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ABSTRACT We present a new graph compression scheme that intrinsically exploits the similarity and
locality of references in a graph by first ordering the nodes and then merging the contiguous adjacency lists
of the graph into blocks to create a pool of nodes. The nodes in the adjacency lists of the graph are encoded
by their position in the pool. This simple yet powerful scheme achieves compression ratios better than the
previous methods for many datasets tested in this paper and, on average, surpasses all the previous methods.
The scheme also provides an easy and efficient access to neighbor queries, e.g., finding the neighbors of
a node, and reachability queries, e.g., finding if node u is reachable from node v. We test our scheme on
publicly available graphs of different sizes and show a significant improvement in the compression ratio and
query access time compared to the previous approaches.

INDEX TERMS Graph compression, merging adjacency lists, node ordering, Elias-Gamma encoding.

I. INTRODUCTION
In the last few years, big graphs have become a focus of
intense research activities, performed by both academic and
industrial research centers. Big graphs include Web graphs,
Online Social Networks, Collaboration Graphs, Technolog-
ical Networks, and many more. Needless to say, big graphs
may contain billions of nodes and the efficient processing
of these huge objects is becoming increasingly important
for different research domains. Compressing such objects
can accelerate graph processing by reducing the amount of
I/O accesses and memory requirements to store it. In the
past, compression techniques were developed specifically for
Web graphs that rely on a specific ordering of the nodes
(lexicographical URL ordering) and produce good compres-
sion ratios [1], [2].

Two properties of lexicographical URL ordering have been
observed to hold:

• Similarity: proximal pages in the lexicographic ordering
tend to have common neighbors.

• Locality: a page is likely to point to pages nearby in the
lexicographic ordering because of intra-domain links.
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These observations were exploited by compression tech-
niques [1]–[3] to compress a Web graph down to a few
bits per link for storage. With the success of lexicographical
URL ordering, it was presumed that node ordering plays a
crucial role in the performance of a compression scheme.
However, the lexicographic ordering of URLs forWeb graphs
is both natural and crucial. The question is: can we find such
orderings for other graphs, in particular, for social networks?

The two state-of-the-art techniques [4], [5] developed for
social graphs try to answer this question by introducing shin-
gle ordering [4] and ordering based on Layered Label Propa-
gation [5]. Chierichetti et al. [4] address social networks and
prove hardness results for different node orderings. They
propose BackLinks compression scheme that extends Boldi
and Vinga’s BV scheme [1] and targets directed networks
in their work. BackLinks scheme takes advantage of recip-
rocal edges in a directed graph. Their main contribution is
the shingle ordering for social networks that preserves both
locality and similarity. Boldi et al. [5] propose Layered Label
Propagation (LLP), a compression-friendly vertex ordering
for social networks. LLP is iterative and produces a sequence
of node orderings; at each iteration, the propagation algorithm
is run with a suitable value of its parameter and the resulting
labeling is then turned into an ordering of the graph that keeps
nodes with the same label close to one another. LLP ordering

58904
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0024-1704
https://orcid.org/0000-0003-4746-3179


M. I. Yousuf, S. Kim: Pool Compression for Undirected Graphs

also preserves both locality and similarity in social net-
works. Both of these techniques take advantage of reference
compression [1] and compress the adjacency list of a node
with reference to the adjacency list of another node in the
ordering.

In this paper, we propose a new scheme for compressing
undirected social graphs (e.g., friendship graphs, collabora-
tion graphs). We go beyond the reference compression and
make a pool of nodes by merging the adjacency lists of
nodes within a window (at least in this aspect our paper
resembles this study [6]). However, our approach differs in
two aspects. 1) The authors in [6] assumed that the order
of nodes in a graph is irrelevant but we observe that a good
node ordering preserves locality and similarity in graphs and
when we merge the adjacency lists of ordered nodes, we can
removemore duplicate values than in the case when the nodes
are unordered. 2) Instead of using the flag bits(see [6]) to
reconstruct the original lists, if we use the position of nodes in
the merged lists we can not only achieve a better compression
ratio but can also reduce the time to answer a neighbor query
by many folds. Based on these two observations we propose a
new graph compression algorithm that creates a pool of nodes
by merging the adjacency lists of the graph and we encode
the position of nodes in the pool to reconstruct the original
graph. We call this algorithm Pool Compression and show
that it compresses a graph to a lesser number of bits than the
previous approaches and improves the query access time by
many folds.

The rest of the paper is organized as follows. In section 2,
we present our approach to compressing graphs in detail.
In section 3, we give the details of the real-world
datasets used and the baseline methods for comparison.
In section 4, we present the experimental results of com-
pressing real-world social graphs by our scheme and compare
it with the previous techniques. In section 5, we discuss
the related work from literature. We conclude the paper in
section 6.

II. POOL COMPRESSION
Pool Compression (PC) incorporates two main ideas. First,
it orders the nodes in the graph using a node ordering scheme,
e.g., Breadth First Ordering (BFS), Depth First Ordering
(DFS), Shingle Ordering [4] etc. Second, it merges the
adjacency lists of nodes in a window and creates a pool of
nodes so that we can encode the position of nodes in the pool
to compress a graph. Algorithm 1 presents the pseudo-code
of PC. We detail the algorithm as follows:

1. Input: We read the input graph in the form of an adja-
cency list. We assume that the node IDs are integers.

2. Order:We order the nodes in the graph.Wewill identify
each node in the graph with its position in the ordering.

3. Pool of Nodes: We merge the adjacency lists of nodes
within a window to create a block of integer IDs. Instead of
storing the integer IDs, we store the difference between them.
Next, we apply Elias Gamma encoding [7] and combine the
blocks in a pool. While encoding, each block is preceded

Algorithm 1 Pool Compression (PC)
Input: Graph (G), Window size (w)
Output: Pool of nodes (Pool), Position of nodes (Pos)

1: Variables:
list : list of neighbors of a node
block : block of merged lists
|G| : size of G
ej : jth element of a list

2: Pool = null
3: Pos = null
4: Order the nodes in G
5: for (i = 1; i ≤ |G|; i = i+ w) do
6: q = di/we
7: blockq = listi ∪ listi+1, . . . ,∪ listi+w−1
8: blockq = RemoveDuplicate(blockq)
9: blockq = DeltaEncode(blockq)
10: blockq = EliasGamma(blockq)
11: Pool = Pool ∪ blockq
12: end for
13: for (i = 1; i ≤ |G|; i = i+ 1) do
14: q = di/we
15: for (j = 1; j ≤ |listi|; j = j+ 1) do
16: Posj = GetPosition(ej, blockq)
17: end for
18: Posj = DeltaEncode(Posj)
19: Posj = EliasGamma(Posj)
20: Pos = Pos ∪ Posj
21: end for

by the total number of entries in the block to make it self-
delimiting.

4. Position of Nodes: Given the adjacency list of a node,
we get the position of each node in the corresponding block
in the pool. We store the difference between the positions of
nodes and apply Elias Gamma encoding. We also encode the
degree of a node to make it self-delimiting.

5. Output: PC outputs the pool of nodes and the position
of nodes in the pool. In order to reproduce the original
graph from the compressed PC graph, we need these two
files.

Table 1 shows the working of PC with window size w = 4.
The toy graph consists of 8 nodes and 20 edges. Table 1(a)
shows the original graph in the adjacency list format whereas
Table 1(b) shows the same graph after shingle node ordering.
We thenmerge the adjacency lists of nodes within the window
to create blocks and combine them into a pool of nodes
as shown in Table 1(c). We apply Delta Encoding to the
members of the pool in each block. In order to make the
pool self delimiting, we also encode the number of entries
in each block. Finally, the graph is compressed by getting
the position of each node in the corresponding block in the
pool and by applying Delta Encoding as shown in Table 1(d).
The degree of nodes is also encoded to make the position list
self-delimiting.
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TABLE 1. Working of pool compression.

As mentioned in the third and fourth step of the algorithm
above, we apply Elias Gamma encoding [7] to encode and
store the graph. To represent a number x, Elias Gamma
uses 2 ∗ log2x + 1 bits. In Table 1(c), we also present the
number of bits required for Elias Gamma encoding of the
pool data. It should be noted that the overlapped numbers
in the pool belong to different blocks. For example, node 2,
3, 4, 6, and 7 belong to both block 1 and 2 in Table 1(c).
We encode and store them twice as shown in the table.
Similarly, Table 1(d) shows the number of bits required for
Elias Gamma encoding of the position data.We need a total of
93 bits to store the pool and position data under Elias Gamma
encoding. Therefore, we need 93/20 = 4.65 bits per edge
to store this graph under PC scheme. To give a theoretical
estimate, we consult Elias Gamma encoding method and
note that encoding integer 1 needs 1 bit, encoding next two
integers, i.e., 2,3 needs 3 bits, encoding next four integers,
i.e., 4,5,6,7 needs 5 bits and so on. Therefore, we can write

Total Bits Required = (# of 1s) + 3(# of 2s, 3s)

+ 5(# of 4s, 5s, 6s, 7s)

+ 7(# of 8s to 15s)+ . . . (1)

Equation 1 shows that as x increases, we needmore number
of bits to encode it. It seems that a compression scheme that
orders the nodes in such a way that two consecutive node IDs
have a smaller gap is likely to give better compression ratios.
If we apply eq. 1 to our example on Table 1(c & d), we find
that we need 24 + 3(13) + 5(6) = 93 bits to encode this toy
graph. It is clear that the greater the number of 1s we have in
our data the lesser number of bits are required to encode it.

This is the reason we apply this Elias Gamma encoding to the
gaps or differences between numbers.

To produce the original graph from the compressed graph,
we need 1) pool data and 2) position data. To continue with
the toy example of Table 1, we need Elias Gamma encoding of
the last columns of Table 1(c & d). It will have all the required
information such as total entries in the pool and its members,
degree of a node and the position of its neighbors in the
pool. We identify a node by its position in the ordering, e.g.,
node 7 in Table 1(d) is on 3rd position. Similar to [8], we use a
hash table for this purpose. A hash table H(key, value) returns
the value (i.e., position of a node in the ordering) when given
the key (i.e., node ID). For example, to reverse node 7, we get
its position in node ordering using the hash table and find that
it is on 3rd position. Since the window size is 4 in Table 1,
therefore, we calculate that node 7 (3rd position in ordering)
is in block 1. Using position data, we get that its degree
is 3 and we also get the position of its neighbors in the pool.
Consulting pool data, we find that nodes 1, 6 and 8 are on
position 1, 5 and 7 in block 1 of pool data and return the same
as the neighbors of node 7. Similarly, using Elias Gamma
encoded data, we can reverse construct the whole graph.

III. DATASETS AND BASELINE METHODS
We perform our experiments on 15 real graphs available
at [9], [10]. The basic properties and description of these
graphs are given in table 2. In these graphs, there is a
co-purchase network (Amazon), a lexical network (Word-
Net), a technical network (Skitter) and a co-authorship net-
work (DBLP). All other networks are social networks.

58906 VOLUME 10, 2022



M. I. Yousuf, S. Kim: Pool Compression for Undirected Graphs

TABLE 2. Real-world graphs used in the experiments.

A. BASELINE METHODS
We use the following state-of-the-art compression schemes
as our baselines to compare against PC. We chose to com-
pare against these techniques because these are technically
re-ordering schemes and also exploit the similarity and local-
ity of nodes in a graph.

1) LIST MERGING (LM)
The List Merging(LM) compression scheme [6] merges the
adjacency lists to create a long list and then uses flag bits
to describe to which input lists a given integer on the output
list belongs. We implement the LM-bitmap variant of LM.
Unless specified otherwise, we use 64 for the chunk size
(or window) parameter, as recommended in the original
work [6]. Asmentioned in the introduction, PC resembles LM
in the list merging part, however, PC uses position bits instead
of flag bits to describe the position of a node in the merged
list. We will see in the experimental section that replacing
flag bits with the position bits improves the compression ratio
a lot.

2) BACKLINKS (BL)
The Backlinks (BL) compression scheme presented in [4].
Briefly, BL orders nodes in shingle ordering and applies
BV format [1] to compress a graph. We use double shin-
gle ordering as it gives better results [4]. There is one
minor change in our implementation of the BL scheme: we
do not have reciprocal edges because we have undirected
graphs.

3) LAYERED LABEL PROPAGATION (LLP)
The compression scheme based on Layered Label Propaga-
tion (LLP) presented in [5]. Briefly, LLP attempts to obtain a
labeling that considers clusters of various resolutions. It then
labels and orders nodes according to the clusters they belong
to. This way LLP preserves both locality and similarity.

4) SLASHBURN (SB)
The Slashburn (SB) compression scheme presented in [11]
proposes a compression-friendly ordering of nodes by
exploiting the hubs and spokes of the hubs. With this order-
ing, we can find a compact representation of the adjacency
matrix, which in turn leads to good compression. SB uses
information theoretic lower bound for encoding the bits for
storage.

IV. EXPERIMENTS
In this section, we present the experimental results to answer
the following questions:

1) Howmuch can we improve by ordering the nodes before
applying LM.

2) How much improvement can we obtain by replacing the
flags bits with the position bits in LM.

3) What is the effect of window size on PC.
4) How well does PC compress graphs compared to the

baseline methods.
5) How efficiently can we process neighbor queries and

reachabiity queries on the compressed graphs.
All the experiments were run on a machine equipped with

an Intel Core i7 CPU and 64 GB of RAM. All presented
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algorithms were implemented in Java and launched on the
64-bit JVM 7. All the experiments were run and compiled
in the same environment. As common in graph compression,
we present the compression ratios in bits per edge. While
presenting results, we will use the notation PC(w, order)
where w is the window size, e.g., 8, 16, 32 etc., and order
means the node ordering, e.g., BFS, DFS, Shingle etc.

A. LIST MERGING WITH NODE ORDERING
We perform an experiment in which we order the nodes
before applying LM. We set the window size (or chunk size
in [6]) w = 64 and order the nodes using DFS, BFS and
Shingle ordering. We present the results in Table 3 in the
form of bits per edge for all the datasets along with the
percentage improvements relative to the original LM [6].
The table shows that ordering the nodes in the graph before
merging lists improves the original LM. For all datasets,
LM with a node ordering compresses a graph to a lower
number of bits per edge than the original LM. On average,
DFS, BFS and Shingle ordering improve over LM by 6%,
5% and 8% respectively. This experiment supports our first
observation, as mentioned in the introduction, that a good
node ordering preserves locality and similarity in graphs and
when we merge the adjacency lists of ordered nodes, we can
save more number of bits by removing more duplicate values
than in the case when the nodes are unordered.

B. LIST MERGING WITH POSITION BITS
In this experiment, we replace the flag bits of LM with the
position bits. In other words, we merge the lists as per the
LM compression scheme, however, we describe a node by
its position in the long merged list and encode it as described
in Algorithm 1. The window size is set to w = 64. We present
the results in Table 4. We see that position bits improve LM
in all the datasets except WordNet and Skitter. On average,
LMwith position bits improves over LMwith flag bits by 5%.
This experiment supports our second observation that many
bits in the flag sequence could not be set and hence a large
number of bits in the flag sequence go in waste. It has been
pointed out in the original LM that a large number of list
indicators have only one set bit in the flag sequence [6].When
we use flag bits, we need w number of bits to represent each
entry in the long merged list. By replacing flag bits with the
position bits and storing the difference between successive
positions, we need far less than w bits per entry in the merged
list and as a result, we can save a significant number of bits
per edge when storing the graph.

C. THE EFFECT OF WINDOW SIZE
In this experiment, we test Pool Compression at different
window size. We set the window size w = 8, 16, 32, 64 and
apply different node ordering in PC. We find that DFS node
ordering gives better results, thoughmarginally, than BFS and
Shingle ordering, therefore, we show the results in Table 5
for DFS ordering only. The results show that as the window
size increases, generally, PC needs a lesser number of bits per

TABLE 3. The number of bits per edge achieved when the nodes are
ordered before applying List Merging compression scheme. The window
size is 64, i.e., we merge 64 adjacency lists. The table also shows the
percentage improvements relative to List Merging without any node
ordering, i.e., original LM. Boldface values are the best results.

TABLE 4. The number of bits per edge achieved when the flag bits are
replaced with the position bits in List Merging compression scheme. The
window size is 64, i.e., we merge 64 adjacency lists. The table also shows
the percentage improvements relative to List Merging with flag bits, i.e.,
original LM. Boldface values are the best results.

edge for the same graph. The window size of w = 32 seems
the best for PC because when w > 32, the size of the
block of merged lists increases and hence we need more bits
to represent the position of a node somewhere far in that
block. It would be interesting to mention that, unlike LM, the
window size in PC could be any integer number greater than
one. It should be noted that the choice of power of 2 window
size for experimentation is simply arbitrary and mainly for
the purpose of direct comparison with the LM compression
scheme as LM has limitation of power of 2 window size.
We can use any integer number greater than one for win-
dow size. This experiment sheds some light on the relation
between windows size and the number of bits needed to
represent a graph. It could be an interesting future extension
to find an optimal window size that works for all types of
graphs.

D. COMPARISON WITH THE BASELINE METHODS
In this experiment, we compare PCwith the baseline methods
BL [4], LLP [5] and SB [11]. For LM, we use a window
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TABLE 5. The effect of window size on the number of bits per edge in
Pool Compression with DFS ordering. Boldface values are the best results.

TABLE 6. Comparison of Pool Compression with the previous
compression schemes. For LM, we present the best results achieved with
a window size of 64. For PC, we order the nodes in DFS order and use a
window size of 32 for the best results. The other methods are
implemented as presented in their original work. Boldface
values are the best results.

size w = 64 and for PC we use DFS ordering and
w = 32, i.e., PC(32, DFS) as these settings give the best
results for these compression schemes.We present the results
in Table 6. We see that PC outperforms in eight datasets
whereas SB performs the best in five datasets and LM in
two. The reason that SB performs better than PC in some
datasets is that SB works on the adjacency matrix of a graph
and uses information theoretical lower bound to compress the
adjacency matrix. On average, PC gives the lowest number of
bits per edge among these methods and gives a nearly 13%
improvement over LM in compressing a graph.

E. QUERY PROCESSING TIME
In general, a graph query is a computable function that returns
some specific information about the graph. In this experi-
ment, we consider two classes of queries commonly used in
practice. 1) neighborhood queries, to find nodes connected to
a given node in a graph and 2) reachability queries, to answer
whether node u is reachable from node v in G in Boolean
form. In the first version of this experiment, we measure the
time to process a neighbor query in PC(32, DFS), LM and

BL compressed graphs. A typical query seeks the immediate
neighbors of a node, therefore, we aim to answer a simple
query such as: who are the immediate neighbors of node u?
Since, BL and LLP differ only in the ordering of nodes, there-
fore, their query handling ability is very close to each other
and we only consider BL results for comparison. We drop
SB because it does not support neighbor queries rather it
was designed to boosts the performance of matrix-vector
multiplication of graph adjacency matrices [11]. The results
are presented in table 7. The table shows the average time
taken in microseconds (µs) to process a query where the time
is averaged over 10,000 random queries. We see that PC is
many folds efficient than LM and BL for handling queries.
On average, PC takes 1.69µs to process a query while LM
and BL need 38.35µs and 8.72µs respectively to answer such
queries. In other words, PC can access data nearly 22 times
faster than LM and 5 times faster than BL. The reason is that
PC can directly access the neighbors of a node by using the
position of nodes in the pool whereas, in the case of LM,
we need to decompress the flag sequence of every entry in
the long merged list to check if it belongs to the node in
question. In the case of BL, we need to query all the preceding
nodes in the prototype chains until a node is not prototyped
resulting in the slow serving of adjacency queries [4]. This
experiment shows that PC does not sacrifice time for better
compression ratios. Such neighbor queries can be extended
easily to answer Breadth First and Depth First searches.

In the second version of this experiment, we execute reach-
ability queries on PC graphs. We define a reachability query
on a graph G as a Boolean query that asks whether node u
is reachable from node v in G. We perform Breadth First
Search to find the connected components in the graph and
then execute reachability queries. The connected components
of an undirected graph can be identified in linear time. The
results are presented in Table 8. The table shows the average
time taken in microseconds to process a query where the
time is averaged over 10,000 random queries. Again, we see
that PC surpasses other compression schemes in executing
reachability queries. On average, PC processes a query in
22.14µs whereas LM and BL take 564.38 µs and 124.49 µs
respectively.

V. RELATED WORK
A large portion of research in graph compression is dedicated
to compressing Web graphs while recently research on com-
pressing social graphs is also getting its pace. The authors
in [2] introduced the idea of finding pages with similar sets
of neighbors in the context of compressing Web graphs and
applied the Huffman-based scheme to in-degrees to com-
press web graphs using reference encoding and log-encoding.
Randall et al. [3] suggested lexicographic ordering as a way
to obtain goodWeb graph compression, utilizing both similar-
ity and locality. Raghavan andGarcia-Molina [12] considered
a hierarchical view of the Web graph to achieve compression
while Suel and Yuan [13] adopted a structural approach to
compress Web graphs. One of the major contributions in
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TABLE 7. Average time in microseconds (µs) to process a neighbor query
in graphs compressed with different compression schemes.

TABLE 8. Average time in microseconds (µs) to process a reachability
query in graphs compressed with different compression schemes.

this direction was offered by Boldi and Vigna [1], who both
developed a generic Web graph compression framework that
takes into account the locality and similarity of Web pages
and obtained very strong compression performance. Next,
Boldi et al. [14] test several existing vertex permutations.
They also propose two new permutations based on the Gray
ordering. Moreover, Boldi et al. [5] observe that it is impor-
tant for high compression ratios to use an ordering of vertex
IDs such that the vertices from the same host are close to
one another and propose Layered Label Propagation (LLP),
a compression-friendly vertex ordering targeting social net-
works. Buehrer and Chellapilla [15] used the frequent pat-
tern mining approach to compress Web graphs and generate
virtual nodes from frequent itemsets in the adjacency data to
compress graphs effectively. Anh and Moffat [16] propose a
hierarchical scheme for compressing web graphs. The key
idea is to partition the adjacency arrays into groups of con-
secutive arrays. Then, sequences of consecutive integers in
each of the arrays are replaced with new symbols to the graph.
Similarly, the authors in [17] work on contiguous blocks of
adjacency lists and merge the block into a single ordered
list for a better compression ratio. Maneth and Peternek [18]
recently proposed a scheme that recursively detects substruc-
tures occurring multiple times in the same graph and uses

grammar rules to represent them. Moreover, they show that
some queries (e.g., reachability between two nodes) can be
resolved in linear time when they are executed over the gram-
mar, enabling speedups proportional to the compression ratio.
The main idea due to Asano et al. [19] is to identify identical
blocks in the adjacency matrix of a graph and then represent
it with a sequence of blocks combined with some metadata
information on the block type. Chierichetti et al. [4] provide
three contributions targeted at social network compression.
First, they prove hardness results about several types of ver-
tex reordering. Second, they propose the BL compression
scheme that extends the BV scheme from the WebGraph
framework [1]. BL takes advantage of reciprocal links. Third,
the notable contribution is the shingle ordering that preserves
both locality and similarity. Liakos et al. [20], [21] use the
fact that LLP reordering [5] enhances the locality with a large
‘‘stripe’’ around the diagonal that groups a large fraction of
edges. They use a bit-vector to represent these edges and
ultimately reduce space to store a network. Zhang et al. [22]
propose the bound-triangulation algorithm. The main idea is
to use a data structure that stores triangles efficiently. The
motivation is that many web graphs and social networks
contain a large number of triangles, thus priority placed over
storing this motif efficiently reduces the required storage.
Maserrat and Pei [23] argue that social networks should be
compressed in a way that they still can be queried efficiently
without decompression. Especially, neighbor queries, which
search for all neighbors of a query vertex, are the most essen-
tial operations on social networks. They develop an effective
social network compression approach achieved by a novel
Eulerian data structure using multi-position linearizations of
directed graphs.

GraphZip [24] is a graph compression and encoding frame-
work based on the study that real-world graphs often form
many cliques of a large size. Using this as a foundation, the
authors proposed a technique to decompose a graph, espe-
cially a sparse graph, into a set of large cliques, which is then
used to compress and represent the graph succinctly. Star-
based graph compression method [25] compresses a graph
by shrinking a collection of disjoint sub-graphs called stars.
The authors find that compressing a graph into the optimal
star-based compressed graph with the highest compression
ratio is NP-complete and propose a greedy compression algo-
rithm called StarZip. Another compression scheme [8] with
the same name, StarZip, was motivated by the observation
that that all subgraph structures such as stars, bipartite forms,
cliques, and chains etc. can be represented as star-shaped sub-
graphs. The star-shaped representation can easily be arranged
in the form of an inverted index, which enables the application
of different inverted list encoding techniques for compres-
sion. The authors apply this idea on streaming graphs and
shatter a graph into a uniform representation of stars to com-
press it. The work [26] introduces a representation of graphs
that uses one of the graphs automorphisms to describe a set
of its edges. Detecting automorphisms is a natural way to
identify redundant information presented in structured data.
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The work explores two different classes of graphs to cap-
ture automorphisms, i.e., symmetry-compressible graphs and
near-symmetry compressible graphs. The authors develop
two algorithms that can be used to compress real-world
graphs. Seo et al. [27] combine graph summarization and
graph compression approaches to propose a greedy algorithm
that reduces the size of a large graph by applying both the
techniques. They also propose a cost model for calculat-
ing the compression ratio considering both the strategies.
The proposed algorithm applies compression after summa-
rizing the nodes from the graph. An approach called Zuck-
erli [28] improves multiple aspects of WebGraph [1] by
using advanced compression techniques and novel heuristic
graph algorithms. First, Zuckerli entropy-encodes the inte-
gers instead of zeta-encoding ofWebGraph. Second, Zuckerli
splits the nodes of a graph into chunks. Inside each chunk,
degrees of the nodes are stored and represented by delta
encoding. Thirdly, Zuckerli uses reference lists and blocks
in the same way as WebGraph but with more sophistication.
Fourth, it uses run-length encoding of zero gaps for interval
representation. Finally, Zuckerli modifies the representation
of the residuals, which are stored via delta encoding. The
latest framework called Partition and Code [29] entails three
steps to compress a graph. First, a partitioning algorithm
decomposes the graph into subgraphs. Second, these are
mapped to the elements of a small dictionary on which we
learn a probability distribution. Third, an entropy encoder
translates the representation into bits.

Besides web and social graphs, the researchers also worked
on compressing Biological graphs, RDF graphs, Chemistry
graphs and Geological graphs etc. Interested readers are
referred to this recent survey [30] for details.

The main idea of vertex or graph relabeling is to change
the initial IDs of vertices so that the new IDs, when
stored, use less space. After relabeling, we can apply an
encoding scheme such as gap encoding or delta encoding.
Khalili et al. [31] relabel vertices so that similar vertices have
closer IDs. Second, they group similar vertices and collapse
edges between groups into single superedges. To keep track
of the collapsed edges they use an auxiliary data structure.
Dhulipala et al. [32] note that optimal compression-friendly
relabeling of vertices is NP-hard. They extend the work of [4].
They recursively bisect the graph and, once the size of the
partitions is small enough, compute a selected reordering for
each partition. Finally, these partial results are combined to
obtain the solution for the whole graph. Blandford et al. [33]
relabel vertices based on recursive partitioning of the input
graph to achieve compactness. Lim et al. [11] propose Slash-
Burn: a scheme that exploits high degree vertices and their
neighbors to achieve high compression ratios. They also pro-
pose vertex relabeling that uses this observation and results
in a space-efficient representation of the adjacency matrix.

VI. CONCLUSION
We presented Pool Compression (PC), a graph compres-
sor based on the merging of adjacency lists of nodes in

a graph and presenting the nodes by their positions in the
pool of merged lists. PC is a simple yet effective compres-
sor that achieves better compression results than the previ-
ous methods. PC not only beats its closest competitor, List
Merging [6], but also outperforms previous state-of-the-art
compression schemes. We also show that PC does not trade
space for time and the query access time in PC is many folds
lower than its competitors.
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