot created by the linear portion. The linear part of the

observer-based CNF control law is described as:

uL(t) = F(xv(t)− x∗m(t))+ um (t)

=
[
F F

] [ x̃(t)
x̃v(t)

]
+ um(t) (15)

where F is determined so that the pair (E,A∗+B∗F) is stable
and impulse-free. Also, the nonlinear part of the CNF law is
displayed as

uN (t) = φ(ym(t), y(t))B∗
T
PE∗(xv(t)− x∗m(t)) (16)

where P is determinedfrom the following Generalized Riccati
Equations (GRE) for any Q> 0:

(A∗ + B∗F)TPE∗ + E∗
T
P(A∗ + B∗F)

+E∗
T

N∑
i=1

RiE∗ +
N∑
i=1

1
ρ1i

E∗
T
P2E∗

+

N∑
i=1

1
ρ2i

E∗
T
P2E∗ +

1
µ1

E∗
T
P2E∗

+

N∑
i=1

1
ρ6i

E∗
T
P2E∗ +

N∑
i=1

1
ρ7i

E∗
T
P2E∗

+µ7E∗
T
P2E∗ + µ1α

2I + µ2α
2I +

1
µ4

E∗
T
P2E∗

+µ5E∗
T
P2E∗ +

1
µ7

M2
+ µ9E∗

T
P2E∗ + E∗

T
QE∗ = 0

(17)

where µ1, µ2, µ4, µ5, µ7, µ9, ρ1i, ρ2i, ρ6i, ρ7i are positive
constants, and φ(ym(t),y(t)) is defined as

φ (ym (t) , y (t))=diag[φ1(ym1(t),y1(t)),φ2(ym2(t),y2(t)) · · · ,

φm(yml(t)(yml(t), yl(t))] (18)

where φi are negative constant functions locally Lipschitz in
y(t). The CNF law based on observer can be expressed as
follows:

u(t) = uL(t)+ uN (t)

= F
(
xv (t)− x∗m (t)

)
+ um (t)

+φ(ym(t),y(t))B∗
T
PE∗(xv(t)− x∗m(t)) (19)

Remark 2. The non-unique function φ(.) can be effective in
the transient performance improvement. Some examples and
criteria for selecting appropriate φ(.) are presented in [47].
Theorem 1: Consider the system (12) and assume that

assumptions 1-2 hold. let 0 > 0 be a solution of the GRE
as follows for any H > 0

(A∗ + LC∗)T0E∗ + E∗
T
0(A∗ + LC∗)

+E∗
T ∑N

i=1
DiE∗ +

∑N

i=1

1
ρ3i

E∗
T
02E∗

+

∑N

i=1

1
ρ4i

E∗
T
02E∗ +

1
µ2

E∗
T
02E∗

+

∑N

i=1

1
ρ5i

E∗
T
02E∗ +

1
µ3

E∗
T
02E∗
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+µ6E∗
T
02E∗ + µ8E∗

T
02E∗ +

1
µ8

M2
+

1
µ9

FTFBTB

+E∗
T
HE∗= 0 (20)

where µ2, µ3, µ6, µ8, µ9, ρ3i, ρ4i, ρ5i are positive constants,
and for any δ ∈ (0, 1), let dδ be the largest positive constant
so that:

(a)

∣∣∣∣[ fi fi ] [ x̃(t)x̃v(t)

]∣∣∣∣ ≤ (1− δ)ūi,∀
[
x̃(t)
x̃v(t)

]
∈ θδ, (21)

(b)|umi (t)| ≤ δūi,
[
x̃(0)
x̃v(0)

]
∈ θδ (22)

where

θδ :=

{[
E∗x̃(t)
E∗x̃v(t)

]
|

[
E∗x̃(t)
E∗x̃v(t)

]T [P 0
0 0

] [
E∗x̃(t)
E∗x̃v(t)

]
≤ dδ

}
,

(23)

matrices P and 0 satisfy the GRE (17) and (20), fi is the ith

raw of matrix F, and umi is the i
th component of the control

input um. Thus, there exist scalars φ∗i , for i= 1, 2, . . . ,m such
that for any φ(ym(t),C∗xv(t)) locally Lipschitz inC∗xv(t), and
|φ(y∗m(t),C

∗xv(t))| ≤ φ∗i , the CNF lawbasedon observer (19)
ensures the following:
• By applying the control law, the controlled output y(t)
can track asymptotically the reference input ym(t) in
the presence as well as the absence of the external
disturbances and uncertainties with a tracking error that
is bounded and limited.

• θδ is a positively invariant set for the closed-loop
singular system.
Proof: Due to conditions (21) and (22), the linear part

of the control law in all input channels does not exceed the
saturation bound. The closed-loop singular system can be
attained using the control law (19) and the system’s equations
that are deduced from Eqs. (12) and (14) as[

E∗ ˙̃x(t)
E∗ ˙̃xv(t)

]
=

[
(A+1A(r(t)))∗ + B∗F B∗F

0 A∗ + LC∗

] [
x̃(t)
x̃v(t)

]

+


N∑
i=1

(Adi +1Adi (ν(t)))
∗x̃(t − τi(t))

N∑
i=1

(A∗di x̃v(t − τi(t))


+

 0

−

N∑
i=1

(1Adi )
∗(ν(t))x∗(t − τi(t))− (1A)∗x∗(t)


+

 N∑
i=1

(Adi +1Adi )
∗xm(t − τi(t))+ (1A)∗xm(t)

0


+

[
d∗(t)
−d∗(t)

]
+

[
B∗

0

]
ω(t)+

[
f ∗(x∗)− f ∗(x∗m)
f ∗(xv)− f ∗(x∗)

]
(24)

where

ω (t) = sat
{[
F F

] [ x̃ (t)
x̃v (t)

]
+ um (t)

+φB∗
T
PE∗

(
xv (t)− x∗m (t)

)}
−
[
F F

] [ x̃(t)
x̃v(t)

]
− um(t) (25)

To examine the performance of the suggested control
law in the presence of external disturbances, uncertainties,
and nonlinear functions, we present the following Lyapunov
function as follows:

V (x̃ (t) , x̃v (t)) = x̃T (t)E∗
T
PE∗x̃ (t)

+ x̃Tv (t)E
∗
T
0E∗x̃v (t)

+

N∑
i=1

∫ t

t−τi
x̃T (s)E∗

T
RiE∗x̃ (s) ds

+

N∑
i=1

∫ t

t−τi
x̃Tv (s)E

∗
T
DiE∗x̃v(s)ds

(26)

Deriving the Lyapunov function along with the directions
of the closed-loop system in (24), yields:

V̇ (x̃(t),x̃v(t))

= (
[
x̃(t)
x̃v(t)

]T [A∗ + B∗F B∗F
0 A∗ + LC∗

]T
+ ωT (t)

[
B∗

0

]T
+

[
d∗(t)
−d∗(t)

]T
+

[
f ∗(x∗)− f ∗(x∗m)
f ∗(xv)− f ∗(x∗)

]T
)

×

[
P 0
0 0

] [
E∗x̃(t)
E∗x̃v(t)

]
+

[
E∗x̃(t)
E∗x̃v(t)

]T [P 0
0 0

]
(
[
A∗ + B∗F B∗F

0 A∗ + LC∗

][
x̃(t)
x̃v(t)

]
+

[
f ∗(x∗)− f ∗(x∗m)
f ∗(xv)− f ∗(x∗)

]
+

[
B∗

0

]
ω(t)+

[
d∗(t)
−d∗(t)

]
)

+x̃T (t)(1A)∗
T
PE∗x̃(t)+ x̃T (t)E∗

T
P(1A)∗x̃(t)

+

N∑
i=1

x̃T (t − τi)(Adi +1Adi )
∗
T
PE∗x̃(t)

+x̃T (t)E∗
T
P

N∑
i=1

(Adi +1Adi )
∗x̃(t − τi)

+

N∑
i=1

x̃Tv (t − τi)A
∗
T

di 0E
∗x̃v(t)

+x̃Tv (t)E
∗
T
0

N∑
i=1

A∗di x̃v(t − τi)+
N∑
i=1

x̃T (t)E∗
T
RiE∗x̃(t)

−

N∑
i=1

x̃T (t − τi)E∗
T
RiE∗x̃(t − τi)

+

N∑
i=1

x̃Tv (t)E
∗
T
DiE∗x̃v(t)

−

N∑
i=1

x̃Tv (t − τi)E
∗
T
DiE∗x̃v(t − τi)
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−

N∑
i=1

x∗
T
(t − τi)(1Adi )

∗
T
0E∗x̃v(t)

−x̃Tv (t)E
∗
T
0

N∑
i=1

(1Adi )
∗x∗(t − τi)

−x∗
T
(t)(1A)∗

T
0E∗x̃v(t)

−x̃Tv (t)E
∗
T
0(1A)∗x∗(t)+ x̃T (t)E∗

T
P

N∑
i=1

(Adi

+1Adi )
∗xm(t − τi(t))

+

N∑
i=1

xTm(t − τi(t))(Adi +1Adi )
∗
T
PE∗x̃(t)

+x̃T (t)E∗
T
P(1A)∗xm(t)+ xTm(t)(1A)

∗
T
PE∗x̃(t) (27)

Then, we obtain

V̇ (x̃(t),x̃v(t))

=

[
x̃(t)
x̃v(t)

]T [ a11 E∗
T
PB∗F

FTB∗
T
PE∗ a22

][
x̃(t)
x̃v(t)

]
+χ̄T (t)Aχ̄ (t)+ χ̄Tv (t)Bχ̄v(t)+ x̃

T (t)E∗
T
P(f ∗(x∗)

−f ∗(x∗m))+ (f ∗(x∗)− f ∗(x∗m))
TPE∗x̃(t)

+(f ∗(xv)− f ∗(x∗))T0E∗x̃v(t)+ x̃Tv (t)E
∗
T
0(f ∗(xv)

−f ∗(x∗))+ ωT (t)B∗
T
PE∗x̃(t)+ x̃T (t)E∗

T
PB∗ω(t)

+x̃T (t)E∗
T
Pd∗(t)

+d∗
T
(t)PE∗x̃(t)− x̃Tv (t)E

∗
T
0d∗(t)− d∗

T
(t)0E∗x̃v(t)

−x̃T (t)(1A)∗
T
0E∗x̃v(t)− x̃Tv (t)E

∗
T
0(1A)∗x̃(t)

−x̃Tv (t)E
∗
T
0

N∑
i=1

(1Adi )
∗x̃(t − τi)

−

N∑
i=1

x̃T (t − τi)(1Adi )
∗
T
0E∗x̃v(t)

−x̃Tv (t)E
∗
T
0(1A)∗x∗m(t)− x

∗
T

m (t)(1A)∗
T
0E∗x̃v(t)

−

N∑
i=1

x∗
T

m (t − τi)(1Adi )
∗
T
0E∗x̃v(t)

−x̃Tv (t)E
∗
T
0

N∑
i=1

(1Adi )
∗x∗m(t − τi)

+x̃T (t)E∗
T
P

N∑
i=1

(Adi +1Adi )
∗xm(t − τi(t))

+

N∑
i=1

xTm(t − τi)(Adi +1Adi )
∗
T
PE∗x̃(t)

+x̃T (t)E∗
T
P(1A)∗xm(t)+ xTm(t)(1A)

∗
T
PE∗x̃(t) (28)

where a11=(A∗ + B∗F)TPE∗ + E∗
T
P(A∗ + B∗F) +

E∗
T
P(1A)∗ + (1A)∗

T
PE∗ + E∗

T ∑N
i=1 RiE

∗ and

a22=(A∗+LC∗)T0E∗+E∗
T
0(A∗+LC∗)+E∗

T ∑N
i=1DiE

∗

A =


0 E∗

T
P(Ad1 +1Ad1 ) · · · E

∗
T
P(AdN +1AdN )

∗ − E∗
T
R1E∗ 0 0

∗ ∗
. . . 0

∗ ∗ ∗ − E∗
T
RNE∗


(29)

B =


0 E∗

T
0A∗d1 · · · E∗

T
0A∗dN

∗ − E∗
T
D1E∗ 0 0

∗ ∗
. . . 0

∗ ∗ ∗ − E∗
T
DNE∗

 (30)

χ̄ (t) =


x̃(t)

x̃(t − τ1)
x̃(t − τ2)

...

x̃(t − τN )

 , χ̄v(t) =


x̃v(t)
x̃v(t − τ1)
x̃v(t − τ2)

...

x̃v(t − τN )

 (31)

According to FTG+GTF ≤ ρFTF + 1
ρ
GTG, ||1Adi || ≤ αi

and ||1A|| ≤ α, ||x∗m(t)|| ≤ β and using GRE (17) and (20),
we have:

V̇ (x̃(t),x̃v(t))

≤

[
x̃(t)
x̃v(t)

]T [ b11 E∗
T
PB∗F

FTB∗
T
PE∗ b22

][
x̃(t)
x̃v(t)

]
+χT (t)Mχ (t)+ χTv (t)Nχv(t)

+ωT (t)B∗
T
PE∗x̃(t)+ x̃T (t)E∗

T
PB∗ω(t)

+µ4β
2α2 +

∑N

i=1
ρ5iβ

2α2i + µ3β
2α2

+

∑N

i=1
ρ6iβ

2
||Adi ||

2
+ µ3β

2α2

+

∑N

i=1
ρ7iβ

2α2 +
1
µ5

d2max +
1
µ6

d2max (32)

where

b11 = (A∗ + B∗F)TPE∗ + E∗
T
P(A∗ + B∗F)

+E∗
T

N∑
i=1

RiE∗ +
N∑
i=1

1
ρ1i

E∗
T
P2E∗

+
1
µ1

E∗
T
P2E∗ +

N∑
i=1

1
ρ2i

E∗
T
P2E∗ + µ2α

2I

+
1
µ4

E∗
T
P2E∗ + µ1α

2I

+

N∑
i=1

1
ρ6i

E∗
T
P2E∗ +

N∑
i=1

1
ρ7i

E∗
T
P2E∗ +

1
µ7

M2

+µ5E∗
T
P2E∗ + µ7E∗

T
P2E∗ + µ9E∗

T
P2E∗

and

b22 = (A∗ + LC∗)T0E∗ + E∗
T
0(A∗ + LC∗)

+E∗
T

N∑
i=1

DiE∗ +
N∑
i=1

1
ρ3i

E∗
T
02E∗
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+
1
µ2

E∗
T
02E∗ +

1
µ3

E∗
T
02E∗

+

N∑
i=1

1
ρ4i

E∗
T
02E∗

+

N∑
i=1

1
ρ5i

E∗
T
02E∗

+µ6E∗
T
02E∗ + µ8E∗

T
02E∗

+
1
µ8

M2
+

1
µ9

FTFBTB

M = diag
(
−E∗

T
R1E∗ + (ρ11||Ad1 ||

2
+ ρ21α

2
1 + ρ41α

2
1)

×I , · · · ,−E∗
T
RNE∗

+(ρ1N ||AdN ||
2
+ ρ2Nα

2
N + ρ4Nα

2
N )I

)
(33)

N = diag
(
−E∗

T
D1E∗

+ρ31||Ad1 ||
2I , · · · ,−E∗

T
DNE∗ + ρ3N ||AdN ||

2I
)
(34)

χ (t) =


x̃(t − τ1)
x̃(t − τ2)

...

x̃(t − τN )

 , χv(t) =

x̃v(t − τ1)
x̃v(t − τ2)

...

x̃v(t − τN )

 (35)

Since x̃T (t)E∗
T
PB∗ω(t) and ωT (t)B∗

T
PE∗x̃(t) are scalars,

we have

V̇ (x̃(t),x̃v(t)) ≤ χT (t)Mχ (t)+ χTv (t)Nχv(t)

+2x̃T (t)E∗
T
PB∗ω(t)+ µ4β

2α2

+µ3β
2α2 +

∑N

i=1
ρ5iβ

2α2i

+

∑N

i=1
ρ6iβ

2
||Adi ||

2

+

∑N

i=1
ρ7iβ

2α2i +
1
µ5

d2max +
1
µ6

d2max

(36)

In what follows, we investigate three different states of the
saturation function.

Case 1: If all input factors are not saturated, i.e. |ui| ≤ ūi,
it can be easily shown that:

ωi(t) = φ
[
b∗

T

i PE∗ b∗
T

i PE∗
] [ x̃

x̃v

]
= uNi (37)

where b∗i is the i
th column of B∗ and uNi is the i

th component
of uN .

Case 2: In this case, all input channels are higher than the
upper saturation bound, i.e. ui ≥ ūi so we have

ui ≥ ūi ⇒ uLi + uNi ≥ ūi (38)

where uLi is the ith component of uL . According to
the (25), it is obvious that ωi(t) = ūi − uLi , and thus
ωi(t) ≥ ūi − |uLi | ≥ 0. Moreover, according to (38) as uNi ≥
ūi − uLi = ωi(t), the following inequality is achieved

0 ≤ ωi(t) ≤ uNi (39)

Case 3: In this case, all input channels are smaller than their
lower saturation bound, so we have

ui ≤ −ūi ⇒ uLi + uNi ≤ − ūi ⇒ uNi ≤ −ūi − uLi ≤ 0

(40)

Considering ωi(t) = −ūi − uLi , one has

uNi ≤ ωi(t) ≤ 0 (41)

According to (37), (39) and (41), ωi(t) can be considered as
ωi(t) = ξiuNi where ξi ∈ [0, 1]. Hence, ω(t) can be achieved
as follows:

ωi(t) = φ̄
[
B∗

T
PE∗ B∗

T
PE∗

] [ x̃
x̃v

]
(42)

where φ̄ = ξφ and ξ = diag[ξ1, ξ2, . . . , ξm]. Because
φ is negative and according to Razumikhin Theorem
‖x̃(t − τi) ‖ ≤ Li ‖ x̃(t) ‖, Li> 1(i= 1, . . . ,N), the
relation (36) is as follows:

V̇ ≤ χT (t)Mχ (t)+ χTv (t)Nχv(t)+ ε (43)

whereε = µ4β
2α2 +

∑N
i=1 ρ5iβ

2α2i + µ3β
2α2 +∑N

i=1 ρ6iβ
2
||Adi ||

2
+
∑N

i=1 ρ7iβ
2α2i +

1
µ5
d2max +

1
µ6
d2max As

a result, we will have the following form

V̇ ≤
[
E∗χ (t)
E∗χv(t)

]T [
−31 0
0 −32

]
︸ ︷︷ ︸

[
E∗χ (t)
E∗χv(t)

]
+ ε (44)

where −31 = diag(−R1 + 1
||E∗||2

(ρ11||Ad1 ||
2

+ρ21α
2
1+ρ41α

2
1)I , . . . ,−RN+

1
||E∗||2

(ρ1N ||AdN ||
2
+ρ2Nα

2
N+

ρ4Nα
2
N )I ) and −32 = diag(−D1 +

1
||E∗||2

ρ31||Ad1 ||
2

I , . . . ,−DN + 1
||E∗||2

ρ3N ||AdN ||
2I ), it can be concluded that

3 > 0 and for convenience one can write

V̇ ≤ −υTE∗
T
3E∗υ + ε (45)

where υ =
[
χ (t)
χv(t)

]
, and finally, it can be written as

V̇ ≤ −λmin(3)||E∗υ||22 + ε,∀||E
∗υ||22 >

ε

λmin(3)
(46)

By introducing a new positive invariant set as
θµ:=

{
E∗υ (t) | ||E∗υ||22 ≤

ε
λmin(3)

}
⊂ θδ and 9 := θδ −

θµ. According to Eqs. (45) and (46) and the Lemma 1, it get

V̇ ≤ −λmin(3)||E∗υ||22 + ε:= −8,∀(E
∗υ) ∈ 9 (47)

where 8 is a positive-definite function so V̇ is bounded and
negative in 9. Because of the structure of the Lyapunov
function, decrease V leads to a decrease in the norm of the
closed-loop singular system’s states. So, it can be concluded

that

∥∥∥∥[ x̃x̃v
]∥∥∥∥ ≤ γ ; thus, ultimately bounded tracking

error and observer error is obtained. Considering Lemma 1,
Eq. (47) ensures that the tracking error will be bounded (even
with saturation and uncertainty). If the system is not affected
by the disturbance, that is d(t) = 0, the region θµ is removed.
Then, the observer-based control lawwill cause the states
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of the closed-loop singular system (12) to be bounded, and
the output of the system (1) will follow thereference signal
ym(t) with a tracking error that is bounded and limited in the
presence of disturbance and input saturation.

IV. SIMULATION RESULTS
The effectiveness and performance of the proposed approach
is examined in this section using two different examples. The
first considers a singular systemwith time delay, perturbation,
input saturation, and uncertainties. The second example,
considers a DC motor modeled using a singular state- space
representation with nonlinearity.
Example 1: Consider the nonlinear singular system with

time delays (1), whose parameters are given as:

E =

 1 0 0
0 1 0
0 0 0

 ,A =
 1 1 0
4 −2 0
0 1 −1

 ,B =
 1
0
1

 ,
C =

[
2 1 1

]
,F =

[
1 1 3 2

]
where f (x) = −5x21 + 11.4x1 − 0.21(|x1 + 1| − |x1 −
1|) and Adi, i= 1, 2 are fixed parameters, r1(t),r2(t) and
1Adi(ν(t)),i= 1, 2 are the uncertain parameters and the
external disturbance is as

q(t) = [00.2 sin(2t) 0.02 sin(t)],

1Ad1(ν(t)) =

 0.1cos(t) 0.2sin(t) 0.2sin(t)
0 0 0
0 0 0

 ,
1Ad2(ν(t)) =

 0.1sin(t) −0.2cos(t) 0.3sin(t)
0 0 0
0 0 0

 .
Considering Q = I4 and using (17) and (20 ), the P and the
descriptor observer L can be determined as

P =


1.26 − 0.7645 − 0.1647 0.1745
−0.6745 0.8902 0.0686 − 1.1059
−0.1647 0.0786 0.6098 0.1375
0.1745 − 1.1059 0.1175 2.5



and L =


−3 −2
2 −3
−5 −6
−3 −2

. For this simulation study, we consider:

Ad1 =

−1 −1 0
0 0.5 0
0 0 0.1

 ,Ad2 =
−1 −1 0.1

0 0.2 0
0 0 0.1

,
Fm =

[
4 2 5

]
. The constant quantities are considered

as α= 0.01,β= 35, rs(t) = 3sin(0.4t), and the saturation
limit is ū = 2. The primary values are considered as
x(0) = [0.10.3− 0.3]T andτ1= 0.2,τ2= 0.4.
The nonlinear function φ(ym(t),y(t)) is selected as follows:

φ(ym(t),y(t)) =− βe−α0α|y(t)−ym(t)|, (48)

where

α0 =


1

|y(t0)− ym(t)|
, y(t0) 6= ym(t)

1, y(t0) = ym(t)
(49)

FIGURE 1. State response of the observer error (x̃v1).

FIGURE 2. State response of the observer error (x̃v2).

FIGURE 3. State response of the observer error (x̃v3).

FIGURE 4. State response of the observer error (x̃v4).

For comparison purposes, we consider the approach proposed
in [44]. Fig. 1-4 depicts the dynamics of the states estimated
by the designed singular observer. The trajectories of the
tracking error are illustrated in Fig. 5. Also Fig. 6 displays
the output responses of ym(t) and y(t). The dynamics of the
nonlinear state-feedback controller are depicted in Fig. 7. The
obtained results show that the system is robust to time delays
and disturbances compared to those of [44], and also the
proposed controller has good convergence rate. The purpose
here is not to get zero tracking error, but rather ensure the is
error bounded. The simulation results show that the system
output tracks the reference signal with a tracking error that
is bounded and limited by using the proposed observer-based
controller.
Example 2: Consider a DC motor with a singular state-

space representation in the form of system (1) with the
following information [50]:

E =
[
1 0
0 0

]
,A =

[
−2 3
1 1

]
,B =

[
0
1

]
,C =

[
1 0

]
,

F =
[
−2 −7 −1

]
where f (x) = 0.5cos(x1) − 0.5 and Adi, i= 1, 2 are fixed
parameters, and 1Adi(ν(t)),i= 1, 2 are the uncertain
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FIGURE 5. The tracking errors; (a) time range 0-30(s), (b) time range
30-100(s).

FIGURE 6. Output responses of ym(t) and y(t).

FIGURE 7. Control input.

parameters and q(t) is the disturbance, and

1Ad1(ν(t)) =
[
sin(2t) sin(3t)

0 0

]
,

1Ad2(ν(t)) =
[
sin(2t) 0

0 sin(3t)

]
.

Using (17) and (20 ), the P and the descriptor observer L can
be determined as

P =

 0.2 0 0
0 0.3 0
0 0 0.4

 and L =

−2.5 4.5
−3.5 4.5
−1.5 −3.5

.
For simulation use, take q (t)= 3 sin (0.01t) ,

Ad1 =
[
−1 0
0 −1

]
,Ad2 =

[
0 −1
0 0

]
, Fm= [ − 2 − 4], the

saturation limit of the system is taken to be ū= 5 and rs(t) is
also approximated by a step function. The constant quantities
are considered as α= 0.01,β= 100. The primary values are
supposed as x(0) = [0.01− 0.01]T ,τ1 = τ2= 0.5.

FIGURE 8. State response of the observer error (x̃v1).

FIGURE 9. State response of the observer error (x̃v2).

FIGURE 10. State response of the observer error (x̃v3).

FIGURE 11. Dynamics of the tracking error; (a) time range 0-30(s),
(b) time range 30-100(s).

FIGURE 12. Output responses of ym(t) and y(t).

Simulation results are represented in Figs. 8-13. Fig. 8-10
shows the vectors of the observer error. Fig. 11 demonstrates
the tracking error at two different time intervals. Fig. 12 illus-
trates the output tracking by the suggested CNF control
law based on observer. Fig.13 displays the response of the
suggested control law.
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FIGURE 13. Control input.

V. CONCLUSION
This paper proposed an observer-based CNF controller for the
robust tracking of uncertain singular systems subject to input
saturation, nonlinear functions, time-delay, and disturbances.
The control law was designed based on states reconstructed
using a singular observer. A theorem was proposed to prove
the uniform boundedness of the tracking error albeit the
presence of external disturbances and nonlinear dynamics.
Implementation of the proposed approach to two case studies
confirmed the accuracy and effectiveness of the proposed
approach in controlling uncertain nonlinear singular systems
with input saturation.
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