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ABSTRACT In this paper, we propose and demonstrate time-modulated patch antennas able to exhibit
opposite polarization ellipticity when operated in transmission or reception, effectively leading to
nonreciprocal polarization responses. To this purpose, we merge a patch antenna fed from four symmetrical
sides with a low-frequency time-modulation scheme. This configuration exploits the photonic Aharonov
Bohm effect to individually manipulate the phase of surface currents flowing along orthogonal directions
on the antenna with the phase of the modulation signals. The polarization states of the radiated/received
waves can easily be calculated using diagrams in the Poincaré sphere together with the phase difference
of the modulating signals. Experimental results at 2.2 GHz demonstrate high conversion efficiency in
the time-modulation process, isolation levels over 40 dB in transmission/reception mode, and tunability
to generate/receive electromagnetic waves with arbitrary polarization ellipticity. Our findings may enable
exciting applications in full-duplex communications as well as in polarimetric radar, sensing and imaging

systems.

INDEX TERMS Time-modulation, nonreciprocity, patch antennas, polarization.

I. INTRODUCTION

Recent years have witnessed the quick emergence of
magnetless nonreciprocity [1], [2] and the development of
a wide variety of integrated, CMOS-compatible microwave
devices such as circulators [3]-[7], isolators [8], [9], and
nonreciprocal filtering structures [10]-[13]. Additionally,
ultrathin metasurfaces have recently been put forward to
manipulate the refraction and transmission properties of
free-space propagating beams in a nonreciprocal man-
ner [14]-[29]. For instance, they have been demonstrated
to behave as serrodyne frequency translators employing a
sawtooth waveform as modulation signal [14]. Space-time
coding metasurfaces have recently enabled simultaneous
control of electromagnetic waves in both spatial direction
and harmonic power distribution [15]—-[18]. Similar responses
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have been obtained using time-modulated Huygens meta-
surfaces by independently tailoring in time and space the
magnetic and electric dipoles that compose each unit-cell of
the structure [19]. Nonreciprocal beam scanning for fixed
directions in space has theoretically been investigated by
inducing space-time photonic transitions in spatiotempo-
rally modulated surfaces [20] and a more general form
of the classical Snell’s relation not bounded by Lorentz
reciprocity was also derived [21]. Time-modulated gradient
metasurfaces [22]-[28] provide nonreciprocal beam steering,
focusing, and polarization functionalities. A recent review on
this topic can be found in [29].

In the context of antennas [30], [31], nonreciprocal
responses able to provide large isolation between reception
and transmission at desired directions in space have the
potential to significantly impact radar, sensing and wireless
communication systems, handle unwanted interferences or
jamming signals, and enhance the performance of certain
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class of sensors. Early attempts employed ferrites to break
reciprocity [32], [33], leading to antennas with limited
efficiency and whose tunable responses required the presence
of bulky and lossy magnets that are not compatible with
integrated circuits. Magnetless spatiotemporal modulation
techniques [2], [34] have been applied to realize non-
reciprocal leaky-wave antennas by exploiting space-time
transitions between guided and leaky modes [35]-[37].
Unfortunately, leaky-wave antennas may suffer from chal-
lenges in terms of size, complexity, efficiency, and dispersive
beam scanning behavior that limit their use in practical appli-
cations. Recently, time-modulated phased-array antennas
were demonstrated to exhibit drastically different radiation
patterns in transmission and reception [38]. There, each
antenna element is time-modulated with a low-frequency
signal f,,, enabling controllable nonreciprocity: the phase of
transmitted signals follows the phase of the modulating signal
©m whereas the phase of the received signal follows the
opposite one, i.e., —¢;,,. Even though the magnitude of the
radiation pattern of each element is reciprocal, this approach
permits to impose different phase profiles for the overall
antenna array when transmitting or receiving. As a result,
isolation levels over 40 dB were demonstrated at desired
directions in space [38]. Other approaches to construct
nonreciprocal antennas rely on connecting nonreciprocal
components — such as filters or phase-shifters — with the
radiating elements [39]-[42].

To date, nonreciprocal antennas have been mostly focused
on controlling the magnitude of transmitted/receiving fields
with a fixed polarization state. Antennas with nonreciprocal
response at the polarization level may pave the way to a new
set of polarimetric functionalities [43]-[45] and applications
in radar, sensing, and imaging, as well as in communication
systems. It should be stressed that these antennas would
be quite different than polarization reconfigurable antennas
widely explored in recent years [46]-[51]. Even though
these structures are tunable and thus can change their
polarization state (using switches, diodes, MEMS, etc.), they
are always reciprocal because the polarization of transmitted
and received waves at any instant are identical. For instance,
consider the case of an antenna continuously radiating
right-handed elliptically polarized waves. Upon reflection on
a metallic screen, the wave handedness changes and thus it
cannot be received by the same antenna. This challenge has
led to an increased complexity in polarimetric systems.

In this contribution, we propose and experimentally
demonstrate time-modulated patch antennas able to exhibit
nonreciprocal polarization ellipticity when operating in
reception or transmission, as illustrated in Fig. 1. A very
preliminary theoretical study on this subject by the authors
appeared in a recent conference [52]. The antenna relies
on time-modulating orthogonal surface currents induced
in a patch using low frequency signals with controllable
phases. Measured data confirms isolation over 40 dB at
the broadside direction and tunability to generate and
receive electromagnetic waves with arbitrary ellipticity. The
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proposed time-modulation approach is general, as it can be
applied to any resonant antenna element able to support
surface currents in orthogonal directions.
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FIGURE 1. Time-modulated antenna with nonreciprocal polarization
ellipticity in transmission and reception. The antenna is time-modulated
with two low-frequency (fy) signals with phases ¢x and ¢, that interact
with x- and y- directed surface currents, respectively. Manipulating the
phase difference between the modulation signals permits to control the
polarization state of the transmitted/receiving fields in a nonreciprocal
manner. In the left column, the phase shift is set to Ap! = g5 — gy = —90°
and the antenna radiates LHCP waves and simultaneously receives RHCP
waves. In the right column, the phase shift is set to Apf = gx — gy = +90°
and the antenna radiates RHCP waves and receives LHCP waves.

This paper is organized as follows. Section II describes
the operation principle of time-modulated antennas with
nonreciprocal polarization ellipticity. Section III proposes
a specific implementation of these structures based on a
modified patch antenna controlled with low-frequency mod-
ulation signals. Sections IV and V describe the simulation
and experimental set-up, respectively. Section VI presents
numerical and measured data to validate the nonreciprocal
and tunable response of the proposed antennas. Finally,

Section VII concludes the paper.

Il. OPERATION PRINCIPLE

The operation principle of time-modulated antennas with
nonreciprocal polarization ellipticity is illustrated in Fig. 1.
The approach relies on the photonic Aharanov-Bohm
effect [38] to impose opposite phase profiles on orthogonal
surface currents induced on the antenna when it is operated
in transmission and reception. Let us consider an antenna that
resonates at fo +f,, and that supports orthogonal and symmet-
ric surface currents along the x- and y- directions (Fig. 1). The
antenna is time-modulated along these directions with signals
exhibiting identical low-frequency f;, but different phases ¢,
and ¢y, respectively. Exploiting certain design considerations
in the antenna structure (see Section III), it can be enforced
that the time-modulation process yields perfect frequency
conversion between an incoming RF signal with frequency fj
and any desired harmonic (fy & nf;,). For simplicity, we will
consider here conversion with the upper side first harmonic
n = +1 [38]. In this scenario, the antenna will up-convert a
signal at fj to the frequency fy + f,, (i.e., fo — fo + fm) that
will then be radiated to free space. The fields radiated along
the x- and y- directions will exhibit identical amplitude but
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different phases. Such phases are given by

LES o¢ (grF + ¢y) (M

where ZEE) denotes the phase of the electric fields transmitted
at fo + fin along the p = {x, y}-direction and ¢grF is the
phase of the RF signal at fy. The phase difference between the
x- and y- directed radiated fields is given by A¢' = ¢, — ¢,.
As a result, the radiated wave will have a polarization
state determined by an ellipticity 2y’ = A¢’ and an
azimuthal angle v = 45° [30], [31]. The latter appears
because this antenna configuration always radiates both
x and y components of the electric field with identical
amplitude.

In reception mode, the antenna will receive fields oscillat-
ing at fy + f;, along the x- and y- directions and will down-
convert them to the frequency fy (i.e., fo + fin — fo). The
phases of the received signals are

B (oS —g), Boa@S-¢) O

where ZE; denotes the phase of the fields down-converted to
fo along the p-direction, and golf S is the phase of the impinging
free-space wave at fo + f;, along p. The received fields E},
and E; interfere within the antenna, leading to a maximum
reception when they are in phase, i.e., ZE. = ZE;, and
minimum reception when they are out of phase, i.e, ZE} =
LE} + . The phase difference between the x- and y- directed
fields imparted by the time-modulated antenna is given by
A" = ¢y — ¢r = —Ag¢'. As a result, the antenna will
optimally receive waves with a polarization state determined
by an ellipticity 2x” = A¢" and an azimuthal angle ¢ =
45° [30], [31]. It is thus evident that x! = —x”, which
highlights the nonreciprocal polarization ellipticity between
reception/ transmission responses of this type of antennas.

It is instructive to employ the Poincaré sphere to explore
the polarization response of antennas [30], [31]. The Poincaré
sphere, illustrated in Fig. 2, represents polarized electromag-
netic waves using the Stokes parameters (S1, S2, $3) [30], [31]
as the Cartesian coordinates, i.e.,

LE. o (gRF + @x)

x =81 =cos(2x)cos (2y), 3)
y =82 =cos (2x)sin (2y), “)
z=283=sin(2y), &)

where S is associated to horizontal/vertical linearly polarized
(LP) light, S, is related to +45° LP light, and S3 correlates
to circularly polarized (CP) light [30], [31]. Any polarized
light represents a point on the surface of the sphere. Let us
now consider the proposed antenna operating in transmission.
By manipulating the relative phase A’ with a phase shifter,
the proposed antenna is capable of radiating waves with any
desired ellipticity— as highlighted in the green circle plotted
over the Poincaré sphere in Fig. 2. For instance, a phase
shifter operated in a state Q will lead to a specific relative
phase A(p; and thus the antenna will radiate waves with
an ellipticity Xé- The same antenna operated in reception
will optimally receive waves with an opposite ellipticity
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FIGURE 2. Polarization states radiated/received by the antenna mapped
into the Poincaré sphere. The states are shown using ellipticity and
azimuthal angles measured from the equator and S, axis, respectively.
Results show the polarization state of the waves transmitted and
received by the proposed antenna for different phase shift A¢! between
the time-modulating signals: (a) A¢! = 0°; (b) Ap! = 60°; (c) Ap! = 90°;
and (d) Ag! = 240°. The antenna radiates and receives waves with
arbitrary ellipticity at azimuthal angle y = 45°, i.e, the green circle along
the sphere surface defined in the S, — S5 plane. Polarization ellipticity
during transmission and reception has same magnitude but different
phase, which translate to opposite states in the Poincaré sphere.

er = — Xé' Fig. 2 illustrates such behavior for four different
phase shifts Ag’ between the low-frequency signals that
modulate the patch antenna. Changing the state of the phase
shifter to obtain a relative phase Ag’ = {0, %, 7, —%}, will
lead to a nonreciprocal antenna that radiates electromagnetic
waves with a polarization state {4+45° LP, right-handed CP
(RHCP), —45° LP, left-handed CP (RHCP)} and receive
waves with opposite ellipticity, i.e., {+45° LP, LHCP,
—45° LP, LHCP}.

It should be noted that manipulating the relative phases
of the low-frequency modulation signals does not suffice to
cover all possible states of the Poincaré sphere. To obtain
such response, the amplitude of the surface currents induced
along orthogonal directions within the antenna should
simultaneously be controlled upon time-modulation.

Ill. TIME MODULATED PATCH ANTENNA WITH
NONRECIPROCAL POLARIZATION CONTROL

In this section, we propose a specific implementation to
realize time-modulated patch antennas with nonreciprocal
polarization ellipticity. The antenna details are shown in
Fig. 3. Specifically, an RF signal (fp) is input from port 1
(P1) and flows along the microstrip lines on the top layer
to feed a square patch from four sides. Quarter-lambda
transformers are implemented in the microstrip lines to
guarantee impedance matching between the power divided
t-lines and the patch antenna. Additionally, four coplanar
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FIGURE 3. Layout of the proposed time-modulated patch antenna with
nonreciprocal polarization response. (a) 3D view. (b) Photographs of a
manufactured prototype. (c) Top view. RF signal is fed from port 1 (P1)
and symmetrically split to feed the four sides of a square patch.

(d) Bottom view depicting the feeding network for time-modulated
signals. Each port is composed of a CPW terminated into a via-hole that
connects to the top patch. A varactor and an inductor connect the
via-hole and the CPW. A rogers RT/duroid 5880 substrate with a thickness
of 1.575 mm, a relatively dielectric constant of 2.2, and a loss tangent of
0.0009 is used. The antenna dimensions (mm) are: d; = 110,

I =17,1,=82,I=305,l; =84,l5 =15.5,lg =49.4,1; =11.7,w; =
2, s1 = 46, g1 = Z.G,gz =0.2, (I’l =0.5, (I)z =1.

waveguides (CPWs) are located in the bottom ground
plane. Each CPW is loaded with a varactor (SMV1235
from Skyworks Solutions Inc.) and is connected to the
microstrip line on the top layer through a metallic via. All
varactors are reversely biased by DC voltage. Low frequency
(fin) modulation signals and DC bias voltages are carried
simultaneously within each CPW. For each modulation path,
an inductor is employed as an RF choke to improve the
isolation between the RF and modulation signals. Details
of the configuration are shown in Fig. 3(c) and Fig. 3(d).
Even though all modulation signals oscillate at the same
frequency f,, their phase distribution may vary across the
different CPW. Specifically, ports located across the x-axis,
P, and P, are fed with f,, signals with phases ¢, and ¢, + 7,
respectively. A phase difference of 180" is imposed between
these modulation signals to enforce efficient frequency
conversion in the nonlinear process by exploiting the even and
odd modes of the antenna at fjy and fy + f;,, respectively. This
process is described in detail in [38]. Similarly, ports located
along the y-axis, Py and P;,, are fed with f,, signals with phases
¢y and @, + m, respectively. The final optimal dimensions of
the proposed time modulated patch antenna are given in the
caption of Fig. 3.

The polarization characteristics of the fields radiated and
received by this antenna can be controlled through the
phases ¢, and ¢, exploiting the orthogonality of the surface
currents induced on the patch. This process is illustrated
in Fig. 4. Let us first consider that the modulation signals
are applied only along the x-oriented CPWs located in the
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FIGURE 4. Numerical simulation setup employed to illustrate the phase
response of the proposed antenna in transmission and reception.

(a) Time-modulation is only applied along the x-axis. (b) Time-modulation
is only applied along the y-axis.

ground plane, as shown in Fig. 4(a). In the transmission
mode, the antenna will radiate purely x-polarized electric
fields oscillating at fy + f,, with a phase proportional to
©x + @rr. In this process, symmetrical RF signals fed
the patch from opposite directions in the x-axis, exciting
the patch even mode and generating a surface current null
at the center of the structure [38]. The reflected signals are
then up-converted to two out-of-phase signals at frequency
Jo + fm that excite the common odd mode of the patch,
leading to the efficient radiation of x-polarized fields. Note
that even mode harmonics cannot be radiated for the patch,
as the antenna effectively impose a virtual open circuit for
even harmonics generated by the varactors, i.e., fy + pf;, with
p==2,4,6... We remark that y-polarized fields cannot be
radiated in this case as the lack of time modulation leaves
an even mode (virtual open circuit) along that direction.
In reception, an incoming wave with frequency fy + f;, and
phase ¢f" S impinges on the antenna and excites the resonant
odd mode of the patch. Then, time-modulation along the
x-axis down converts the signal to the guided even mode,
with frequency fy and phase ¢S — ¢, that is routed to
the exit port. Similar considerations can be made when the
antenna is modulated along the y-axis and no modulation is
applied along the x-direction, as illustrated in Fig. 4(b). In the
case that the antenna is simultaneously time-modulated along
the x and y axis, the low cross-coupling between orthogonal
directions in a patch structure (<—25 dB) guarantees an
independent control of the x- and y- polarized generated and
received fields.

IV. SIMULATION SETUP

The proposed antenna is first designed and simulated in
the linear regime using ANSYS HFSS (bottom-left inset of
Fig. 5). In the model, lumped ports normalized to 50 2
are employed in the position in which the varactor diodes
and lumped inductors will be placed. In this 3D simulation,
the antenna is placed in a periodic environment using two
Floquet ports associated to the fundamental TE and TM
modes at the broadside direction. This approach permits
to obtain the amplitude and phase of the fields radiated
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FIGURE 5. Nonlinear circuit simulation of the transmission/reception of
electromagnetic waves at broadside between the proposed
time-modulated antenna (inset bottom left) and a reference antenna
(inset top left) described in Appendix I. The response of the antennas has
been first obtained using numerical simulation assuming that the
structures are placed in a periodic environment. Their linear response has
then been imported into the circuit simulator and are shown in the figure
as the box S15P for the time-modulated antenna and box S4P for the
reference antenna. The two antennas are connected through transmission
lines (characteristic impedance of 120x) that models the propagation of
electromagnetic waves for the fundamental TE and TM Floquet

modes [53]. The circuit is simulated using large signal scattering
parameters.

by antenna, as detailed elsewhere [53]. Even though this
simulation accounts for an infinite two-dimensional array
of patch antennas, the dimensions of the unit-cells ensure a
negligible cross-coupling at the targeted broadside direction.
The linear S-parameters of the 3D model are then exported
to the circuit simulator Keysight ADS to perform large signal
S-parameter (LSSP) simulations. In the nonlinear circuit, the
varactor diode and lumped inductor models are imported
from the vendors and connected to the lumped ports of
the antenna. The model is then explored to maximize the
radiation efficiency, optimizing the modulation frequency
(fm = 320 MHz), modulation amplitude M = 0.36, and DC
bias applied to the varactors (V = 1.53 volts) as described
in [38].

To explore the response of the proposed time-modulated
antenna, three different reference antennas will be employed.
First, a common patch antenna is employed to calibrate
the system and extract the overall loss in the radiation
process [38]. Second, a linearly polarized horn-antenna is
employed to explore the phase variations of the different
field components radiated by the time-modulated antenna.
And third, a reference patch antenna has been designed in
HESS and fabricated integrating a 90° hybrid coupler to
independently control the LHCP and RHCP components of
the radiated/received waves. This antenna, described in detail
in Appendix I, will permit exploring the polarization response
of the proposed time-modulated device.

Fig. 5 illustrates the ADS circuit model employed to
interconnect the time-modulated antenna with the reference
antenna described in Appendix I. Interchanging such refer-
ence antenna with another one (i.e., a patch or a horn antenna)
simply requires updating the S parameters that describe the
reference device. To simulate free-space propagation along
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the broadside direction that connect both antennas—assuming
they are perfectly aligned— the orthogonal TE and TM Floquet
modes from both linear antenna models are connected
using transmission lines with a characteristic impedance of
Zy = 1207 Q2. In the model, port 1 is assigned to the RF
signal that feeds the time-modulated antenna whereas ports
2 and 3 are related to the LHCP and RHCP components
of waves radiated/received by the linear reference antenna.
The entire set-up is then simulated using LSSP, which
measures nonlinear transmission/reception of fields between
the time-modulated and reference antennas in a similar
fashion as the frequency offset mode of a performance
network analyzer (PNA). This setup permits to analyze the
amplitude and phase of all field components radiated and
received by the antennas under test.

Keysight PNAX

Signal Generator ' © ()
p B St
1
ﬁ] = Bias Tee
B fotin

Varactor

DC Bias
9. Amplifier 1
{0\ 180deg Balun N

LHCP RHCP

Phase Shifter

i Time-modulated
. Antenna

Reference Antenna

Phase Shifter

FIGURE 6. Measurement setup to characterize the transmission response
of the proposed time-modulated antenna. A PNAX excites the antenna at
fo whereas a signal generator provides the modulation signal fp, which is
split into two signals using a power divider. Phase shifters are then
employed to manipulate the phases of the modulation signals whereas
180° baluns provide the required out of phase signals. The reference
antenna (see Appendix I) is aligned at the normal direction of the
modulated patch and split the received signal into LHCP and RHCP
components that are then routed toward ports 2 and 3 of the PNAX.

V. EXPERIMENTAL SETUP

Fig. 6 shows an overview of the proposed experimental
set-up. In all cases, microwave absorbers (not shown) are
located around the antenna to minimize unwanted scattering.
In the proposed set-up, a 4-port Keysight PNAX N5247A is
used to simultaneously control the proposed time-modulated
patch antenna as well as the reference antenna, providing
quantitative information in amplitude and phase of the
radiated fields. In this work, we will focus on the broadside
radiation to explore the antenna polarization response. Note
that a single time-modulated antenna element provides a
reciprocal radiation pattern in amplitude [38] and therefore,
obtaining radiation pattern is not an objective of this work.
Prior to measurements, a standard short-open-load-through
(SOLT) calibration is applied [30], [31]. Time-modulation
signals oscillating at f,, = 320 MHz are obtained with a
Hewlett Packard E4433B signal generator and fed to the
antenna CPWs. Varactors are biased with 1.53 volts obtained
from a standard DC voltage source. Power amplifiers and
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Mini-Circuits ZXPHS-431 phase shifters are employed to
obtain the desired amplitude and to impart phase shifts
¢y and @, to the modulation signals, respectively. Along
each direction, Mini-circuits TCM2-33WX baluns impose
the 180° phase different to the modulation signals.

In transmission mode, the PNAX is configured using the
frequency offset mode so that the receivers (P2 and P3 in
Fig. 6) are set to measure a swept signal with frequency fo+f,
(2.1-2.3 GHz) while the transmit port (P1) frequency is swept
at fo (1.781-1.981 GHz). The 10 MHz reference oscillators
of the PNAX and signal generator are coupled together to
phase lock the signals of the instruments. In reception, the
PNAX is also configured in the offset mode but feeding
now the reference antenna with a signal frequency fo + f
(2.1-2.3 GHz) through ports 2 and 3 and setting the receiver
in port 1 to measure signals at fo ~ 1.781-1.981 GHz.

VI. TUNABLE NONRECIPROCAL RESPONSE OF
TIME-MODULATED ANTENNAS

This section explores the performance of the proposed
antenna and its use in a simple communication system. The
antenna is first characterized in terms of matching, efficiency,
and ability to independently control the polarization of radi-
ated fields along orthogonal directions. Then, nonreciprocal
polarization in transmission/reception is demonstrated versus
frequency, obtaining isolation levels >40 dB. Finally, we will
show how the antenna radiates and receives fields with
any desired ellipticity while maintaining its nonreciprocal
behavior.

——Simulations
~——Measurements
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FIGURE 7. Electromagnetic response of the proposed time-modulated
antenna. (a) Scattering parameters upon time-modulation. (b)-(c)
Simulated (solid lines) and measured (markers) phase of the x- and

y- components of the radiated electric field versus the phase of the
modulation signals: (a) ¢x, keeping ¢y = 0°; and (b) ¢y, keeping px = 0°.
Results confirm independent phase control of orthogonal radiated fields
through the phase of the signals that modulate the path antenna.

A. CHARACTERIZATION OF TIME-MODULATED ANTENNAS

Fig. 7(a) shows the measured scattering parameter Sij
of the antenna upon time-modulation. Results confirm an
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excellent matching at the design frequency of 1.89 GHz.
At that frequency, the input signal is up-converted to
2.21 GHz and radiated to free-space. To verify that this
is indeed the case, we employed a standard patch antenna
as reference antenna in the experimental schematic shown
in Fig. 6 — see [38] for additional details. Strong radiation
toward broadside direction is confirmed at 2.21 GHz with
a total of ~3 dB of loss with respect to a common patch
[30], [31]. Such losses arise due to (i) presence of non-ideal
varactors, capacitors, and power dividers; and (ii) frequency
conversion to unwanted harmonics. The amount of loss and
associated loss mechanisms are comparable to those found
in time-modulated antennas that do not exhibit polarization
control [38].

To explore the polarization response of the antenna,
we employed a linearly polarized horn as a reference antenna
in our experimental set-up. The antenna is aligned with
respect to the time-modulated patch and carefully rotated
to only receive x- or y-directed fields. Fig. 7(b) [Fig. 7(c)]
shows measured and simulated phases of the x-component
[y-component] of the received electric fields when the
phase ¢ [¢y] of the modulating signals is varied using
the phase-shifter and the orthogonal one is set to zero. For
simplicity, the phase reference of all signals transmitted
in this simple channel has been set to zero for a zero
value of the phase shift. Measured data confirm that the
phase response of the y polarized electric field component
changes linearly with the phase ¢, of the time-modulated
signal directed along the y-axis, while it remains unchanged
versus the phase of the low-modulation signal along the x-
axis, ¢,. Similar response can be obtained for x-polarized
radiated fields with respect to the ¢, and ¢, phases,
respectively. This study demonstrates that the phase of
each field component can be controlled in an independent
manner with the phase of the corresponding time-modulating
signal.

B. NONRECIPROCAL RESPONSES IN POLARIZATION

Fig. 8 explores the nonreciprocal polarization response of
time-modulated antennas versus frequency when transmitting
and receiving CP waves. This scenario is explored exper-
imentally using the schematic shown in Fig. 6, employing
the patch antenna combined with the 90° hybrid coupler as
reference device (see Appendix). This structure is partic-
ularly useful to isolate the LHCP and RHCP components
of the fields, and it is applied here to experimentally
explore the transmission and reception of RHCP and LHCP
radiation and to demonstrate isolation at the polarization
level.

The top row of Fig. 8 plots the normalized response
of the time-modulated antenna in transmission. In the
left (right) panel, the antenna is configured to radiate a
RHCP (LHCP) wave by setting the phase difference between
the time-modulating signals to Ag! = +90° (A¢' =
—90°). The radiated signal is received by the reference
antenna, where the LHCP and RHCP components of the
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FIGURE 8. Nonreciprocal polarization response of the proposed antenna
versus frequency. Measurement set-up follows Fig. 6. (a)-(b) Transmission
mode. The time-modulated antenna radiates RHCP (LHCP) at f + fmy by
enforcing a phase shift of Ap! = +90° (At = —90°) between the
modulation signals. The radiated signal is received by the reference
antenna and split into LHCP and RHCP components. (c)-(d) Reception
mode. The reference antenna radiates first LHCP waves at f; + fp, that are
received by the time-modulated antenna and down-converted to f,. The
phase-shift between the modulation signals is set to Apf = +90° and
Agt = —90° in panels (c) and (d), and therefore the antenna is tuned to
receive LHCP and RHCP waves, respectively. Results are also computed
when the reference antenna radiates RHCP waves. Simulation and
measured data are shown using dashed and solid lines, respectively.

fields are separated and sent to the PNAX. At the targeted
operation frequency of fy + f, = 2.21 GHz, measured and
simulation data confirm that the received signal is strongly
RHCP (LHCP) whereas the LHCP (RHCP) component is
over 40 dB smaller. The antenna response in reception mode
is shown in the bottom row of Fig. 8. In the measurements,
the reference antenna alternatively radiates RHCP and LHCP
waves at fo + f- The antenna receives the waves and
down converts them to guided waves at fy. In the left
(right) panel, the time-modulated antenna maintains a phase
difference between time-modulating signals of Ag’ = +90°
(Ag! = —90°), and therefore is tuned to receive LHCP
(RHCP). Both simulated and measured results confirm that
this is indeed the case, and that the antenna reception is max-
imum for LHCP (RHCP) waves, whereas orthogonal RHCP
(LHCP) waves are received with over —40 dB of amplitude
difference.

Nonreciprocity in polarization immediately follows from
Fig. 8: setting Agp’ = +90°, the antenna radiates RHCP
waves and receives waves with the opposite ellipticity, i.e.,
LHCP; on the other hand, when A¢’ = —90°, the antenna
radiates LHCP waves and receives RHCP. Polarization
isolation over 40 dB is obtained in all cases. Another
remarkable feature is the high polarization purity exhibited by
the antenna when configured to operate either in transmission
or reception.
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C. POLARIZATION CONTROL

In this subsection, we demonstrate the possibility of radiating
and receiving fields with arbitrary polarization ellipticity
(see highlighted green circle in Fig. 2) while keeping the
nonreciprocal response. Such functionality can be obtained
by manipulating the phases of the modulating signals,
@y and @y.
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FIGURE 9. Manipulating the polarization of transmitted and received
waves using the proposed time-modulated antenna. Measurement set-up
follows Fig. 6. Results are calculated for transmission (top row) and
reception (bottom row) modes for waves propagating in free space at

fo + fm = 2.21 GHz. On the left column, responses are plotted versus the
phase ¢x of the time modulating signals keeping ¢y = 0, whereas on the
right column, results are plotted versus ¢, keeping ¢x = 0.

(a)-(b) Transmission mode. The time-modulated antenna radiates with a
polarization state determined by the phase shift of the modulation signal
(see upper axis for a reference). Signals received by the reference
antenna are then decomposed into RHCP and LHCP components.

(c)-(d) Reception mode. The reference antenna radiates first LHCP and
then RHCP waves at f; + f that are received by the time-modulated
antenna and down-converted to f,. Depending on the phase-shift
between the modulation signals, the antenna is tuned to receive waves
with a fixed polarization state (see upper axis of reference). Top insets
illustrate how the polarization state of the transmitted/received waves
evolve on the Poincare sphere as the phase of the time-modulated
signals changes. Simulation and measured data are shown using dashed
and solid lines, respectively.
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Let us first consider the transmission mode. The PNAX
is used to excite port 1 of the proposed antenna with
a fixed frequency of fy = 1.89 GHz. The signal gen-
erator provides time modulated signals with frequency
fm = 320MHz to the antenna CPW ports. In Fig. 9(a),
the phase shifter applied to the x-directed time-modulated
signals is DC biased (Fig. 6) to provide an increasing phase
shift ¢, while keeping ¢, = 0. This corresponds to moving
counterclockwise in the highlighted states shown in the
Poincaré sphere [see inset in Fig. 9(a)] that are radiated
to free space. The RHCP and LHCP components of the
signal received by the reference antenna are then routed to
port 2 and 3 of the PNAX. When ¢, = 0°, the antenna
is set to radiate +45° linearly polarized waves and thus
the receiver collects an equal amount of LHCP and RHCP
component — each with a magnitude of —3 dB. As the
phase shift ¢, increases, the transmitted RHCP component
increases whereas the LHCP decreases. At exactly ¢, =
4-90°, the radiated signal acquires an almost pure RHCP state
with an orthogonal LHCP component over —50dB lower.
Increasing the phase ¢, further has the opposite effect, as the
LHCP component gets larger while the RHCP decreases.
Both components intersect again with an amplitude of —3dB
when ¢, = +180°. At that point, the antenna radiates a
+45° linearly polarized state. Larger ¢, will decrease further
the RHCP component and increase the LHCP, which will
be maximum when ¢, = +270°. This state reveals that
the orthogonal RHCP components is over —45 dB weaker
and confirms the high polarization purity of the radiated
signal. Greater ¢, phase shifts complete the circle along
the Poincaré sphere. In all cases, excellent agreement has
been found between simulations and measurements. Fig. 9(b)
repeats this experiment but increasing the ¢, phase shift while
keeping ¢, = 0°. In this scenario, the antenna again radiates
electromagnetic states with all possible ellipticity values. The
main difference is that the rotation over the radiated states in
the Poincaré sphere is now clockwise [see inset in Fig. 9(b)]
with respect to the phase ¢y.

In reception mode, the PNAX is first configured to
feed the port 2 of the reference antenna with a frequency
fo + fm = 2.21 GHz while keeping port 3 terminated
with a 5092 load. Therefore, the antenna radiates a LHCP
signal. In the experiment, we monitor the signal that has been
received by the time-modulated antenna, down-converted to
fo = 1.89 GHz and routed to port 1 of the PNAX. In Fig. 9(c)
(solid blue line), we explore this situation versus the phase
¢, while keeping ¢, = 0. Due to the opposite ellipticity
during transmission and reception, the antenna receives now
electromagnetic waves with an ellipticity that is moving
clockwise with respect to ¢, [see inset of Fig. 9(c)]. When
the phase is set to ¢, = {0°, 180°}, the antenna receives the
{+45°, —45°} linearly polarized wave component of the
transmitted RHCP wave that corresponds to a —3 dB
amplitude. When ¢, = 270°, the received signal is maximum
as the antenna is tuned to received LHCP waves. On the
contrary, the received signal is over —40dB weaker when the
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antenna is configured to receive RHCP signals (by setting the
phase ¢, = 90°) that are orthogonal to the radiated LHCP
ones.

Next, the reference antenna is configured to radiate RHCP
waves [solid red line in Fig. 9(c)]. To this purpose, its
port 2 is loaded with 502 while its port 3 is fed by the
PNAX with a frequency fy + fi,, = 2.21 GHz. Simulated
and measured data follow a similar pattern as described
above: maximum (minimum) reception appears when the
antenna is tuned to received RHCP (LHCP) with ¢, = 270°
(px = 0°) whereas the +45° (—45°) linearly polarized
component of the transmitted RHCP is received when ¢, is
set to 0° (180°). The experiment is repeated in Fig. 9(d) by
varying now the phase ¢, while keeping ¢ = 0°. In such
configuration, the antenna receives waves with an ellipticity
moving counterclockwise with respect to ¢, (see inset).
Experimental and simulated data show again an excellent
agreement, demonstrating the ability of the antenna to receive
waves with any polarization state and minimal cross-coupling
while maintaining its nonreciprocal nature.

VIi. CONCLUSION

This paper has introduced and experimentally demonstrated
the concept of antennas exhibiting nonreciprocal polariza-
tion response when operated in transmission or reception.
These structures support surface currents along orthogonal
directions that exhibit opposite phase profile in transmis-
sion/reception upon time-modulation. As a result, the antenna
is capable of radiating waves with any polarization ellipticity
while simultaneously receiving waves with opposite elliptic-
ity. This process is tunable by changing the phase shift applied
to the low-frequency modulation signals. The proposed
concept has been implemented using a time-modulated
square patch antenna that exploits even/odd symmetries to
maximize frequency conversion. Simulated and measured
results confirm isolation levels over 40 dB in transmission and
reception, as well as the ability to generate/receive waves with
desired ellipticity and high polarization purity. We expect this
antenna to find a wide variety of polarimetric applications,
including material analysis, radar, sensing, imaging, and
communication systems.

It should be noted that the main goal of this paper was
to demonstrate nonreciprocal polarization control, and thus
the devices were not fully optimized for other applications.
Future antennas will benefit from available techniques based
on time-modulation [54], [55] or switched networks [56], [57]
to enhance their operational bandwidth and reduce loss
while keeping their nonreciprocal nature. Additionally, the
proposed concept can be extended to account for any
polarization state of the Poincaré sphere. To this purpose,
the time-modulated antenna requires the ability to arbitrarily
modify the amplitude of each orthogonal surface currents
induced in its surface. In the proposed prototype, this
can be accomplished by manipulating the 180° phase
difference between time-modulated signals aligned along
the same direction (x, y). Indeed, it has been demonstrated
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that controlling such phase permits to manipulate the
intensity of the received/radiated fields [38]. However, this
solution increases the prototype complexity by requiring
two additional phase shifters and additional control signals.
Moving beyond, we envision that future array systems
may integrate nonreciprocal antenna elements to obtain
fully tailored radiation patterns able to exhibit drastically
different responses in both amplitude and polarization while
transmitting and receiving electromagnetic waves.

APPENDIX

Fig. 10 describes a dual-fed microstrip patch antenna com-
bined with a 90° hybrid coupler able to achieve circular polar-
ization and to split LHCP and RHCP components [30]-[31].
Figs. 10a-b show the dimensions of the structure and
a picture of a prototype, respectively. Port 2 and 3 are
associated with the LHCP and RHCP components of the
fields, respectively. Fig. 10c shows the measured scattering
parameters, confirming excellent matching to free-space
and very low cross coupling, whereas Fig. 10d shows the
numerically simulated axial ratio.
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FIGURE 10. Reference antenna composed of a linear and dual-fed patch
antenna integrated with a 90° hybrid coupler [30], [31]. Ports 2 and 3
control the LHCP and RHCP component of the radiated waves,
respectively. The antenna is printed on a Rogers RT/duroid 5880 substrate
with a thickness of 1.575 mm, a relatively dielectric constant of 2.2, and a
loss tangent of 0.0009. (a) Antenna schematic and (b) picture of a
fabricated prototype. (c) Measured scattering parameters and

(d) simulated axial ratio. Antenna dimensions (in mm) are (in mm):
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