
Received May 14, 2022, accepted May 29, 2022, date of publication June 1, 2022, date of current version June 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3179592

SGMiner: A Fast and Scalable GPU-Based
Frequent Pattern Miner on SSDs
KANG-WOOK CHON 1, EUNJEONG YI 2, AND MIN-SOO KIM 3, (Member, IEEE)
1Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
2Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
3School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Corresponding author: Min-Soo Kim (minsoo.k@kaist.ac.kr)

This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2019-0-01267, GPU-based Ultrafast Multi-type Graph Database Engine SW), the MSIT (Ministry of
Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2022-2020-0-01795)
supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation), the KAIST UP Program, and the
institutional R&D program of KISTI (K-22-L02-C04-S01).

ABSTRACT Frequent itemset mining is extensively employed as an essential data mining technique.
Nevertheless, as the data size grows, the applicability of this method decreases owing to the relatively
poor performance of the existing methods. Though numerous efficient sequential frequent itemset mining
methods have been developed, the performance that can be achieved is clearly limited by the fact that they
exploit only one thread. To overcome these limitations, a number of parallel methods using multi-core
central processing units (CPUs), multiple machines or many-core graphic processing units (GPU) have been
proposed. However, these methods are relatively slow in performance and have low scalability, mainly owing
to large memory requirements for intermediate data, significant disk I/Os, and heavy computation. In this
study, to resolve the aforementioned problems, we propose SGMiner, which is a new, fast, and scalable GPU-
and disk-based method on a single machine equipped with multiple graphic processing units (GPUs) and
multiple solid-state drives (SSDs) for extracting frequent patterns. It is based on an algorithm similar to the
Apriori algorithm and neither has intermediate data nor large disk I/O overheads owing to its exploitation of
SSDs. Moreover, we propose storing transaction databases, namely bitmap transaction chunks, in SSDs,
streaming the chunks to GPU device memory via the main memory with reduced I/O overhead, and
performing fast support counting with GPUs based on the chunks. In addition, when exploiting multiple
GPUs and SSDs, it proposes a concept of replicating bitmap transaction chunks stored in SSDs to GPUs
in a streaming fashion. This could allow an almost equal workload to be distributed evenly across multiple
GPUs with reduced I/O overheads. The experiments we conducted demonstrate that SGMiner outperforms
the existing methods in terms of scalability and performance with enhanced robustness.

INDEX TERMS Big data, frequent pattern mining, parallel algorithm, GPUs, scalable algorithm, disk-based
algorithm.

I. INTRODUCTION
Frequent itemset mining is a popular application in many
areas, including market basket analysis, bioinformatics, and
recommendation systems. For instance, as a key module,
a number of commercial recommendation systems utilize
frequent itemset mining [1]–[9]. However, the existing fre-
quent itemset mining methods are time-consuming and often
terminate abnormally owing to the lack of memory while
finding frequent patterns from large-scale datasets. As real-
world datasets grow in size, strategies for mining frequent
itemsets that are fast and scalable have become more rel-

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaowen Chu .

evant than ever. Many sequential frequent itemset mining
methods have been devised for efficiently mining frequent
itemsets [10]–[19]. However, all the sequential frequent
itemset mining methods have the drawback of scalability
because they exploit a single thread on a single machine.
Here, scalability refers to the ability to process a large amount
of data or process the data more quickly by exploiting a
larger number of machines or numerous computing units
(e.g., CPUs and GPUs).

Several distributed methods have been proposed for effi-
ciently handling large-scale datasets. Such an approach
theoretically could find patterns in large-scale datasets of
the same size as the disk size of the distributed sys-
tems for extracting various data types such as traditional

62502
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7124-9426
https://orcid.org/0000-0003-1173-7940
https://orcid.org/0000-0002-5065-0226
https://orcid.org/0000-0001-9745-4372

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

transaction database [20]–[29], healthcare data [30], and
sequential database [26], [31]. Most distributed methods are
straightforward expansions of sequential methods that uti-
lize the distributed frameworks, i.e., Spark [32] and MapRe-
duce [33]. In this study, we consider distributed methods
based on the MapReduce framework owing to their ability
to process a larger amount of data than that capable by the
total memory of the distributed system by performing the
processing task in amassively parallel way [4], [6], [21], [26].
Although the distributed frequent itemset mining methods
are performed differently according to their baseline methods
(i.e., the sequential methods), they usually partition the search
space for the patterns into several chunks. Subsequently, each
chunk is assigned to a machine. The chunks tend to vary
widely in size, causing different-sized workloads on each
machine in the distributed system. As a result, the distributed
frequent itemset mining methods show relatively poor scal-
ability with the number of machines utilized. In addition,
they all require high network communication overheads.
As the volume of data transmitted across machines grows,
these network overheads can severely degrade speed and
scalability [4], [5].

Meanwhile, continuous advances in GPU technology are
increasingly improving the theoretical computing power of
modern computers. As the GPU’s theoretical computing per-
formance is far higher than that of the CPU, it becomes
increasingly important to utilize the GPU in many issues
requiring high-performance computing, including frequent
itemset mining. Owing to the advantages of exploiting
GPUs, several GPU-based methods have been proposed,
which largely improve performance. However, most existing
GPU-based methods are incapable of handling the huge size
of the input and intermediate data. This is because, to process
data using GPUs, the data to be processed should be much
smaller than the GPU device memory size, which is usually
limited to a few gigabytes. GMiner [5] is the only method
that can simultaneously exploit several GPUs while handling
the larger datasets than the capacity of GPU device memory.
It searches frequent patterns from the first level of the search
space (i.e., enumeration tree) instead of storing and using
the intermediate patterns that are generated at the mining
tasks. However, it is still incapable of processing large-scale
datasets that exceed the capacity of the main memory.

In this study, we present SGMiner, a fast and scalable,
GPU- and disk-based, frequent itemset mining method on a
single machine. SGMiner can efficiently process transaction
datasets larger than the capacity of the GPU device memory
and the main memory as well as quickly extract frequent pat-
terns by exploiting GPUs. It is based on the Apriori method,
including iterative candidate generation and counting steps.
The method performs the candidate generation step using
a CPU, whereas it performs the counting step using GPUs.
SGMiner stores a transaction database in a peripheral com-
ponent interconnect express solid-state drives (PCIe SSDs)
and executes the algorithm for the counting step by harness-
ing thousands of GPU cores while streaming the transaction

database via the PCIe interface. Specifically, SGMiner ini-
tially copies the data related to candidate itemsets to the
GPU device memory and performs the algorithm for the
counting step by executing a customizedGPU kernel function
to each chunk of transaction database that is loaded from
the secondary memory (e.g., SSDs) to the main memory
and then copied to the GPU device memory in a streaming
fashion. To efficiently read pieces of transaction databases
from secondary memory, we generate a CPU thread, called
dispatcher thread, which is dedicated to the data read. Then,
the dispatcher thread asynchronously loads pieces of trans-
action databases while one of the other CPU threads per-
forms the GPU data pipeline on the already loaded pieces of
transaction databases in the main memory. Here, notably, the
overall performance can be reduced by overlapping the time
to load the data and the time to perform theGPUdata pipeline.
In GPUs, asynchronous data transfer can be performed by
utilizing asynchronous GPU streams, which could decrease
memory access delay from GPUs to the main memory, mak-
ing better use of the computing power of the GPUs more
efficiently. Here, we call the process of loading pieces of
transaction database from SSDs and transmitting them to
GPUs as cross-level asynchronous I/O. SGMiner divides a
set of candidate itemsets into multiple partitions, all of which
are the same size. Subsequently, it replicates the same bitmap
transaction chunks to all the GPUs in a streaming fashion and
distributes different partitions of candidate itemset to each
GPU so that each GPU takes the same amount of workloads.
Because there is no communication overhead across multiple
machines, SGMiner can outperform the existing methods.
Additionally, this method achieves higher scalability com-
pared with the existing methods since there are no data
replications across machines and as transaction databases
(i.e., bitmap transaction chunks) are stored on the secondary
memory (i.e., SSD) in a single machine. SGMiner shows
good scalability concerning the number of GPUs and SSDs
and achieves a stable speed-up ratio as the number of GPUs
and SSDs increases, owing to uniform distribution of the
units of candidate itemsets to GPUs, which could perform
frequent itemset extraction independently of each other. The
main contributions of this paper are as follows:
• We propose SGMiner, a fast and scalable GPU- and
disk-based method for frequent itemset mining that
exploits multiple GPUs and SSDs.

• Wepresent a concept of cross-level asynchronous I/O for
decreasing the overheads for loading bitmap transaction
chunks from SSDs to GPU device memory via the main
memory and running time by GPU-based massive bit-
wise operations only using bitmap transaction chunks.

• We present a concept of replicating bitmap transaction
chunks stored in SSDs to GPUs in a streaming fashion
for fully exploiting multiple GPUs and SSDs.

• We analyze the space cost and time cost of SGMiner.
• Through experiments, we show the superiority of

SGMiner compared with the state-of-the-art methods
across a wide range of benchmarks.

VOLUME 10, 2022 62503

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

The rest of this study is organized as follows: In Section II,
we discuss the related work. We present the SGMiner method
in Section III and IV. Section V presents the strategy of
exploiting GPUs and the analysis of space and time costs.
Section VI shows the results of the experimental evaluation.
Then, we summarize and conclude this study in Section VII.

II. RELATED WORK
The frequent itemset mining problem is formally defined
as extracting all itemsets that occur minsup times at least
as a subset of transactions in a given transaction database
TD = {td1, td2, . . . , tdn}, where tdi is a subset of distinct
items from TD andminsup is predefined. In this study, we are
concerned about the number of occurrences to be a support of
an itemset.We divide the existingmethods of frequent itemset
mining into four groups: (1) sequential methods (CPU), (2)
multi-threaded methods (CPU-based), (3) disk-based meth-
ods (distributed), and (4) GPU-based methods. In Table 1,
we summarize the existing methods and their characteristics,
including the performance tendency of the proposed method.
In the table, the performance bottlenecks are colored in red.
Overall, the proposed method, SGMiner, includes outstand-
ing factors in terms of performance, whereas all the competi-
tors include performance bottlenecks.

We discuss the details of the existing methods in
Section II-A– II-D. Section II-A presents representative
sequential methods that are widely used to devise multi-
threaded methods, disk-based (distributed) methods, and
GPU-based methods. Section II-B presents multi-threaded
methods, whereas Section II-C presents disk-based (dis-
tributed) methods. GPU-based methods are presented in
Section II-D.

A. SEQUENTIAL METHODS
A number of sequential methods have been devised to extract
frequent patterns efficiently and effectively. Representative
methods include SSFIM [27], Apriori [13], Eclat [14], [45],
LCM [19], FP-Growth [12]. Apriori algorithm [13] uses
anti-monotone property for efficiency. That is, if a L-itemset
is not frequent, its supersets cannot be frequent. To extract
frequent (L+1)-itemsets, it creates candidate (L+1)-itemsets
using frequent L-itemsets and tests them [13]. Eclat algo-
rithm [14], [45] builds equivalence classes, which partition
the database into a number of independent sub-databases.
It efficiently computes supports using set intersection oper-
ations by adopting a vertical data format. LCM [19] is a
variant of Eclat; it combines a number of methods (i.e.,
occurrence deliver, bitmap database, prefix tree) from the
existing methods. As a result, in the FIMI04, LCM performed
best. FP-Growth [12] constructs an FP-tree from a database;
it retains the itemset association information, and extracts
frequent patterns by recursively accessing the FP-tree without
generating candidate itemsets. FP-Growth* [17] is one of
representative implementations of FP-Growth which utilizes
additional array data structures to decrease the number of
tree traversals. The excellence of FP-Growth* was proven
in the FIMI03. SSFIM [27] extracts frequent patterns by

scanning an input database once. As this method enumerates
and counts all candidate itemsets that occur in each transac-
tion, it is capable of generating a fixed number of candidates
regardless of minsups, intuitively saving the costs in terms of
running time with big data.

As all the representative sequential methods are imple-
mented while assuming that input and intermediate data are
much smaller than the size of main memory, there are many
difficulties in processing large-scale data.

B. MULTI-THREADED METHODS
Several multi-threaded methods have been considered for
further enhancing performance by exploiting multiple CPU
threads [36]–[38]. FP-Array [36] is a parallel FP-Growth
method on modern hardware. It devises a cache-conscious
data structure, which improves data locality performance, and
provides a lock-free method for efficiently parallelizing the
FP-Growth algorithm. When utilizing eight CPU cores, this
method shows improved performance by as much as six times
in recent studies [5]. MC-Eclat [38] is an Eclat-based par-
allel method. It significantly reduces the processing time of
extracting patterns on small datasets. ShaFEM [37] is a hybrid
method between FP-Growth and Eclat. This method could
dynamically switch between FP-Growth and Eclat according
to the density of datasets. In addition, it parallelizes the min-
ing process without the locking requirement between threads
and thus, achieves improvement in performance.

Like sequential methods, multi-threaded methods also
assume that data required for the mining operation is much
smaller than the size of the main memory. Thus, they have
difficulties in extracting patterns from large-scale datasets.
Additionally, they fail in extracting frequent patterns owing
to the lack of memory on the datasets that sequential methods
are able to handle. This is due to the fact that they typically
have higher memory requirements than sequential methods,
owing to the large memory requirements for each indepen-
dent thread.

C. DISK-BASED (DISTRIBUTED) METHODS
In practice, distributed methods, which utilize a number
of machines, can handle large-scale datasets. For extract-
ing frequent patterns from large-scale datasets, numerous
distributed algorithms based on a shared-nothing frame-
work have been developed. Lin et al. [39] proposed SPC,
FPC, and DPC based on Apriori-based methods using the
MapReduce framework. SPC repeats candidate generation
and support counting, as a MapReduce round. Each mapper
creates and computes candidate itemsets and their supports.
At the reduce step, supports of candidate itemsets are aggre-
gated and tested. For each MapReduce round, FPC processes
L-itemsets, (L+1)-itemsets, and (L+2)-itemsets together.
Depending on the number of candidates, DPC dynamically
collects candidate itemsets of sequential multiple lengths
in a single MapReduce round. Moens et al. [46] proposed
a hybrid approach between Apriori and Eclat algorithms,
called BigFIM. This method utilizes the distributed Apri-
ori algorithm to extract short frequent itemsets and creates

62504 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

TABLE 1. Comparison of the proposed method SGMiner and existing methods.

conditional databases similar to the equivalence class. Each
machine uses the sequential Eclat algorithm to compute
each conditional database. Its support count is much faster
than that with SPC because of its usage of the sequential
algorithm. PFP [40], [47], which is included in MLlib of
spark, is a distributed method of FP-Growth. Each machine
builds an independent FP-tree using conditional databases
and finds frequent itemsets by traversing its own FP-tree.
Chon and Kim [4] propose BIGMiner, which is based on
Apriori methods on the MapReduce framework. BIGMiner
finds frequent itemsets of short lengths and then generates
transaction bitmaps in vertical layout format in the pre-
computation step. To find frequent itemsets, it repeats to
generate candidate itemsets and tests them. Instead of no
workload skewness, BIGMiner has a problem where if the
length of frequent itemsets, calculated in pre-computation,
is long, the size of bitmaps increases exponentially.Moreover,
when processing small datasets or high minimum supports,
BIGMiner has a worse performance than that of the existing
methods due to the high overhead associated with launching
iterative MapReduce jobs.

The representative methods based on distributed systems
have the advantage of reducing I/O time by reading input data
from multiple nodes at the same time. However, the methods
of finding frequent itemsets after creating multiple indepen-
dent conditional databases such as PFP or BigFIM tend to
fail if the size of conditional databases becomes larger than
the size of the machine’s memory. Moreover, Apriori-based
methods have the disadvantage of taking a long time to sup-
port counting; hence, there is scope to increase performance
by utilizing the latest hardware such as GPU and FPGA.

D. GPU-BASED METHODS
GPU has different characteristics compared with CPUs, i.e.,
it uses the single instruction multiple threads (SIMT) and
coalesced memory access models. It is difficult to apply this
model into efficient frequent itemset mining methods that

exploit complex data structure, e.g., FP-Tree. As a conse-
quence, most GPU-basedmethods depend on Eclat or Apriori
algorithm and exploit data converted to bitmap format. Then,
they efficiently perform support calculations of candidate
itemsets through bitwise AND operations. Fang et al. [48]
suggested a pure bitmap implementation (PBI) and a
Trie-based variant (TBI). Fang et al. encode the data to an
j × k binary matrix where j and k is the number of itemsets
and the number of transactions, respectively. To calculate
supports, the GPU performs an intersection operation on
rows. GPApriori [42] parallelizes the support counting step
using a GPU. GPApriori generates a static bitmap to represent
all 1-itemsets and their tidsets. Its candidate generation step
is performed on the CPU, and the support counting step is
parallelized on the GPU. Silvestri and Orlando [49] pro-
posed a parallelized dynamic counting itemset (DCI) algo-
rithm on GPU. Chon et al. [5] proposed a GMiner method
for large-scale data processing. GMiner divides transaction
bitmaps into multiple partitions, transmits one partition at a
time to the GPU, materializes only a small bitmap in the main
memory, and finds frequent itemsets. Frontier-Expansion is
based on the Eclat algorithm [43]. This method exploits the
vertical data layout and performs candidate generation and
counting steps while it traverses the itemset search space in
a depth-first search manner as in Eclat. Furthermore, it pro-
poses an optimization strategy for GPUmemory allocation to
increase GPUmemory utilization. GFPG-LLMA is a parallel
FP-Growth method on a single GPU [44]. It devises the data
structure for representing the FP-Tree in aGPU-friendlyman-
ner and extracts frequent patterns via an iterative solution that
utilizes a GPU, instead of invoking the recursive functions.
Consequently, this method improves the performance when
processing small datasets or high minimum supports.

GPU-based methods are implemented based on the
assumption that input and intermediate data can be loaded
into the main memory (GPU device memory), making
it difficult to process large-scale data; only GMiner and
Frontier-Expansion can find patterns in data larger than the

VOLUME 10, 2022 62505

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

GPU device memory. Even though these methods have bet-
ter scalability in terms of the size of datasets handled than
other GPU-based methods, none of them can process datasets
larger than the capacity of the main memory.

III. SGMiner METHOD
A. OVERVIEW
SGMiner is composed of two phases: the building bitmap
transaction chunks and finding FL phases. The overall exe-
cution flow of SGMiner is depicted in Figure 1. For each
phase, this figure includes the execution order of tasks. The
transactions of frequent 1-itemsets F1 are stored in secondary
memory (SSDs) during the first phase of SGMiner. Here,
such transactions are stored in a vertical layout in the form of
a bitmap format to enhance the performance of support count-
ing. Specifically, we adopt the bitmap transaction chunk [4]
for the proposed method for efficient GPU- and disk-based
frequent itemset mining. We present the process to generate
bitmap transaction chunks with the limited capacity of the
main memory in Section III-B. As in the Apriori method, the
second phase of SGMiner is to iteratively perform two steps,
namely candidate generation and counting. Henceforward,
these steps are referred to as an iteration. Notice here that
the counting step is substantially more expensive in terms
of computations than the candidate generation step [5], [13],
[20]. Thus, SGMiner is mainly concerned with the counting
step in terms of avoiding the failure of entire mining tasks
arising from the shortage of main memory. This is achieved
by streaming the data from secondary memory to GPUs and
accelerating the counting step by utilizing the computing
power of GPUs. In particular, SGMiner enhances the perfor-
mance of testing candidate itemsets in the second phase by
only utilizing the results from the building bitmap transaction
chunks phase, i.e., bitmap transaction chunks, with multiple
GPUs while it streams bitmap transaction chunks stored in
secondary memory (i.e., SSDs). Here, notice that the size of
candidates is significantly smaller than the size of bitmap
transaction chunks. Therefore, we are not concerned about
storing the frequent itemsets on SSDs and loading them
into the main memory whenever necessary. In this phase,
SGMiner computes the supports of candidate itemsets using
GPUs; it aggregates supports on different bitmap transaction
chunks and discards infrequent itemsets. The details of this
phase are described in Section III-C.

B. BUILDING BITMAP TRANSACTION CHUNKS PHASE
As distributed methods use a number of machines, network
communication overhead is inevitable; this overhead results
in the distributed methods not being able to complete extrac-
tion of frequent patterns within a reasonable time [5]. Con-
versely, the methods on a single machine avoid such network
communication overheads, but they cannot process data that
is bigger than the capacity of the main memory. We use the
data pipeline on a single machine with multiple SSDs to
reduce both the large network communication overheads and

the lack of handling for large-scale datasets. We reduce the
usage of main memory by storing the partitioned transactions
encoded in bitmaps (i.e., bitmap transaction chunks) into
SSDs and load bitmap transaction chunks into main memory
while adjusting the number of bitmap transaction chunks to
be loaded at the same time within the capacity of the main
memory. Therefore, the proposed method could find frequent
patterns without the failures caused by the shortage of main
memory.

Now, we explain the process of building bitmap transac-
tion chunks with limited size of the main memory. Given a
set of frequent itemsets F1 and an input transaction database
TD in the horizontal format, here, suppose the transaction
database TD is divided into TD1,TD2, . . . ,TDR so that each
partition TDi could be much smaller than the capacity of
the main memory. SGMiner reads a sub-database TDi and
creates the bitmap transaction chunk that is equivalent to
TDi, called a bitmap transaction chunk BCi. A BCi is com-
posed of bit vectors of frequent 1-itemsets, each of which
represents 32 × W transactions. The size of each bitmap
transaction chunk BCi is |F1| × 32 × W in bits, where W
is the user-defined variable. Thus, the size of BCi can be
easily adjusted while considering the capacity of the main
memory. The i-th bit in the bit vector of an item x indicates
whether the i-th transaction includes x or not. After convert-
ing all the partitioned databases TD1:R, the total number of
bitmap transaction chunks is |TD|W+1 , which is denoted as R.
When exploiting multiple SSDs, all the bitmap transaction
chunks BC1:R are equally distributed into SSDs using the
SSD ID to decrease the disk I/O. For instance, in Figure 4,
when the number of bitmap transaction chunks R is six,
and the number of SSDs M is two, BC1, BC3, and BC5 are
stored in SSD1, whereas BC2, BC4, and BC6 are stored in
SSD2. Figure 2 describes a pictorial example of creating
bitmap transaction chunks. This phase consists of three steps.
We assume that there are two equally-partitioned transaction
databases TD1 and TD2 in the secondary memory and F1 =
{A,B,D,E,F}. Here, Step 1 copies a partitioned database
TDi to TDBuf in main memory. Subsequently, Step 3 creates
bitmap transaction chunks by loading and reading TDi. For
each transaction t of TDi, it makes the corresponding bit in
the bit vector of x one, where an itemset x is included in t .
After all the itemsets in F1 are processed, it stores BCBufMM
to secondary memory. A bitmap transaction chunk BCi is
composed of the bit vectors of the length |TDi|, where bit
vectors correspond to F1. BCi[x] denotes a bit vector of an
itemset x in BCi. In Definition 1, we formalize the concept of
physical pointers to access the bit vector of x in BCi
Definition 1 (Position Address): We formalize the physi-

cal pointer of an itemset x as the position address of x, denoted
by PA(x), as the difference between the start offset of BCk
and that of BCk [x] in bytes, for a single bitmap transaction
chunk BCk .

We exploit this concept to efficiently access a memory
offset of bit vectors associated with an itemset in a bitmap
transaction chunk. In this study, for an itemset x, PA(x) is

62506 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 1. Overview of SGMiner.

regarded as an ID. Notably, in all the bitmap transaction
chunks, the position address PA(x) of x is the same. This is
mainly owing to the same size of bitmap transaction chunks
and the storage of bit vectors in a consecutive space.

C. FINDING FL PHASES
As in the Apriori method, the second phase of SGMiner
repeats the candidate-generation-and-counting approach. The
existing Apriori-based methods with vertical data layout usu-
ally retain considerable intermediate data in main memory.
Thus, thesemethods hinder themining of large-scale datasets.

SGMiner solves this problem of extracting frequent
itemsets from considerable datasets without decreasing the
performance beyond the capacity of main memory and GPU
memory. The proposed method checks all candidate item-
sets by solely exploiting the bitmap transaction chunks that
consist of the bit vectors of frequent 1-itemsets and thus does
not create any intermediate data throughout the whole mining
tasks.

Additionally, we propose a new GPU- and disk-based
itemset mining method, called cross-level asynchronous I/O,
to enhance testing of candidate itemsets while decreasing the
disk I/O overhead. It asynchronously transmits the bitmap
transaction chunks to the main memory through the PCIe
bus at the L-th iteration. For streaming bitmap transaction
chunks, SGMiner creates and utilizes two CPU threads,
namely, dispatcher thread and pipeline thread. The dis-
patcher thread continuously reads bitmap transaction chunks
from secondary memory (SSDs) to the bitmap transaction
chunk buffers BCBufMM in the main memory if space is
available. The pipeline thread carries out the data pipeline on
GPUs for counting the supports of candidates. The pipeline
thread generates the candidate L-itemsets CL and transmits
the candidate itemsets to GPUs at level L. Specifically,
it transmits solely the position addresses in terms of CL to the
GPUs. The proposed method transmits PA(CL)= {PA(X)|x ∈
CL} to the GPUs. Henceforward, we denote PA(CL) as PA for

simplicity. If the size of PA is much larger than the capacity
of GPU device memory, PA could be partitioned into PA1:Q
to make each partition fit into GPU device memory. Then,
it copies each PAj, which could be regarded as the outer
operand, to GPUs (1 ≤ j ≤ Q). Subsequently, for each PAj,
it transmits each partition of the inner operand, i.e., bitmap
transaction chunks, BCk to the GPUs (1 ≤ k ≤ R) in a
streaming fashion. For each 〈PAj,BCk 〉, SGMiner computes
the local supports of x ∈ PAj, using BCk . We refer to
the local supports for 〈PAj,BCk 〉 as PSj,k . In Definition 2,
we formalize the local support of itemset x. To calculate the
local support, SGMiner performs bitwise AND operations
exploiting multiple GPUs. For bit vectors of {BCk (i)|i ∈
x}, each GPU block calculates the bit vector of a candidate
itemset x by performing bitwise ANDoperations |x| - 1 times.
Here, BCk (x) denotes the bit vector of a candidate itemset x.
The GPU block then counts the occurrence of 1s in BCk (x)
and stores its result in PSBuf in GPU device memory. Sub-
sequently, it streams the calculated PSj,k to PS of the main
memory and then aggregates them (i.e., σ (c)(c ∈ PAj)).
Definition 2 (Local Support): We formalize σx(BCk) as

the local support of an itemset x within a bitmap transaction
chunk BCk . The support of x on the whole set of bitmap
transaction chunks BC1:R is σ (x) =

∑R
k=1 σx(BCk).

Figure 3 presents the timeline of SGMiner in terms of
the copy operations from secondary memory to main mem-
ory, the copy operations from main memory to GPU device
memory, and the execution of the GPU kernel function.
We assume that the maximum number of bitmap transaction
chunks, denoted as P, that are able to be loaded into the
main memory is four. In terms of GPU, we assume that one
GPU is exploited with four GPU streams; the use of several
asynchronous GPU streams decreases the elapsed time for the
data transfer between main memory (host) and GPU device
memory (GPU).

The dispatcher thread is dedicated to loading bitmap trans-
action chunks while considering the size of memory, while

VOLUME 10, 2022 62507

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 2. Example of building bitmap transaction chunks.

the pipeline thread performs the data pipeline on GPUs for
calculating local supports. We note that these CPU threads
handle different bitmap transaction chunks at a time, which
can lead to overlapping operations performed by each thread.

Now, we will explain the data pipeline on GPUs performed
by the pipeline thread. The pipeline thread initially transfers
PAj to PABuf . Then, it starts several GPU streams, and each
GPU stream repetitively performs the following three opera-
tions, while increasing k: (1) transmitting BCk to BCBufDM ,
(2) executing the GPU kernel function that is denoted as
K for calculating PSj,k , and (3) transmitting PSj,k to main
memory. Here, m denotes the number of GPU streams and
can be configured by users; by default, we set m to be four.
In the current GPU architecture, the previously mentioned
operations, i.e., transmitting to GPU memory, executing a
GPU kernel, and transmitting to main memory, could overlap
each other [50]. Therefore, a significant portion of the time
to transmit data between the GPU device memory (GPU) and
the main memory (host) could decrease. After completing m
streams, all threads in GPUs are synchronized by invoking the
cudaStreamSyncronize function in order to calculate accurate
local support for the corresponding m bitmap transaction
chunks.

After the GPU data pipeline for P bitmap transaction
chunks is terminated, the dispatcher thread reads the remain-
ing bitmap transaction chunks again, and the pipeline thread
initiates GPU pipeline operations for the bitmap transaction
chunks being loaded. The above steps are completed after cal-
culating local support for all the bitmap transaction chunks
stored in the secondary memory.

Figure 4 illustrates a pictorial example of SGMiner
for extracting F3 for minsup set to 3. In this figure,
the number of all the BCs is six, and the maximum
number of BCs that can be loaded into main mem-
ory at a time is three. First, the candidate itemsets
C3 = {{A,B,D}, {A,B,E}, {A,B,F}, {A,D,E}, {A,D,F},
{A,E,F}, {B,D,E}, {B,D,F}, {B,E,F}, {D,E,F}} are
generated. The position addresses of C3 are divided to two
chunks, i.e., PA1 and PA2. It starts to load BC1, BC2, and
BC3 into BCBufMM of the main memory asynchronously.
While loading BCs, PA1 is synchronously transferred to
PABuf of GPU device memory. When loading BC1 is com-
pleted,BC1 is streamed toBCBufDM . For the pair 〈PA1,BC1〉,

GPU blocks calculate the local support of candidate itemsets
in terms of PA1 by performing bitwise AND operations. For
example, a single GPU block computes the local support of
candidate itemset x = {A,B,D}. The GPU block performs
two bitwise AND operations between BC1(0), BC1(1), and
BC1(2), which are the bit vector of {A}, {B}, and {D}, respec-
tively. Then, it is easily able to calculate the local support
by counting the occurrence of 1s in the result 101. After
calculating PS1,1, PSBuf is copied back to PS of the main
memory. When copying the local supports into PS of the
main memory, SGMiner starts to load BC4 from SSD2 to
BCBufMM and aggregate PS(c) to σ (c) (c ∈ PA1). Likewise
when calculating the local supports in terms ofPA1, SGMiner
computes the local support of PA2 by streaming BC1:6 into
GPU device memory.

IV. SGMiner ALGORITHM
SGMiner is implemented as the building bitmap transaction
chunks phase and findingFL phase. The first phase is building
bitmap transaction chunks. As a result of the first phase, each
bitmap transaction chunk is recorded to SSDs. The second
phase is to find frequent L-itemsets by exploiting the bitmap
transaction chunks that are the result of the first phase.

Algorithm 1 Generating Bitmap Transaction Chunks
Input: F1, TD
Output: BC1:R in SSDs /* bitmap transaction chunks */
1: R← T/(W × 32)+ 1;
2: for i← 1 to R do
3: for j← 1 to W × 32 do
4: for each x ∈ TD[i×W × 32+ j] do
5: if x ∈ F1 then
6: Set BCi(x)[j] to 1;
7: end if
8: end for
9: end for
10: Store BCi to SSDi%M ;
11: end for

Algorithm 1 shows the pseudo code for building bitmap
transaction chunks. For the inputs, SGMiner takes frequent
1-itemsets F1 and an input database TD in the horizontal
format. The number of bitmap transaction chunks, denoted
as R, is computed by the width of bitmap transaction chunks
W , which is a user-defined variable. As it scans TD, for each
1-itemset x in t ∈ TD, if x ∈ F1, j-th bit of BCi(x) is set

62508 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 3. Example of asynchronous streaming bitmap transaction chunks.

FIGURE 4. Example of finding F3.

to be 1, where j is the index in the corresponding bit vector
BCi(x). After scanningW × 32 transactions, BCi is stored to
SSDs. To exploit multiple SSDs, BC1:R is equally distributed
using the remainder as SSD IDs.

Algorithm 2 describes the pseudo code for the finding FL
phase. The algorithm initially allocates two buffers, namely
BCBufMM and PS, to the main memory (MM). Afterwards,
it creates three buffers, i.e., PSBuf , BCBufDM , and PABuf ,
on GPU device memory (DM) (Lines 1-2). After this, this
algorithm constructs the dictionary dict to be utilized in map-
ping x to PA(x), where x ∈ F1 (Line 3). Afterwards, it com-
putes the maximum number of BCs, denoted as P, that could
be loaded intoMM (Line 4). The main loop performs repeat-
edly two steps: candidate generation step (Lines 9–10) and
counting step (Lines 12–26) in a similar way to Apriori. How-
ever, our algorithm significantly reduces the running time of
the counting by asynchronously streaming bitmap transac-
tion chunks of F1 from SSDs to main memory and from main
memory to GPU device memory to overcome the limitations
of the main memory and the GPU device memory, while

also leveraging GPUs’ massive parallelism for quick and effi-
cient parallel computation of local supports (Lines 12–25).
Notice that our algorithm executes the GPU kernel function
K multiple times instead of executing it only once (Line 18).
This is mainly because of the limited number of GPU blocks
that can be specified when calling K . The K function is able
to compute local support of a candidates exploiting a GPU
block. Here, maxBlock denotes the number of available GPU
blocks.WhenmaxBlock = 8K, a single execution ofK is able
to compute local supports for 8K itemsets. Therefore, if |PAj|
= 100M, it requires calling the K function 12,500 times.
In terms of copying data, our algorithmfirst copiesPAj, which
is regarded as the outer operand, to PABuf of DM (Line 13).
Then, if there are available spaces in BCBufMM of the main
memory, it performs the data pipeline on GPUs by loading
BCk from SSDk%R to BCBufMM , executing the GPU kernel
function K , and copying the result of K back to PS[k%P]
of MM (Lines 15–19). Note that a single data pipeline can
cover P bitmap transaction chunks, and, for different bitmap
transaction chunks, three operations, i.e., transmitting to

VOLUME 10, 2022 62509

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

GPUdevicememory, executingGPU kernel, and transmitting
to main memory, could be overlapped with one another. After
completing the data pipeline on GPUs in terms of P bitmap
transaction chunks, it synchronizes the GPU threads for exact
local supports and aggregates the local supports with those
previously computed (Lines 21–22). Then, it sends a new
asynchronous read request in order to load BCk%R stored in
SSDs and performs the GPU data pipeline for the bitmap
transaction chunks to be loaded. After processing all the
bitmap transaction chunks, it discards infrequent candidate
L-itemsets at level L (Line 26).

Algorithm 2 Finding FL
Input: F1, BC1:R
Output: F /* frequent itemsets */
1: Allocate {BCBufMM ,PS} on MM;
2: Allocate {BCBufDM ,PABuf ,PSBuf } on DM;
3: dict ← dictionary mapping x to PA(x)(x ∈ F1);
4: P← computing the maximum number of BCs in MM ;
5: L ← 1;
6: while |FL | > 0 do
7: L ← L + 1;
8: /* Candidate generation using CPU */
9: CL ← generate candidates with FL−1;
10: Convert CL to PA1:Q with dict;
11: /* Counting using GPUs */
12: for j← 1 to Q do
13: Copy PAj into PABuf of DM ;
14: for k ← 1 to R do
15: if BCBufMM is not full then
16: Async load BCk from SSDk%R to BCBufMM ;
17: Async copy BCk to BCBufDM ;
18: Call K (PAj,BCk);
19: Async copy PSBuf of DM into PS[k%P] of MM ;
20: else
21: Thread synchronization of GPUs;
22: σ (c)←

∑P
q=1 PS[c][q], for ∀c ∈ PAj;

23: end if
24: end for
25: end for
26: FL ← {c|c ∈ CL ∧ σ (c) ≥ minsup};
27: end while
28: F ← ∪FL ;
29: return F ;

Algorithm 3 concerns the pseudo code with regard to the
GPU kernel functionK of SGMiner. It takes a pair of PAj and
BCk , completeIdx, and maxThread as inputs. completeIdx
denotes the index of the last candidates that are completed
in PAj. This variable is used to detect the portion of PAj to be
addressed in the current call of the function K . For instance,
when |PAj| = 1,000 and maxBlock = 100, completeIdx
becomes 100 in the second call of K . maxThread denotes
the maximum number of threads in a GPU block and can
be specified when invoking K with maxBlock . BlkID and
ThrID denote the system-generated IDs for the GPU block
and the GPU thread, respectively. As a large number of GPU
blocks run simultaneously, some GPU blocks may not have a
corresponding set of candidate itemsets to test. For example,
if |PAj| = 1000 and maxBlock = 2000, some blocks do not
have a set of itemsets; hence, 1000 GPU blocks cannot run
GPU kernel functions. Therefore, if there is no itemset to
be processed by the current GPU block, the GPU kernel

function is immediately terminated (line 1–2). To improve
efficiency, theGPUkernel function creates two variables (i.e.,
cand and supp), which are frequently accessed, in shared
memory on GPUs. The variable cand contains a set of items
whose local support will be computed by the GPU block
BlkID. The vector supp is initially set to 0 (Lines 4–5). The
main loop of K repeats the bitwise AND operation at the
same time (Lines 5-8). In the modern GPU architecture, a
GPU thread is able to carry out bitwise operations effec-
tively at a single precise width (namely, 32 bits). The GPU
block may simultaneously carry out bitwise operations up to
32 × maxThread bits. In practice, the width of the bitmap
transaction chunk, denoted as W , is significantly larger than
maxThread× 32 bits. For each x ∈ PAj, it extracts the
bit vectors in terms of x from BCk , performs the bitwise
AND operation between the extracted bit vectors, and store
the result into bitV (Line 7). The GPU kernel repeatedly
performs this process W

maxThread×32 times. To compute the
local supports, it counts the occurrence of 1s in bitV by
CUDA built-in popCnt function and stores them in the supp
array (Lines 8–9). At last, the GPU kernel function adds
all the values of the supp array as a single local support
of BCk using the parallel summation reduction algorithm
parallelReduction, which takes an array as an input and
recursively adds all of the array’s values to the first element
(Line 11).

Algorithm 3 K
Input: PAj; /* j-th chunk of PA*/
Input: BCk ; /* k-th bitmap transaction chunk*/
Input: completeIdx; /* index of the last candidate itemset completed in

PAj*/
Input: maxThread ; /* the number of threads on GPUs*/
Output: PSBuf ; /* local supports of <PAj, BCk> */
1: if completeIdx + BlkID ≥ |PAj| then
2: return;
3: end if
4: cand ← PAj[completeIdx + BlkID];
5: supp[0 : maxThread]← 0;
6: for q← 0; q < W

maxThread∗32 ; q← q+ 1 do
7: bitV ← ∩q∈candBCk [q][w× maxThread + ThrID];
8: supp[ThrID]← supp[ThrID]+ popCnt(bitV);
9: syncthreads();
10: end for
11: PSBuf [completeIdx + BlkID]← parallelReduction(supp[]);

V. MULTIPLE GPUs AND COST ANALYSIS
A. EXPLOITING MULTIPLE GPUs
We depict the details of exploiting GPUs in this section.
We are concerned about how to set the configuration of
GPUs (i.e., the number threads on GPUs) for decreasing the
running time of the GPU kernel function. Then, we present
the strategy for exploiting multiple GPUs.

GPU threads could not run separately in applications dif-
ferent from CPUs. Instead, each GPU deals with a group
of 32 threads, namely warp. More specifically, several GPU
threads in a warp can be simultaneously exploited in a single
instruction multiple thread (SIMT) way. Notice that each
GPU block is composed of several warps. The GPU kernel

62510 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

function in SGMiner incorporates the parallelReduction
function as described in Section IV. Nevertheless, since it
uses several branch and bound operations, the running time
grows as the number of threads on each GPU grows when
exploiting GPUs. Such a performance tendency is more pro-
nounced while increasing the number of GPU threads. Thus,
by default we set the number of threads on GPUs to be 64.
Here, it should be noted that we omit the discussion in terms
of the number of GPU blocks. The reason is mainly owing
to a limit on the number of GPU blocks under the moderun
GPU architecture [5]. Instead, in Section VI, we show the
performance tendency while changing the number of GPU
blocks.

Now, we will discuss the method to utilize multiple GPUs.
SGMiner could be readily scaled to utilize multiple GPUs,
which can reduce running time further. When using sev-
eral GPUs, SGMiner replicates the same bitmap transaction
chunks, which are streamed from secondary memory (i.e.,
SSDs), to all the GPUs, while it transmits the different parts of
the outer operand (i.e., position addresses) to different GPUs.
Figure 5 illustrates the data flow of our proposed method for
exploiting multiple GPUs. When exploiting two GPUs, this
method involves copying PA1 to GPU1 and PA2 to GPU2,
respectively. Then, this method involves copying the same
BC8 to two GPUs. Afterwards, the GPU kernel function on
GPU1 computes the local supports of PA1, while that on
GPU2 computes the local supports of PA2. Since there are no
common itemsets in PA1 and PA2, the results of these GPU
kernel functions could be computed and transmitted back to
the PS of main memory without conflicts. Since workloads
that compute the local supports in terms of PA1 and PA2 are
independent, scalability greatly increases with respect to the
number of GPUs. In addition, there is no workload imbalance
problem, which is a common problem with parallel and dis-
tributed computing methods. This is because the performed
tasks do not use anomalous or complicated data structures,
and the amount of workload caused by these tasks is propor-
tional to the size of PAj and PAk , which are similar in size.
Thus, regardless of the datasets, the proposed approach shows
a stable speed-up while it grows the number of GPUs.

B. SPACE COST ANALYSIS
In SGMiner, it is required for storing the bitmap transaction
chunks in the disk space (i.e., SSDs). Total bitmap transaction
chunks require |F1| × |W | × R bytes in SSD, where F1, |W |,
and R indicate the number of frequent 1-itemsets, width of
bitmap transaction chunks, and number of bitmap transaction
chunks, respectively. When exploiting multiple SSDs, the
required disk space is |F1|×|W |×RM bytes for each SSD, where
M denotes the number of SSDs utilized.

The space ofmainmemory forBCBufMM is |F1| × |W | ×P
bytes, where P is the number of bitmap transaction chunks
that could be loaded into the main memory. We note that
although the total size of bitmap transaction chunks could
be bigger than the size of heap memory, the required memory
space is only |F1| × |W | × P bytes during the entire mining

task. This is because the proposed method does load one or
more bitmap transaction chunks whose sizes are less than
the capacity of the main memory instead of loading all the
bitmap transaction chunks. For instance, suppose that |TD| =
200M, |F1| = 500, and W = 8,192. The total size of bitmap
transaction chunks is 500× 200,000,000≈ 93.2GB,whereas
the size of each bitmap transaction chunk is 500 × 8,192 ≈
4 MB. Therefore, assuming that the number of bitmap trans-
action chunks which could be loaded to BCBufMM of the
main memory is ten (i.e., P = 10), the required space is
approximately 40 MB in main memory regardless of the
volume of input database. Thememory requirement forPA1:Q
is maxCand × maxlen × 4 bytes, where maxCand and
maxlen are denoted as the maximum number of candidates
for each iteration and the maximum length of candidates,
respectively. For instance, ifmaxCand = 100Mandmaxlen=
25, the memory space for PA1:Q required is 100,000,000 ×
25 × 4 ≈ 9.31 GB. The memory space required for PS is
maxCand × S × 4 bytes, where S is denoted as the number
of GPU streams for each GPU. Suppose that if maxCand =
100M and S = 4, the memory space for PS is 100,000,000×
4 × 4 ≈ 1.5 GB. Using a disk-based approach, we can easily
reduce the amount of memory required for PA1:Q and PS
when the number of candidate itemsets is large. Specifically,
it stores PA1:Q and PS in SSDs, loads the subset of PA1:Q
and PS into the main memory, and then processes them
sequentially, while carefully considering the capacity of the
main memory.

C. TIME COST ANALYSIS
We describe the cost models of SGMiner with respect to the
disk I/O and computations on GPUs. Equation 1 describes the
total cost for the entire tasks (namely, all the iterations). Here,
the terms costdisk (L), costcopy(L), and costgpu(L) represent the
cost of the disk I/O, the cost of the data transfer between
main memory and GPU device memory, and the cost of the
computations on GPU, respectively, at level L.

iterations∑
L=1

costdisk (L)+ costcopy(L)+ costgpu(L). (1)

Equation 2 presents the cost of reading the data from SSDs
into main memory. Here, the position addresses PA1:Q do not
require the disk I/O by default. Therefore, the terms in terms
of PA1:Q are omitted. Here, |BCk |

speeddisk
indicates the amount

of time to load a single bitmap transaction chunk, and this
operation is repeated R

P times, where speeddisk , R, and P
represent the disk bandwidth, the number of all the bitmap
transaction chunks, and the maximum number of bitmap
transaction chunks that could be loaded into main memory,
respectively. In case of exploitingM SSDs, |BCk |speeddisk

×
R
P could

be divided by M , as M BCs are concurrently loaded into the
main memory.

costdisk =
1
M
×

{
|BCk |

speeddisk
×
R
P

}
. (2)

VOLUME 10, 2022 62511

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 5. Strategy of exploiting multiple GPUs.

Equation 3 presents the cost of the data transmission from
the main memory to GPU device memory. Here, comm1 and
comm2 denote the communication throughput between main
memory and GPU device memory in a chunk copy fashion
and that in a streaming copy fashion, respectively. The term
|PA1:Q|

comm1×N
denotes the total cost of transmitting the position

addresses PA1:Q to GPU device memory. This cost could
decrease by N times since it concurrently transmits the data
to N GPUs. In brackets, the terms denote the cost of asyn-
chronously transmitting the data to compute local supports.
For all the position addresses PA1:Q, N GPUs could process
the different position addresses PAk at the same time. Thus,
the data transfer in terms of the bracket is repeated Q

N times,
and its cost also increases proportional to Q

N . More specif-
ically, the term |BC1:R|

comm2
indicates the cost of streaming the

bitmap transaction chunks and local supports. This cost could
not be decreased by utilizing multiple GPUs as the proposed
method replicates all the bitmap transaction chunks BC1:R to
all the GPUs. The term |PSj,R|

comm2
represents the cost of copying

the local supports on the last bitmap transaction chunk BCR
to main memory, which is unable to concealed by streaming.

costcopy =
|PA1:Q|

comm1 × N
+
Q
N
×

{
|BC1:R|

comm2
+
|PSj,R|
comm2

}
. (3)

Equation 4 presents the cost of the GPU computations (i.e.,
counting the local supports on all the bitmap transaction
chunks BC1:R and all the position addresses PA1:Q). In the
equation, the terms in brackets indicate the GPU compu-
tations in terms of a single partition of position addresses
PAj. Here, it is repeated Q

N times, as in processing PA1:Q
using N GPUs in Equation 3. More specifically, tcall(m) is
the overheads of calling a GPU kernel function m times.
SGMiner calls the GPU kernel function R × d PAj

maxBlk e times
for each PAj, where maxBlk is the number of GPU blocks.
This is because each GPU block counts the local support
of a single candidate itemset. The term tker (BCR) represents
the execution time for the GPU kernel function for the last
bitmap transaction chunk BCR, which cannot be overlapped

with asynchronous data transfer by streaming.

costgpu =
{
tcall(R× d

PAj
maxBlk

e)+ tker (BCR)
}
×
Q
N
. (4)

VI. PERFORMANCE EVALUATION
We perform the experiments of SGMiner compared to
the existing methods, which are mentioned in Table 1.
We describe the results of experimental evaluation in three
categories. First, we show the performance comparison
between SGMiner, the representative sequential methods
(i.e., Eclat by Borgelt [7], Eclat by Goethals [34], LCM [19],
Apriori by Borgelt [7], FP-Growth* [17], SSFIM [27],
negFIN [15], dFIN [11], PrePost+ [10]), the representa-
tive parallel methods (i.e., FP-Array [36], ShaFEM [37],
MC-Eclat [51], GPApriori [42], GMiner [5], Frontier-
Expansion [43], GFPG-LLMA [44]), and the representative
disk-based (distributed) methods (i.e., SPC [39], BigFIM [6],
PFP [40], BIGMiner [4], Partition [41]), using real datasets
and synthetic datasets with different settings of minsups.
Second, we show the scalability of the representative frequent
itemset mining methods while growing the input data sizes
and the scalability of SGMiner while varying the computing
units (i.e., GPUs and SSDs). Third, we show the performance
tendency of SGMiner while it changes a range of settings.

A. DATASETS
For the performance evaluation, we use both synthetic and
real datasets. The used datasets are described in Table 2.
We utilize Webdocs [52], which is the largest dataset in [53].
This dataset is considerably utilized for performance compar-
ison between the frequent itemset mining methods. However,
this dataset is not sufficiently large to test disk-based meth-
ods, therefore we utilize the Yahoo dataset, which is one of
the largest graph datasets [54]. There have been a number of
studies that use graph datasets for performance comparison
of pattern mining methods, including [55]. For the Yahoo
dataset, we transform the adjacency list of a single vertex
in that dataset into a single transaction so that it could be
utilized for the performance comparison of frequent itemset
mining methods. We create multiple synthetic datasets by

62512 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

TABLE 2. Datasets used in the experimental evaluation.

exploiting the IBM Quest Dataset Generator [13], which
takes four major parameters: the number of items |I |, the
length of maximal pattern Lavg, the number of transactions
|TD|, and the average number of items in transactions Tavg.
We create several synthetic datasets, namely Q-Scale, while
varying such parameters. Here, we notice that the real datasets
(namely, Yahoo and Webdocs) are sparse, while the datasets
in Q-Scale are dense.

B. ENVIRONMENTS
In order to evaluate Eclat (Borgelt), Eclat (Goethals), LCM,
Apriori (Borgelt), FP-Growth*, negFIN, PrePost+, GPApri-
ori, GMiner, GFPG-LLMA, and Frontier-Expansion, we use
the latest source codes provided by the authors. For evaluating
dFIN, we download and use the implementation presented
in [56]. For a fair comparison here, note that we slightly
changed the source codes of negFIN, PrePost+, and dFIN,
which are running on Windows, to make them run on Linux.
For FP-Array, MC-Eclat, and ShaFEM, we download and uti-
lize the implementations provided in [57] and [58]. In order to
evaluate SSFIM, we use best-effort reimplementation based
on the original study. In order to evaluate the distributed
methods in Table 1, we implement the representative dis-
tributed methods on Apache Hadoop [59] excluding BigFIM
and PFP. We download and use the source codes of BigFIM
and PFP in [6] and [60], respectively. Here, note that we
slightly extend the implementation of PFP for extracting all
the frequent itemsets, since the open-sourced code of PFP,
which is included in Mahout library, extracts solely top-k
frequent patterns. We compile all the methods on a single
machine with gcc 9.4.0 and CUDA 11.4. For evaluating the
distributed methods, we utilize Java 1.8 and Apache Hadoop
1.2.1 for all five distributed frequent itemset mining methods.

We conduct all our experiments of five GPU-based
frequent itemset mining methods (including SGMiner)
and 12 CPU-based frequent itemset mining methods on the
same server. The server is equipped with two Intel 6-Core
3.50GHz CPUs, two NVIDIA GTX 1080 of 8 GB GPU
device memory, 64 GB of main memory, and two PCIe SSDs
of 1 TB. Here, multiple CPUs and GPUs in the server are
connected by using the PCIe 3.0 x16 connection. We also
have conducted all the experiments of the five distributed
frequent itemset mining methods on the same cluster, which
is composed of one primary node and 20 secondary nodes
that are connected by a 1 Gbps network. Each node includes
Intel quad-core 3.40GHz CPU, 32 GB of main memory, and
two 3 TB HDDs.

Now, we describe the detailed settings in terms of GPU
exploited for the experiments of the GPU-based frequent

itemset mining methods, i.e., GPApriori, Frontier-Expansion,
GFPG-LLMA, and GMiner. By default, we use a single GPU
for measuring the performance of the GPU-based methods.
In terms of GPU threads and GPU blocks, we apply the best
parameter for each method by trial-and-error-based tuning
except for GFPG-LLMA, for which we use the default con-
figuration. This is because this method dynamically changes
the number of GPU blocks and threads according to the
program logic. Here, ThrGPU , BlkGPU , and StrGPU denote the
number of threads on GPUs, the number of GPU blocks, and
the number of GPU streams, respectively. We set ThrGPU to
32 and BlkGPU to 16,384 for GPApriori. In addition, we set
ThrGPU to 32 and BlkGPU to 4,096 for Frontier-Expansion.
We set ThrGPU , BlkGPU , and StrGPU to 32, 8,192, and 4,
respectively, with respect to GMiner. Now, we will describe
the configuration options of SGMiner. By default, we set the
number of GPUs to 1 and the number of SSDs to 1. In terms
of bitmap transaction chunks, we set the width of bitmap
transaction chunks to 8,192 by default. When loading the
bitmap transaction chunks to GPU device memory, it uses
both asynchronous copy from secondary memory to main
memory (S2H async) and asynchronous copy from main
memory to GPU device memory (H2D async) by default.
In terms of GPU configuration, the default configuration
includes ThrGPU = 32, BlkGPU = 8,192, and StrGPU = 2.
For fair comparisons, we measure the running time with-

out loading and finalization time, except for SGMiner. For
SGMiner, we measure the running time it takes to read the
first bitmap transaction chunk from secondary memory and
return the frequent itemsets. For the methods that utilize
GPUs, we measure the running time including all time spent
transmitting data between GPU device memory and main
memory.

C. RESULTS
1) PERFORMANCE COMPARISON
Figures 6 (a) and (b) show the performance comparison
results of SGMiner compared with the representative sequen-
tial frequent itemset mining methods, namely Eclat (Borgelt),
Eclat (Goethals), LCM, Apriori (Borgelt), SSFIM, dFIN,
FP-Growth*, negFIN, PrePost+, on both the Webdocs and
Q10M datasets, which are small enough to load main mem-
ory, while changing minsups. In these figures, the X -axis
represents the range of minsups. Here, we utilize the same
range of minsups as in the previous work [5], [38]. The
Y -axis shows the running time in log-scale. O.O.M. indi-
cates running out of memory, i.e., a failure due to the lack
of main memory. As we see figures, the running times of
all methods increase as minsup decreases. The performance
gaps between SGMiner and other frequent itemset min-
ing methods significantly grow as minsup decreases. For
both tested datasets (Webdocs and Q10M), SGMiner sig-
nificantly and consistently outperforms other frequent item-
set mining methods. As shown in Figure 6 (a), SGMiner
shows 162-1284× speed-up over Apriori (Borgelt), 13-200×
speed-up over Eclat (Borgelt), 18-862× speed-up over Eclat

VOLUME 10, 2022 62513

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 6. Performance comparison with the sequential methods.

(Goethals), 3.4-112× speed-up over LCM, 11-28× speed-
up over FP-Growth*, 40-387× speed-up over dFIN, 1387×
speed-up over negFIN, and 8-212× speed-up over PrePost+.
Here, SSFIM encounters O.O.M. errors since this method
tends to consume a large amount of memory for enumerating
all the combinations of long transactions. The superiority
of SGMiner is mainly owing to reducing the overhead of
I/O by asynchronously copying bitmap transaction chunks
from SSDs to GPU device memory and efficiently per-
forming massive bitwise computations by fully exploiting
the computing power of GPUs as described in Section III.
In Figure 6 (b), LCM, FPGrowth*, SSFIM, dFIN, negFIN,
and PrePost+ show that they were running out of memory.
They show O.O.M. errors since these methods are prone
to high memory requirements for further enhancing perfor-
mance when compared to other methods.

Figures 7 (a) and (b) describe the comparison results of
SGMiner over themulti-threadedmethods, namely FP-Array,
ShaFEM, and MC-Eclat, and GPU-based methods, namely
Frontier-Expansion, GMiner, GFPG-LLMA, and GPApriori,
on the same datasets and minsups as those used in the per-
formance comparison with the sequential methods. Note that
we exploit 16 CPU threads for the multi-threaded methods.
In these figures, GMiner shows the best performance except
when minsup = 0.06 as this method does not require the
overhead of disk I/O and simultaneously increases the perfor-
mance by the support counting with highly optimized method

on GPU. When minsup = 0.06, SGMiner outperforms all
other methods except FP-Array, as shown in Figure 7 (a),
despite the overhead of disk I/O. SGMiner shows 7-139×
speed-up over FP-Array when the range of minsups is [0.08,
0.18]. In addition, our SGMiner shows 117-850× speed-up,
20-180× speed-up, 31-45× speed-up, and 99x speed-up over
ShaFEM,MC-Eclat, Frontier-Expansion, and GFPG-LLMA,
respectively. For both datasets, GPApriori shows that there
is insufficient memory at all the test minsups, mainly owing
to high memory requirements for building a static bitmap.
In Figure 7 (b), SGMiner shows the second-best perfor-
mance. Our SGMiner achieves 247-1117× speed-up and
2.8-10× speed-up over ShaFEM and MC-Eclat, respec-
tively. The GPU-based methods, except for GMiner, easily
encounter O.O.M. errors due to larger intermediate data than
the capacity of the GPU device memory. FP-Array easily
shows running out of memory since it requires high memory
requirements to create independent memory space for each
CPU thread.

Figures 8 (a) and (b) show the comparison results
over the representative distributed frequent itemset min-
ing methods, namely Partition, SPC, BigFIM, PFP, and
BIGMiner, on theWebdocs and Yahoo datasets, while chang-
ing the minsups. As shown in Figure 8 (a), SGMiner
consistently and significantly outperforms the other meth-
ods. SGMiner shows 1909-5055× speed-up, 1451-3476×
speed-up, 36000× speed-up, 10945-17306× speed-up, and
268-1316× speed-up over SPC, BigFIM, PFP, Partition, and
BIGMiner, respectively. All the distributed methods, except
for SPC and BIGMiner, encounter O.O.M. errors, because
of the large volume of intermediate data created during the
mining tasks. SPC does not meet O.O.M. errors due to its
small memory requirement, but shows the poor performance
owing to its inefficient support counting. For the Webdocs
dataset, BIGMiner runs faster than the distributed frequent
itemset mining methods as this method avoids workload
skewness and has efficient support counting method of BIG-
Miner, which pre-computes the bit vectors of short itemsets
and repeatedly reuses the pre-computed bit vectors. As shown
in Figure 8 (b), SGMiner achieves 768943× speed-up, 6.9-
7.3× speed-up, and 5.9-225× speed-up compared to SPC,
PFP, and BIGMiner, respectively. All the distributed methods
encounter O.O.M. errors or cannot extract frequent itemsets
within a reasonable time at the low minsup (i.e., 0.00076).
Only SGMiner was able to find frequent itemsets with a
low minsup (i.e., 0.00076) in a reasonable amount of time.
This is due to a number of overheads (e.g., distributing code,
data, and JVM setup, and etc.) in the execution of distributed
methods running on Apache Hadoop, and various problems
arise due to the nature of distributed methods (e.g., work-
load skewness, large communication overheads across the
network, etc.) as described in Section II-C.

2) SCALABILITY TEST
We compare the scalability of all 22 methods as it grows
the size of datasets. Additionally, we show the scalability

62514 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 7. Performance comparison with the parallel methods.

of SGMiner while we change the number of computing
units (i.e., SSDs and GPUs). Figure 9 describes the elapsed
time of the 22 methods in log-scale while increasing the
size of database |TD| from 25 million to 100 million (i.e.,
Q-Scale in Table 2) with minsup = 0.01. As we can see,
the performance gap between our method and other methods
significantly increases as the input size grows. For Q25M ,
among the methods on a single machine, only two sequen-
tial methods, namely Apriori (Borgelt) and Eclat (Goethals),
could complete the entire mining operations, while other
methods result in O.O.M. errors owing to their high memory
requirements for efficiency. However, Apriori (Borgelt) and
Eclat (Goethals) show poor performance due to a clear limit
on computing power. From Q50M , all the methods running
on a single machine encounter O.O.M. errors. This is because
the memory requirements exponentially increase as the data
size grows.

Among the distributed methods, BIGMiner outperforms
other methods owing to its efficient calculation of supports by
bitwise AND operations, and no workload skewness, while
SPC runs slower than all other distributed frequent item-
set mining methods, primarily owing to its inefficient and
slow support counting. The other three distributed frequent
itemset mining methods, namely BigFIM, Partition, and
PFP encounter O.O.M. errors owing to their large memory
requirements for the intermediate data. SGMiner shows the
best scalability with all the tested datasets and outperforms

FIGURE 8. Performance comparison with the distributed methods.

othermethods. As explained in Section III-B, SGMiner stores
the bitmap transaction chunks in a secondary memory and
processes multiple bitmap transaction chunks while consid-
ering the limit of the main memory and GPU device memory.
Thus, SGMiner could handle datasets larger than the capacity
of the main memory regardless of |TD|. Moreover, SGMiner
efficiently performs the bitwise computation (i.e., support
counting) using thousands of cores and, at the same time,
decreases the overhead of disk I/O owing to the cross-level
asynchronous I/O.

Figures 10 (a), (b), and (c) present the running time while
we change the number of SSDs, the running time while we
change the number of GPUs, and the speed-up ratio varying
the number of SSDs, respectively, on the Webdocs dataset
(minsup= 0.06), Q100M dataset (minsup= 0.01), and Yahoo
dataset (minsup = 0.00076). Figure 10 (a) shows the perfor-
mance tendency as we vary the number of SSDs, including
the running times of SGMiner using HDD. SGMiner with
one SSD performs 5.3× and 5.7× faster than SGMiner with
one HDD on the Webdocs and Yahoo datasets, respectively.
This is because the performance of SGMiner with one HDD
is totally bound by the I/O overheads of the HDD. For the
Webdocs dataset, SGMiner using one SSD slightly outper-
forms that using one HDD by 1.1×. This is owing to the
small I/O overheads. SGMiner using 2 SSDs shows 1.12×,
1.1×, and 1.01× speed-up compared with that using one
SSDs. This is because the performance of SGMiner using

VOLUME 10, 2022 62515

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 9. Results increasing the number of transactions (Q-Scale).

FIGURE 10. Results varying the computing units.

one SSD or two SSDs is bound by both I/O performance and
computation performance. Figure 10 (b) shows the scalabil-
ity while increasing the number of GPUs. SGMiner shows
1.96×, 2×, and 2.85× speed-up when increasing the number
of GPUs from one to three. Here, we notice that the speed-up
ratio decreases as the data size grows, since the overhead of
disk I/O (i.e., loading P bitmap transaction chunks, where
P is the number of bitmap transaction chunks that are able
to be loaded into main memory) and synchronization (i.e.,
aggregating local supports for every group consisting of P
bitmap transaction chunks) grows as the number of bitmap
transaction chunks increases, as described in Section V-C.
Figure 10 (c) presents the speed-up by varying the number
of SSDs with two GPUs. Here, Y -axis shows T2

T1
, where

TN is the elapsed time for the entire mining operations of
SGMiner with N GPUs. Notice that the speed-up ratio grows
while the number of SSDs grows. This is because the disk
I/O overheads decrease by fully exploiting the bandwidth of
multiple SSDs, as explained in Section V-C.

3) CHARACTERISTICS OF SGMiner
Figure 11 (a) describes the running times while we vary the
width of bitmap transaction chunks on the Webdocs dataset
(minsup = 0.06), the Q100M dataset (minsup = 0.01), and
the Yahoo dataset (minsup = 0.00076). Here, the X -axis and
Y -axis indicate the width of bitmap transaction chunks in
four bytes and the elapsed time, respectively. As shown in the
figure, 8,192× 4 bytes= 32,768 bytes for thewidth of bitmap
transaction chunks cause the best performance for all the

datasets. Therefore, we use this value for SGMiner by default.
Figure 11 (b) shows the elapsed times, in log-scale, while
varying the strategies for copying bitmap transaction chunks
on the Webdocs dataset (minsup = 0.06), the Q100M dataset
(minsup= 0.01), and the Yahoo dataset (minsup= 0.00076).
Here, S2H async and H2D async represent asynchronously
copying bitmap transaction chunks from the secondary mem-
ory to the host (main memory) and that from the host (main
memory) to the GPU (GPU device memory), respectively.
In the X -axis, Non and All indicate copying bitmap transac-
tion chunks without S2H async and H2D async and that with
both S2H async and H2D async, respectively. As shown in
the figure, the overhead of copying bitmap transaction chunks
decreases while it copies the bitmap transaction chunks in an
asynchronous fashion for all the datasets. This performance
tendency is more marked as we deal with the large-scale
dataset. For instance, SGMiner with S2H async and H2D
async shows a 1.09× speed-up for the Webdocs dataset, a
1.24× speed-up for the Yahoo dataset, and a 1.33× speed-up
for the Q100M dataset.

Figures 12 (a), (b), and (c) show the performance of differ-
ent GPU configurations, namely the number of GPU blocks,
the number of GPU threads, and the number of GPU streams,
on the Webdocs dataset (minsup = 0.06), the Q100M dataset
(minsup= 0.01), and the Yahoo dataset (minsup= 0.00076).
Figure 12 (a) depicts the elapsed times as the number of
GPU blocks is varied. Here, 8,192 GPU blocks cause the
best performance; therefore, by default, we set this value
for SGMiner. Figure 12 (b) depicts the elapsed times as the

62516 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 11. Results varying the configurations of bitmap transaction
chunks.

number of GPU threads is varied. Regardless of the tested
datasets, the overall performance decreases while increasing
the number of GPU threads, since each GPUmainly performs
a number of branch and bound operations, which degrade
the performance with the large number of GPU threads,
as explained in Section III. Figure 12 (c) depicts the elapsed
times as the number of GPU streams is varied. As shown in
the figure, for all the datasets, the elapsed times are reduced
while we increase the number of GPU streams. SGMiner,
with two GPU streams, significantly improves the perfor-
mance compared with that with one GPU stream, owing to
hiding the overhead in transmitting data between the GPU
device memory and the main memory. SGMiner along with
four GPU streams slightly improves the performance com-
pared to that with two GPU streams. This is owing to the fact
that utilizing more GPU streams may increase the amount of
computations that overlap with copying data.

Figures 13 (a), (b), and (c) present the space usage for the
datasets, namely the Webdocs dataset, the Q100M dataset,
and the Yahoo dataset, varying the minsups. As shown in
the figures, SGMiner shows a similar main memory require-
ment and GPU device memory requirement regardless of
the sizes of datasets. For instance, for all the datasets and
tested minsups, our SGMiner requires 16.3 GB-16.4 GB of

main memory and 2.7 GB-3.08 GB of GPU device mem-
ory, whereas this method requires different secondary mem-
ory requirements for different datasets (0.02 GB-70 GB).
As described in Section V-B, most of the memory require-
ments relate to buffers for candidate itemsets and their local
support, but there are negligible memory requirements for
bitmap transaction chunks. SGMiner can avoid running out
of main memory due to a huge number of candidates by stor-
ing and partially processing candidate itemsets in secondary
memory. Thus, SGMiner could scale with the data size by
avoiding the lack of main memory and GPU device memory.

Figures 14 (a) and (b) show the profiling results of
SGMiner on the Webdocs (minsup = 0.06), Q100M
(minsup = 0.01), and Yahoo (minsup = 0.00076) datasets.
Figure 14 (a) shows the time breakdown of extracting fre-
quent itemsets (i.e., the candidate generation and counting
steps). As mentioned in Section III-A, the counting step
is computationally highly intensive compared to the candi-
date generation step. That is, the counting step accounts for
approximately 99% of the execution time, and approximately
1% of the time is spent during the candidate generation
step. Figure 14 (b) shows the time breakdown in terms of
the counting step. We measure the time to copy the data
from GPU device memory to main memory, i.e., memcpy
(D2H), the time to copy the data from main memory to
GPU device memory, i.e., memcpy (H2D), and the time to
execute GPU kernel function, i.e., GPU kernel, which are the
major performance factors in exploiting GPUs [50]. Here,
we measure all the presented operations using the nvprof
profiling tool that collects and views profiling data in terms of
utilizing GPUs. As shown in the figure, the ratios of the GPU
kernel function to the entire running time are much higher
than those of memcpy (H2D) and memcpy (D2H) for all the
datasets, while the ratios of the memcpy (D2H) to the entire
running time are small (i.e., approximately 1%) due to the
relatively small size of the data resulting from GPU kernel
functions (i.e., the supports of candidate itemsets). However,
the ratios of the memcpy (H2D) to the entire running time
grow as the size of input data increases (i.e., the number of
bitmap transaction chunks, R, increases). This tendency is
mainly due to increasing the synchronization overheads for
aggregating the local supports for each group of P bitmap
transaction chunks, where P is the maximum number of
bitmap transaction chunks that could be loaded into the main

FIGURE 12. Results varying the configurations of GPUs.

VOLUME 10, 2022 62517

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

FIGURE 13. Space usage varying the used datasets.

FIGURE 14. Results of performance profiling varying the used datasets.

memory. In addition, the portion of hiding the cost of copying
bitmap transaction chunks decreases as the size of input data
increases, because the time to copy the first bitmap trans-
action chunks of P bitmap transaction chunks could not be
hidden (i.e., the cost of copying R

P bitmap transaction chunks
to GPU device memory could not be hidden), as explained in
Section III-C.

VII. CONCLUSION
We propose SGMiner, a GPU- and disk-based frequent item-
set mining method running on a single machine equipped
with multiple GPUs and SSDs. By storing bitmap transaction
chunks in SSDs, carefully streaming the bitmap transaction
chunks from SSDs to GPU device memory through main
memory, and performing GPU-based massive bitwise oper-
ations only exploiting bitmap transaction chunks, SGMiner
significantly decreases the overhead of I/O and running time.
SGMiner shows scalability in terms of the size of datasets up
to 6.5 billion transactions and linear scalability with the num-
ber of GPUs and SSDs. Through the tested benchmark using
real and synthetic datasets, we demonstrate the superiority

of SGMiner over the state-of-the-art methods. Future work
includes extending the work to exploit modern GPU commu-
nication techniques (e.g., NVLink and GPUDirect RDMA)
to further decrease the I/O overheads.

REFERENCES
[1] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Cham, Switzerland:

Springer, 2014.
[2] W. Lin, S. A. Alvarez, and C. Ruiz, ‘‘Efficient adaptive-support association

rule mining for recommender systems,’’ Data Mining Knowl. Discovery,
vol. 6, no. 1, pp. 83–105, Jan. 2002.

[3] J. J. Sandvig, B. Mobasher, and R. Burke, ‘‘Robustness of collaborative
recommendation based on association rule mining,’’ in Proc. ACM Conf.
Rec. Syst. (RecSys), 2007, pp. 105–112.

[4] K.-W. Chon and M.-S. Kim, ‘‘BIGMiner: A fast and scalable distributed
frequent pattern miner for big data,’’ Cluster Comput., vol. 21, no. 3,
pp. 1507–1520, Sep. 2018.

[5] K.-W. Chon, S.-H. Hwang, and M.-S. Kim, ‘‘GMiner: A fast GPU-
based frequent itemset mining method for large-scale data,’’ Inf. Sci.,
vols. 439–440, pp. 19–38, May 2018.

[6] (2013). BigFIM. [Online]. Available: https://gitlab.com/adrem/bigfim-sa
[7] C. Borgelt, ‘‘Efficient implementations of Apriori and Eclat,’’ in Proc.

FIMI, IEEE-ICDM Workshop Frequent Itemset Mining Implementations,
CEUR Workshop, 2003, vol. 90. [Online]. Available: CEUR-WS.org

[8] (2013). Frontier Expansion Source Code. [Online]. Available:
https://github.com/zhangfan0726/fim_gpu

[9] Y. Djenouri, H. Drias, and Z. Habbas, ‘‘Bees swarm optimisation using
multiple strategies for association rule mining,’’ Int. J. Bio-Inspired Com-
put., vol. 6, no. 4, pp. 239–249, 2014.

[10] Z.-H. Deng and S.-L. Lv, ‘‘PrePost+: An efficient N-lists-based algorithm
for mining frequent itemsets via children–parent equivalence pruning,’’
Expert Syst. Appl., vol. 42, no. 13, pp. 5424–5432, Aug. 2015.

[11] Z.-H. Deng, ‘‘DiffNodesets: An efficient structure for fast mining frequent
itemsets,’’ Appl. Soft Comput., vol. 41, pp. 214–223, Apr. 2016.

[12] J. Han, J. Pei, and Y. Yin, ‘‘Mining frequent patterns without candidate
generation,’’ ACM SIGMOD Rec., vol. 29, no. 2, pp. 1–12, 2000.

[13] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules
in large databases,’’ in Proc. VLDB, 1994, pp. 487–499.

[14] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ‘‘New algorithms
for fast discovery of association rules,’’ in Proc. KDD, vol. 97, 1997,
pp. 283–286.

[15] N. Aryabarzan, B. Minaei-Bidgoli, and M. Teshnehlab, ‘‘negFIN: An effi-
cient algorithm for fast mining frequent itemsets,’’ Expert Syst. Appl.,
vol. 105, pp. 129–143, Sep. 2018.

[16] S. Brin, R.Motwani, J. D. Ullman, and S. Tsur, ‘‘Dynamic itemset counting
and implication rules for market basket data,’’ACMSIGMODRec., vol. 26,
no. 2, pp. 255–264, 1997.

[17] G. Grahne and J. Zhu, ‘‘Efficiently using prefix-trees in mining frequent
itemset,’’ in Proc. FIMI, IEEE-ICDM Workshop Frequent Itemset Mining
Implementations, CEUR Workshop, 2003, vol. 90. [Online]. Available:
CEUR-WS.org

[18] J. S. Park, M.-S. Chen, and P. S. Yu, ‘‘An effective hash-based algo-
rithm for mining association rules,’’ ACM SIGMOD Rec., vol. 24, no. 2,
pp. 175–186, 1995.

62518 VOLUME 10, 2022

K.-W. Chon et al.: SGMiner: Fast and Scalable GPU-Based Frequent Pattern Miner on SSDs

[19] T. Uno, M. Kiyomi, and H. Arimura, ‘‘LCM ver. 2: Efficient mining algo-
rithms for frequent/closed/maximal itemsets,’’ in Proc. FIMI, IEEE-ICDM
Workshop Frequent Itemset Mining Implementations, CEUR Workshop,
2004, vol. 126. [Online]. Available: CEUR-WS.org

[20] H. Yu, J.Wen, H.Wang, and L. Jun, ‘‘An improvedApriori algorithm based
on the Boolean matrix and Hadoop,’’ Proc. Eng., vol. 15, pp. 1827–1831,
Jan. 2011.

[21] N. Li, L. Zeng, Q. He, and Z. Shi, ‘‘Parallel implementation of Apriori
algorithm based onMapReduce,’’ inProc. 13th ACIS Int. Conf. Softw. Eng.,
Artif. Intell., Netw. Parallel/Distrib. Comput., Aug. 2012, pp. 236–241.

[22] F. Kovacs and J. Illés, ‘‘Frequent itemset mining on Hadoop,’’ in Proc.
IEEE 9th Int. Conf. Comput. Cybern. (ICCC), Jul. 2013, pp. 241–245.

[23] K. K. Sethi and D. Ramesh, ‘‘HFIM: A spark-based hybrid frequent item-
set mining algorithm for big data processing,’’ J. Supercomput., vol. 73,
pp. 1–17, Jan. 2017.

[24] H. Qiu, R. Gu, C. Yuan, and Y. Huang, ‘‘YAFIM: A parallel frequent
itemset mining algorithm with spark,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops, May 2014, pp. 1664–1671.

[25] F. Zhang, M. Liu, F. Gui, W. Shen, A. Shami, and Y. Ma, ‘‘A distributed
frequent itemset mining algorithm using spark for big data analytics,’’
Cluster Comput., vol. 18, no. 4, pp. 1493–1501, Dec. 2015.

[26] J. C.-W. Lin, Y. Djenouri, G. Srivastava, Y. Li, and P. S. Yu, ‘‘Scal-
able mining of high-utility sequential patterns with three-tier MapReduce
model,’’ACMTrans. Knowl. Discovery FromData, vol. 16, no. 3, pp. 1–26,
Jun. 2022.

[27] Y. Djenouri, D. Djenouri, J. C.-W. Lin, and A. Belhadi, ‘‘Frequent itemset
mining in big data with effective single scan algorithms,’’ IEEE Access,
vol. 6, pp. 68013–68026, 2018.

[28] Z. Dong, ‘‘Research of big data information mining and analysis: Tech-
nology based on Hadoop technology,’’ in Proc. Int. Conf. Big Data, Inf.
Comput. Netw. (BDICN), Jan. 2022, pp. 173–176.

[29] M. Yimin, G. Junhao, D. S. Mwakapesa, Y. A. Nanehkaran, Z. Chi,
D. Xiaoheng, and C. Zhigang, ‘‘PFIMD: A parallel MapReduce-based
algorithm for frequent itemset mining,’’ Multimedia Syst., vol. 27, no. 4,
pp. 709–722, Aug. 2021.

[30] M. Sornalakshmi, S. Balamurali, M. Venkatesulu, M. N. Krishnan,
L. K. Ramasamy, S. Kadry, and S. Lim, ‘‘An efficient apriori algorithm for
frequent pattern mining using mapreduce in healthcare data,’’ Bull. Electr.
Eng. Informat., vol. 10, no. 1, pp. 390–403, Feb. 2021.

[31] J. M.-T.Wu, G. Srivastava, M.Wei, U. Yun, and J. C.-W. Lin, ‘‘Fuzzy high-
utility pattern mining in parallel and distributed Hadoop framework,’’ Inf.
Sci., vol. 553, pp. 31–48, Apr. 2021.

[32] (2014). Apache Spark. [Online]. Available: http://spark.apache.org/
[33] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on

large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[34] B. Goethals, ‘‘Survey on frequent pattern mining,’’ Univ. Helsinki,

Helsinki, Finland, Tech. Rep., 2003, vol. 19, pp. 840–852.
[35] G. Grahne and J. Zhu, ‘‘Mining frequent itemsets from secondary mem-

ory,’’ in Proc. 4th IEEE Int. Conf. Data Mining (ICDM), Nov. 2004,
pp. 91–98.

[36] L. Liu, E. Li, Y. Zhang, and Z. Tang, ‘‘Optimization of frequent
itemset mining on multiple-core processor,’’ in Proc. PVLDB, 2007,
pp. 1275–1285.

[37] L. Vu and G. Alaghband, ‘‘Novel parallel method for mining frequent
patterns on multi-core shared memory systems,’’ in Proc. Int. Workshop
Data-Intensive Scalable Comput. Syst. (DISCS), 2013, pp. 49–54.

[38] B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner, ‘‘Scalable frequent
itemset mining on many-core processors,’’ in Proc. 9th Int. Workshop Data
Manage. New Hardw. (DaMoN), 2013, p. 3.

[39] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, ‘‘Apriori-based frequent itemset
mining algorithms on MapReduce,’’ in Proc. 6th Int. Conf. Ubiquitous Inf.
Manage. Commun. (ICUIMC), 2012, p. 76.

[40] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, ‘‘Pfp: Parallel fp-
growth for query recommendation,’’ in Proc. RecSys, 2008, pp. 107–114.

[41] L. Wang, ‘‘An efficient algorithm of frequent itemsets mining based
on MapReduce,’’ J. Inf. Comput. Sci., vol. 11, no. 8, pp. 2809–2816,
May 2014.

[42] F. Zhang, Y. Zhang, and J. D. Bakos, ‘‘GPApriori: GPU-accelerated
frequent itemset mining,’’ in Proc. CLUSTER, 2011, pp. 590–594, doi:
10.1109/CLUSTER.2011.61.

[43] F. Zhang, Y. Zhang, and J. Bakos, ‘‘Accelerating frequent itemset mining
on graphics processing units,’’ J. Supercomput., vol. 66, no. 1, pp. 94–117,
2013.

[44] Y.-C. Wu, M.-Y. Yeh, and T.-W. Kuo, ‘‘Fast frequent pattern mining
without candidate generations onGPU by low latencymemory allocation,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2019, pp. 1407–1416.

[45] M. J. Zaki and K. Gouda, ‘‘Fast vertical mining using diffsets,’’ in Proc.
9th ACM SIGKDD Int. Conf. Knowl. Discovery DataMining (KDD), 2003,
pp. 326–335.

[46] S. Moens, E. Aksehirli, and B. Goethals, ‘‘Frequent itemset mining for big
data,’’ in Proc. IEEE Int. Conf. Big Data, Oct. 2013, pp. 111–118.

[47] (2014). Apache Spark MLlib. [Online]. Available:
http://spark.apache.org/mllib/

[48] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, ‘‘Frequent itemset mining
on graphics processors,’’ in Proc. 5th Int. Workshop Data Manage. New
Hardw. (DaMoN), 2009, pp. 34–42.

[49] C. Silvestri and S. Orlando, ‘‘GpuDCI: Exploiting GPUs in frequent item-
set mining,’’ in Proc. 20th Euromicro Int. Conf. Parallel, Distrib. Netw.-
based Process., Feb. 2012, pp. 416–425.

[50] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, ‘‘GTS: A fast and scalable
graph processing method based on streaming topology to GPUs,’’ in Proc.
Int. Conf. Manage. Data, Jun. 2016, pp. 447–461.

[51] B. Schlegel, ‘‘Frequent itemset mining on multiprocessor systems,’’ Dept.
Database Technol. Group, Technische Universität Dresden, Dresden,
Germany, Tech. Rep., 2013.

[52] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri, ‘‘WebDocs: A real-
life huge transactional dataset,’’ inProc. FIMI, IEEE-ICDMWorkshop Fre-
quent Itemset Mining Implementations, CEUR Workshop, 2004, vol. 126.
[Online]. Available: CEUR-WS.org

[53] (2005). FIMI Repository. [Online]. Available: http://fimi.ua.ac.be
[54] (2009). Yahoo Webscope. Yahoo! Altavista Web Page Hyperlink Connec-

tivity Graph. [Online]. Available: http://webscope.sandbox.yahoo.com
[55] G. Buehrer, R. L. de Oliveira, D. Fuhry, and S. Parthasarathy, ‘‘Towards a

parameter-free and parallel itemset mining algorithm in linearithmic time,’’
inProc. IEEE 31st Int. Conf. Data Eng. (ICDE), Apr. 2015, pp. 1071–1082.

[56] (2016). dFIN Source Code. [Online]. Available: https://github.com/
aryabarzan/dFIN

[57] S. Zalewski, ‘‘Mining frequent intra-and inter-transaction itemsets on
multi-core processors,’’ Dept. Comput. Inf. Sci., Norwegian Univ. Sci.
Technol., Trondheim, Norway, Tech. Rep., 2015.

[58] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The parsec benchmark suite:
Characterization and architectural implications,’’ in Proc. PACT, 2008,
pp. 72–81.

[59] (2006). Apache Hadoop. [Online]. Available: http://hadoop.apache.org
[60] (2013). Apache Mahout. [Online]. Available: http://mahout.apache.org

KANG-WOOK CHON received the Ph.D. degree
from the Department of Information and Commu-
nication Engineering, DGIST, in 2018. He worked
as a Software Engineer for developing big data
systems at SKT, from 2018 to 2020. He is currently
working with the Division of National Supercom-
puting, KISTI. His research interests include scal-
able data mining, machine learning, and bioin-
formatics on parallel computing and distributed
computing.

EUNJEONG YI received the B.S. and M.S.
degrees from the Department of Information
and Communication Engineering, DGIST. Her
research interests include datamining andmachine
learning on heterogeneous data types.

MIN-SOO KIM (Member, IEEE) received the
Ph.D. degree in computer science from KAIST,
in 2006. He worked at UIUC as a Postdoctoral Fel-
low on data mining. He worked at IBM Almaden
Research for a project of developing IBM Smart
Analytics Optimizer for DB2 for z/OS. He worked
at theDepartment of Information andCommunica-
tion Engineering, DGIST, from 2011 to 2020. He is
currently working with the School of Computing,
KAIST. His research interests include databases,

data mining, machine learning, and bioinformatics.

VOLUME 10, 2022 62519

http://dx.doi.org/10.1109/CLUSTER.2011.61

