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ABSTRACT Acoustic imaging sonar can be used as important navigation sensors for underwater inter-
vention systems as they consistently provide spatial information about the surrounding environment, even
in limited visibility conditions. However, acoustic imaging sonars are known for high spatial ambiguity and
low resolution of their measurements, which makes it challenging to obtain precise navigational information.
This paper presents a novel localizationmethod based on sensor fusion using an integrated IMU-DVL system
and an acoustic imaging sonar. A sonar simulator is implemented and used to estimate the pose of the robot
based on a single acoustic image, and it is formulated as an image alignment problem between a simulated
acoustic image and an actual acoustic image. For this, an approximate nearest neighbor search method is
employed for initial pose estimation, and a newly developed acoustic image alignment method is applied to
obtain more accurate results in a continuous pose space. These methods are then combined to construct an
integrated localization system using all the navigation sensors on the robot. The feasibility and utility of the
proposed approach is shown through an experimental validation in a test tank.

INDEX TERMS Autonomous intervention system, acoustic imaging sonar, underwater localization.

I. INTRODUCTION
Underwater vehicles, such as remotely operated vehicles
(ROVs), are widely used for various intervention tasks, such
as subsea construction and inspection (Fig. 1), and these
vehicles are referred to as underwater intervention systems.
Until recently, the operation of intervention systems was
primarily performed by human operators, which has caused
various operational problems owing to human errors. There-
fore, studies have been conducted on building autonomous
intervention systems to increase the efficiency of intervention
tasks [1]–[9].

Among the various techniques for autonomous systems,
localization is the basic technology for the autonomy of a
mobile system, and a reliable autonomous system can be built
with the knowledge of the mobile system’s characteristics
and operating environment. As for intervention systems, an
operational environment can be considered a place where
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FIGURE 1. Intervention tasks on offshore platforms: The oceaneering
NEXXUS ROV performs intervention task on subsea platform.

man-made objects, such as subsea structures, are intention-
ally placed by humans. Here, the intervention tasks often
require a vehicle to maneuver near the subsea structures
and use robotic arms to manipulate them. Accordingly, the
relative position between the vehicle and structures is impor-
tant information and should be accurately given. Considering
these operational characteristics, the localization system for
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the intervention system should have a relative localization
capability for the structures, which will be possible through
environmental perception using perception sensors.

Underwater vehicles, including intervention systems, are
equipped with several perceptions and navigation sensors
for their tasks. Among perception sensors, optical cameras
and underwater sonars are typically mounted on underwater
vehicles, and these sensors provide a significant amount of
information to construct a localization system. Optical cam-
eras provide high-resolution color images. However, the use
of these sensors is extremely limited owing to light attenua-
tion and turbidity in the underwater environment. Underwater
sonar can produce range information without being affected
by environmental factors; therefore, it frequently has shown
higher usability than optical cameras in several underwater
applications.

Underwater sonar is categorized into ranging sonar
(e.g., single-beam and multibeam echo sounders) and imag-
ing sonar (e.g., side-scan and multibeam imaging sonar).
Multibeam imaging sonar (so-called forward-looking imag-
ing sonar or acoustic camera) produces acoustic images rep-
resenting the range of environment for a 3-D fan-shaped
imaging area. However, the acoustic image does not rep-
resent height information above the image plane, and the
spatial ambiguity increases rapidly as the detection distance
increases. In addition, it makes completely different imaging
results depending on the arrangement of the imaging sonar
and surrounding objects. Despite these difficulties, compared
with other sonars, the acoustic imaging sonar has a high
imaging resolution, wide imaging area, high frame rate, and
a long imaging distance of approximately 100 m, which is
advantageous for detecting near-field objects in the inter-
vention environment. Thus, considering the operational char-
acteristics of the intervention system, the acoustic imaging
sonar would be highly useful as a perception sensor for the
localization correction of a localization system.

Therefore, this paper proposes a new localization tech-
nique using an acoustic imaging sonar for autonomous inter-
vention systems operating near underwater structures, such as
underwater wells or manifolds on the seabed. This technique
is based on an integrated IMU-DVL system and uses relative
pose estimation on acoustic images for localization correc-
tion, allowing the vehicle to have mid-range localization
capabilities with respect to subsea platforms. The merits of
the proposed technique were verified using real data obtained
from a test tank. The remainder of this paper is organized as
follows. Section 2 describes the related research on under-
water localization using a single acoustic imaging sonar.
Section 3 addressed a localization strategy for autonomous
intervention systems. This section covers pose estimation
techniques for a single acoustic image and a way to construct
the localization system with an integrated IMU-DVL system.
In Section 4, the feasibility of the proposed technique is
validated through an experiment using a dataset. At the end of
this paper, we summarize and conclude this paper with some
future directions.

II. RELATED WORKS
The localization with the imaging sonar has several advan-
tages compared to conventional acoustic-based localization
systems (e.g., LBL, SBL, and USBL) in intervention tasks
using underwater vehicles. First, the system using the imag-
ing sonar does not require any infrastructure (e.g., transducer
beacon), which costs a lot to install, unlike conventional
systems. Second, the pose estimation with imaging sonar gets
directly the relative pose for the subsea structure of interest,
so it is particularly suitable for localization of the intervention
system. Third, the imaging sonar is an active sonar, so it
does not suffer from the issue of acoustic shadow zone in
positioning.

Because acoustic imaging sonars have demonstrated high
usability in underwater environments, many researchers
have addressed localization problems using acoustic imaging
sonars to increase vehicle autonomy. One study proposed
a simultaneous localization and mapping (SLAM) imple-
mentation using an exact sparse extended information fil-
ter (ESEIF) with manual features in acoustic images [10].
The study focused on real-time performance rather than
feature detection. Unlike the method with manual features,
this method extracts dense features from acoustic images
and applies pairwise registration between acoustic images
using normal distribution transformation (NDT) [11]. The
registrations were combined with onboard velocity, attitude,
and acceleration sensors. One approach used the SLAM
framework to detect and track features in acoustic images
to renavigate a mapped target in a shallow-water ocean
environment [12]. Another study introduced the concept of
the acoustic structure from motion (ASFM) technique using
multiple acoustic images to reconstruct the selected point
features [13]. The study demonstrated that this method can be
applied in real-time navigation and SLAM for autonomous
underwater vehicles in general 3D environments. A study
proposed point-based relative pose estimation via bundle
adjustment, with the assumption of a fixed sensor eleva-
tion [14]. In that study, the accelerated-KAZE (AKAZE)
feature, which has been primarily used for optical images,
was used to extract features from acoustic images. The study
developed a low-cost acoustic-inertial navigation system
that efficiently fuses acoustic images and inertial measure-
ments within a tightly coupled extended Kalman filter (EKF)
framework [15]. In addition, the study introduced acoustic
feature linear triangulation to generate initial estimates
for nonlinear least-squares-based feature localization. Some
efforts have been conducted to determine loop closures in
acoustic images for the SLAM framework. A learning archi-
tecture was designed to compare two acoustic images and
determine whether they correspond to the same underwa-
ter scene [16]. A pose-invariant topological graph was built
to represent loop closures between acoustic images in a
semi-structured environment [17]. Acoustic landmarks were
used for underwater navigation, and they were detected using
a technique known as beam slice-based recognition [18].
An acoustic image simulator was used to determine the
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FIGURE 2. Schematic diagram of the proposed localization system: The bold and dotted lines represent the main flow and
offline process of the localization system, respectively.

relative 3-D pose of a target whose shape and dimension
are known, and it is subsequently employed for the global
localization of underwater vehicles [19].

As acoustic imaging sonars provide rich texture informa-
tion under certain conditions, image registration techniques
using acoustic imaging sonars have received considerable
research interest. The image registration here is primarily
used to create acoustic mosaic images; however, we have
confirmed that these techniques can be used to construct an
underwater localization system. A Fourier-based technique
was used for image registration of acoustic images, avoiding
the extraction of features and ensuring a fast implementa-
tion [20]. Here, it is formulated using a pose graph, which
was incrementally optimized using the g2o framework. The
optimized poses were then used to build a mosaic online.
Meanwhile, the feature point was influential in the image
registration of the acoustic image. This method incorporates
the detection of critical features and landmarks. It effectively
represents them with a cluster-based Gaussian map, which
provides amore efficient representation of the feature blobs in
acoustic images [21]. Feature tracking using particle filtering
was introduced to register the acoustic image sequences [22].
It begins with the extraction of the intensity, texture, and
shape features from an unstructured seabed environment.
The Gabor feature and weighted angular projection func-
tion (WAPF) were introduced to determine point pairs in
acoustic images [23]. Unlike the method that uses feature
points, a study attempted to match acoustic images using
an image similarity measure. Peripheral mutual informa-
tion maximization was proposed for acoustic image regis-
tration [24]. It was inspired by regional mutual information
(RMI), which utilizes the closed-form solution for Shannon
entropy. In addition, an optical flow model was introduced
to estimate a pixel displacement map between consecutive
acoustic images [25]. Using a weighted regularized spline
technique, the incremental inter-frame motions were inte-
grated into an attitude trajectory for the acoustic sensor.

Most of the above studies are basically based on image
comparison to obtain navigational information from consec-
utive acoustic images with similar imaging view directions
and rich acoustic textures. However, those studies have shown

their usefulness in some applications, but they have various
technical challenges to be used in localization system for
autonomous intervention systems.

III. METHODOLOGY
A. LOCALIZATION STRATEGY
This section addresses the localization strategy enabling
autonomous intervention systems to maneuver near subsea
structures and perform intervention tasks without the need
for external beacons for positioning. The strategy is based
on an integrated IMU-DVL system using navigation sen-
sors, a Doppler velocity log (DVL) and an inertial measure-
ment unit (IMU) for the vehicle’s underwater maneuvering.
It employs a relative pose estimation using an acoustic imag-
ing sonar for localization correction with respect to subsea
structures.

An important assumption here is that all sensors are
mounted on the intervention system and their positional rela-
tionships are known precisely. In addition, subsea structures
are designed and deployed by humans; therefore, their shape
and layout are entirely known. Consequently, it enables a
sonar simulator to simulate the localization space and all
possible acoustic images that can be created in the space.
Ideally, if the simulation environment sufficiently describes
the actual localization space, and if the sonar simulator pro-
duces identical simulated images with input acoustic images,
we can assume that the pose in which the simulated image is
created is the position where the actual acoustic image was
obtained.

Based on this assumption, our localization strategy for-
mulates the pose estimation for an input acoustic image as
an image alignment problem between the input and simu-
lated acoustic images. Specifically, the pose estimation com-
prises an image-pose pair group generation, image-pose pair
nearest-neighbor (NN) search, and acoustic image alignment.
First, the image-pose pair group generation is an offline
process. It builds a database that contains pose hypotheses
over a bounded localization area and simulated images at
each hypothesis using a sonar simulator. Next, the NN search
finds an image-pose pair in the database and guesses the pose
in which an actual input image was taken. The poses of the
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NN search are in discrete pose spaces and may differ from
the actual poses. Therefore, the acoustic image alignment
tries to find the actual pose by matching the input image
and the image generated in the continuous pose space of
the simulator, assuming that the actual pose is near the pose
from the NN search. Lastly, the pose estimation results are
combined with sensor measurements from DVL and IMU
in an extended Kalman filter system, and it estimates the
six-degree-of-freedom (6-DOF) pose of the intervention sys-
tem and subsea structures in the global frame.

B. POSE ESTIMATION FOR A SINGLE ACOUSTIC IMAGE
1) IMAGE-POSE PAIR GROUP GENERATION
Image-pose pair group generation samples a certain number
of pose hypotheses over a 3-D pose space in a bounded
localization area and generates simulated acoustic images
for each pose hypothesis using the sonar simulator. As a
result, the group contains simulated acoustic images and their
6-DOF pose labels.

The group can not contain all possible hypotheses owing
to limited system resources. Therefore, the group generation
samples a specific number of poses evenly in each pose
dimension. Consequently, it can be a 6N pose hypothesis if
N samplings are performed in each dimension. Underwater
vehicles, including intervention systems, typically have small
roll and pitch motions, in which case we can only consider
4-DOF for each pose hypothesis. In addition, if we can ignore
the vehicle’s vertical motion for specific intervention tasks,
the pose hypothesis can be a 3-DOF pose. This pair gener-
ation requires significant computation due to acoustic image
simulation, but it does not affect the real-time capability of the
localization system as it is processed offline. After generating
all pairs, each pair is indexed in numerical order along with
the pose labels. The index is used for the acoustic image NN
search for initial pose estimation.

2) IMAGE-POSE PAIR NEAREST NEIGHBOR SEARCH FOR
ACOUSTIC IMAGE
Image–pose pair NN search finds a pair with the image most
similar to an input acoustic image in the image–pose pair
group and then returns a pose label of the pair. Considering a
large number of the image–pose pairs in the group, a search
without data compression requires significant computation.
Hence, the image-pose pair NN search employs an efficient
hash-based image search technique using image similarity
measure, minhahsing, and locality-sensitive hashing (LSH).
Here, minhashing is a dimension reduction method preserv-
ing the Jaccard similarity between data. LSH is a clustering
technique that uses band partitioning to rapidly allocate sim-
ilar input data to the same group, called buckets.

Specifically, the NN search comprises image–pose pair
clustering and image–pose pair selection. Image–pose pair
clustering is an offline process that clusters all pairs in a
group based on the image distance using image hashing,
minhahsing, and LSH. First, this process creates a hash table

composed of values and keys corresponding to the pose labels
and image hashes of the pairs, respectively. Each image of
m pairs is transformed into n bit vector by applying a specific
hashing function and the bit vectors are stacked to form a hash
table whose size is an n× m matrix.
The use of binary hashing loses the information of the

original data, but it enables to quickly compare the input data
with the hash table. Even after image hashing, n and m are
typically very large. The minhashing transforms the input
hash table into an r × m matrix called the signature matrix
through r random permutations, where the signature matrix
commonly has smaller dimensions than the input hash table
while preserving the Jaccard similarity between two hash
codes in the table. Subsequently, LSH divides the signature
matrix into b bands with h hash codes, compares each band
using Jaccard similarity, and assigns pose labels (or keys)
with high similarity to the same bucket. Here, LSH treats all
pose labels belonging to the same bucket as the same data.
Lastly, the pair clustering yields a set of buckets resulting
from clustering for the image-pose pair group.

Image–pose pair selection is an online process that finds an
image–pose pair with the smallest image distance to the input
acoustic image in a pre-generated bucket and then returns the
pose label of that pair. Concretely, the pair selection clusters
the input image into one of the pre-generated buckets by
sequentially applying image hashing, minhahsing, and LSH,
similar to the offline process. Because a bucket can have one
or more image–pose pairs, we determine the image–pose pair
with the smallest image distance to the input image using cor-
relation ratio, a similarity measure suitable for multimodality
data comparison. As a result, the pose label searched here
is used as an initial guess for image alignment, which is
introduced in the next section.

3) ACOUSTIC IMAGE ALIGNMENT
The initial poses of the NN search are in discrete pose spaces
and may differ from the actual poses. Therefore, it needs a
procedure to find the actual pose in a continuous pose space.
Like the NN search, we assume that the pose simulating
the image with the smallest image distance from the input
image represents the actual position at which the input image
was obtained. Therefore, we employ the image alignment
technique that tries to find the actual pose by matching the
input image and the image generated in the continuous pose
space of the simulator, assuming that the actual pose is near
the pose from the NN search. The image alignment can be
formulated as follows:

x̂ = argmin
x

d(S(x), I t ) (1)

The equation determines the acoustic imaging sonar’s
6-DOF pose x̂ that minimizes the image distance d(S(x), I t )
between the acoustic image S(x) = [Sr (x), Sψ (x)] simulated
at a pose x and the input acoustic image I t = [I tr , I

t
ψ ]

obtained at a time t with an initial pose x̃. The subscripts r
and ψ denote two different imaging coordinates of acoustic
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Algorithm 1: Acoustic Image Alignment

Input: x̃, I t = [I tr , I
t
ψ ]

Result: x̂
Param: K ,N , ζ,D = [d1,d2,d3]

1 x1←− x̃
2 FI ←− FeatureExtraction (I t )
3 for k ← 1 to K do
4 for n← 1 to N do
5 λn←− BidirectionalLineSearch (xk ,dn, I t )
6 x←− xk + λndn
7 end
8 dk ←− SetSearchDirection (xk , x)
9 λk ←− BidirectionalLineSearch (xk ,dk , I t ,FI )
10 xk+1←− xk + λkdk
11 x̂←− xk+1
12 E ←− |xk − xk+1|
13 if E < ζ then
14 Return(x̂)
15 end
16 end

imaging sonar called x-y and r-azimuth images, respectively.
The parameters of x to be estimated can be varied according
to the sensor configuration and arrangement, compositions of
the surrounding environment, and localization strategy. For
example, x can be a 4-DOF pose by ignoring the roll and
pitch motions of the imaging sonar (or vehicle). In addition,
if there is no vertical motion or if the altitude is measured
directly from the sensor, x can be a 3-DOF pose by ignoring
the vertical motion.

According to literature, an image alignment for acous-
tic images can be performed using feature-based, intensity-
based, and Fourier-based methods. Feature-based methods
directly estimate the 2-D geometric transformations of two
acoustic images. However, feature-based methods would not
work well for two acoustic images that have multimodal
relationships, large differences in imaging positions, or sparse
textures. Meanwhile, intensity-based methods find transfor-
mations for two images with image similarity measure, and
Fourier-based methods determine transformations in the fre-
quency domain. These two methods are typical options for
texture-rich images and images with a few differences in their
imaging position.

Actual acoustic images and simulated images have sparse
pixel distributions due to the arrangement of sensors and
subsea structures addressed in this paper. Furthermore, they
frequently have large different imaging positions, resulting
in significant pixel differences between images. Therefore,
using just one of the methods above would not be suit-
able for our image alignment problem because they assume
slight pixel differences or dense acoustic texture. In image-
alignment problems, the combination of several image dis-
tances, each of which accounts for data in a different way,
may yield better results. Thus, for our challenging image

Algorithm 2: Bidirectional Line Search
Input: xk ,d, I t ,FI
Result: λ
Param:M , γ, λ = [λ1, λ2, λ3]

1 x1←− xk
2 for m← 1 to M do
3 for l ← 1 to L do
4 xl ←− xm + λld
5 S←− AcousticImageSimulation (xl)
6 if InnerLoop then
7 Dl ←− ImageSimilarity (S, I t )
8 else
9 FS ←− FeatureExtraction (S)
10 Dl ←− ImageDistance (S, I t , FS , FI )
11 end
12 end
13 D←− [D1, · · · ,DL], 3←− [λ1, · · · , λL]
14 xm+1,3←− UpdateSamplePoint (D,3)
15 λ←− xk − xm+1
16 E ←− |xm+1 − xm|
17 if E < ζ then
18 Return(λ)
19 end
20 end

alignment, we consider the correlation ratio M , which is an
intensity-based image distance that measures pixel depen-
dence between two data, and the Chamfer distance C , which
indirectly measures geometric differences, even for sparse
texture images. Accordingly, the resulting image distance is
expressed as the sum of the two distances, as shown in the
following equation:

d(S∗(x), I∗) = C(S∗(x), I∗)+ β ·M (S∗(x), I∗), (2)

where β is a weighting for correlation ratio. The subscript
indicates the imaging type and can be r or ψ . Here, the
Chamfer distance measures the spatial similarity between the
contours of the two images and takes a distance value greater
than zero. This distance requires extracting the contours from
both images and then generating a distance function for one
of them. As edge pixels with high positive gradients of pixel
values on the distance axis in acoustic images are known
as representative feature points representing the outline of
objects in the image, we use the edge pixels to calculate
the Chamfer distance. For this, we employ an edge extrac-
tion technique [26] to find edge features and their normal
vectors and then cluster the edge features with a range of
normal directions and pixel gradients. The correlation ratio
measures the functional dependency between two images
and takes values between 0 (no functional dependency)
and 1 (purely deterministic dependency). In particular, this
measure is known to be effective for multimodality image
comparison, so we expect it to be effective for our image
registration problem.
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The r-azimuth image presents pixels with the range and
the azimuth axis, and the x-y image uses two distance coor-
dinates. Under an assumption of a static environment, the
pixel motion in the x-y image represents the 3-DOF motion
of the acoustic imaging sonar. The pixel motion on each
axis of the r-azimuth image corresponds to the range and
heading motion, respectively. Consequently, we can directly
estimate the heading motion of the sonar just by measuring
the pixel motion in the azimuth axis, and it will certainly
facilitate the acoustic image alignment. Therefore, this paper
uses the two image representations to calculate the image dis-
tance. The image distance can be expressed as the following
equation:

d(S(x), It ) = α · d(Sr (x), Ir )+ (1− α) · d(Sψ (x), Iψ ), (3)

where α is a tuning parameter that has different values dur-
ing the parameter estimation. For example, when estimating
the azimuth parameter, β is set to a value less than 0.5 to
give more weight to the distance for the r-azimuth
image.

Algorithm 1 summarizes the parameter estimation of the
image alignment. Image alignment uses the initial pose x̃
from the NN search and an acoustic image I t at time t from
an actual acoustic imaging sonar. Subsequently, it returns the
estimated pose x̂. K and N denote the number of iterations for
the parameter estimation and line search, respectively. Here,
N corresponds to the degree of freedom of the pose to be
estimated and was set to three here. The vector d is a unit
vector representing each degree of freedom of the pose to
be estimated and used for line searches in BidirectionalLi-
neSearch. This line search is based on the golden-section
search or Brent’s method and exists in the inner and main
loops, respectively. The one for the inner loop determines
the acceleration direction of the parameter updates, and the
one for the main loop determines the step size of update
acceleration λ.
Algorithm 2 is a pseudocode describing how a local line

search determines the step size of parameter updates λ, and its
inputs are a pose xk and vector d indicating the starting point
and direction of the line search, respectively. Meanwhile, this
line search employs different cost functions for the inner
and main loops of Algorithm 1. Specifically, because the
inner loop performs a line search N times that of the main
loop, the correlation ratio is used as a cost function to pay
more attention to fast computation.Meanwhile, the main loop
accelerates parameter estimation, and it should be delicately
controlled. Therefore, a combination of the Chamfer distance
and the correlation ratio is used as a cost function for more
accurate parameter estimation.

4) IMAGE ALIGNMENT CRITERION
A criterion was used to determine whether to use pose esti-
mation for filter updates. Let I t be an input acoustic image
at time t and a simulation image S(x) at pose x found by
image alignment. Then, the criteria can be obtained using the

equation below:

ηr =
C(Sr (x), I tr )

C(Sr (x),G(Sr (x)))
, (4)

where the denominator is a correlation ratio between
a simulation image Sr (x) at pose x and its image smoothing
result G(Sr (x)). The numerator is a correlation ratio between
the simulation image Sr (x) and an input image I tr . The denom-
inator is the maximum value of correlation ratio we can get
when two images are aligned. We empirically found out that
the numerators have lower values than the denominators, even
though two images were aligned perfectly. As a result, one
pose estimation is used for localization correction only when
the ratio ηr of the two correlation ratios is greater than a
threshold.

C. LOCALIZATION SYSTEM USING EXTENDED KALMAN
FILTER
1) SYSTEM DYNAMICS MODEL
The filter system uses the 6-DOF kinematic model of the
vehicle (or intervention system) driven by inertial sensor
measurements [27], [28]. The state vector of the motion of
the vehicle is expressed as

xv =
[
x y z φ θ ψ u v w

]T
, (5)

where the x, y, and z are the positions of the vehicle in
the global frame; φ, θ , and ψ are the Euler angles in the
global frame; and u, v, and w are the linear velocities in
the vehicle-fixed local frame. The vehicle pose in the global
frame is obtained by integrating the linear accelerations and
angular velocities from the IMU. The IMUmeasurements are
represented as

zimu =
[
zu̇ zv̇ zẇ zp zq zr

]T
, (6)

where the zu̇,zv̇, and zẇ are the linear accelerations; and zp,
zq, and zr are the angular velocities. The IMU measurements
are used to propagate the dynamics of the filter system.
To estimate the poses of the vehicle and the subsea structure
together, the state vector is composed of the state vector of
the structure xm = [xm ym zm φm θm ψm]T and the state vector
of the vehicle.

x =
[
xv
xm

]
(7)

The system dynamics consist of two motion models: the
subsea structure and the intervention system, which are used
to estimate the spatial relationship between the intervention
system and the subsea structure of interest given the sensor
measurements in the state estimator, and that can be repre-
sented as

ẋ =
[
ẋv
ẋm

]
=

[
f (xv, zimu)

0

]
+ w, (8)

where f (xv, zimu) is the motion model represented in [27].
Here, w refers to the uncertainty assumed to follow a
zero-mean Gaussian distribution. As the subsea structure is
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assumed to be stationary, the time derivative ẋm of their state
vector is set to zero.

2) MEASUREMENT MODEL
The measurement model employs two measurements for the
filter update. One is the measurement zv composed of the
linear velocity (u, v, and w) and altitude d obtained from the
DVL and altimeter sensor, respectively. In addition, the mea-
surement model employs the relative pose zm = [ zx zy zψ ]T

between the subsea structure and the acoustic imaging sonar
given by the proposed pose estimation. Therefore, the result-
ing measurement model can be represented as

z = [zv zm]T + v

= [u v w d zx zy zψ ]T + v, (9)

where v = [vv vm]T is the measurement noise. vv is the
measurement noise, which is assumed to follow a zero-mean
Gaussian distribution with covariance matrix Rv, and vm is
the measurement noise of the pose estimation with a
zero-mean Gaussian distribution with covariance matrix Rm
as follows:

Rm =

κ2a · e2·a·ηr 0 0
0 κ2a · e

2·a·ηr 0
0 0 κ2b · e

2·b·ηψ

 . (10)

Here, κa and κb represent the sensor distance resolution per
pixel of Ir and the azimuth resolution per pixel on the azimuth
axis of Iψ , respectively. ηr and ηψ are the criterion calculated
for Ir and Iψ as represented in Eq 4. a and b are tuning
parameters.

IV. EXPERIMENTAL VALIDATION
This section shows the feasibility and usability of proposed
techniques with a dataset obtained in a test tank.

A. EXPERIMENTAL SETUP
The experimental validations were conducted under a
scenario in which an intervention system equipped
with an acoustic imaging sonar and navigation sensors
(DVL and IMU)maneuvers near a cluster of subsea platforms
for their intervention tasks.

The validations used a dataset obtained from an acous-
tic imaging sonar, DVL, and IMU, without using a robotic
platform. The dataset was obtained by moving a mounting
frame on which the sensors were mounted in the test tank
(see Fig. 3). The rotational and vertical motions of the sensors
were fixed, and the imaging plane of the acoustic imaging
sonar was fixed parallel to the bottom of the tank. According
to the validation scenario, two scaled mock-up models of
the control panel of the wellhead, an offshore platform for
oil or gas production, were built and placed at the bottom
of the test tank. As the shape and positional relationship
of the mock-up models and the tank were known precisely,
3D computer-aided drawing (CAD) models were easily
obtained, and they were used for the sonar simulator to gen-
erate simulated acoustic images. We set up a rectangular path

FIGURE 3. Experimental setup for data acquisition: Sensors, mounting
frame, two mock-up models and markers for localization reference were
deployed in a water tank.

TABLE 1. Specifications for equipment used for data acquisition
experiment.

for themounting frame to follow, and this path was positioned
near the mock-up models, considering the experimental sce-
nario. The mounting frame had a down-looking camera to
obtain relative poses between the acoustic imaging sonar and
visual markers placed on the bottom of the tank, and these
poses were used to generate a localization ground truth. The
specifications for each sensor and the experimental environ-
ment are summarized in Table 1. The sensors used here are
typically mounted on underwater vehicles for navigation and
monitoring purposes.

NN Search has higher performance as the size of the hash
table increases, but we cannot consider all possible pairs.
Therefore, the performance of techniques using pair groups
was observed with a limited number of pairs. We prepared
three pair groups with different numbers of pairs for a local-
ization area we have set. Each group was obtained by evenly
sampling 5, 10, and 20 pairs per meter for the position dimen-
sion and per 5 degrees for the azimuth dimension.
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FIGURE 4. Results of image-pose pair NN search: The results were represented with superimposed images between input
images (gray) and NN search results (magenta). They are arbitrary selections of input images at which successful pose estimation was
performed. Some of the results were exactly the same as the input image, and some estimations were slightly mismatched but did not
deviate much from the correct answer.

TABLE 2. Results of NN search: RMSE is represented for the entire localization area and an area within a distance d of 5 meters from the mock-up
models. All results were shown according to the different number of pairs. N and Nn are the number of input images and successful NN searches.
The subscript 5 refers to attempts occurred within a distance of 5 meters from the mock-up models.

B. RESULTS AND DISCUSSION
1) RESULTS OF IMAGE NEAREST NEIGHBOR SEARCH
The NN search was evaluated using all acoustic images we
obtained in the experiment. Fig. 4 shows overlay images of
actual acoustic images and simulated images found by NN
search. Here, each image’s gray background image is the
actual acoustic image, and the magenta foreground image
is the simulated image found by NN search. The BlueView
p900-45 used here features a relatively long detection range
and low imaging resolution. This sensor’s acoustic image,
In particular, has a low imaging resolution in the far imag-
ing area, as opposed to the oversampled near imaging area.
This characteristic is also visible in the acoustic image that
we obtained. Consequently, it causes a considerable image
difference between the real and simulated images for distant
objects and degrades the performance of the NN search,
which assumes the same pixel distribution of the two images
obtained at the same imaging position. In this regard, the last
figure of Fig. 4 depicts an example. Here, the NN search
failed to align the simulated image with the actual image, and
it can be seen that the shape of the object is different in the
two images. On the other hand, NN searches performed well
for most image alignments for both images of nearby objects.

Table 2 summarizes the root-mean-squared error (RMSE),
success rate, and computation time of NN searches over the
entire dataset. Here, The success rate is calculated for NN
search results with a particular position and azimuth error
that was set considering the resolution of the image-pose
pair generation. For instance, if the pose labels of two adja-
cent pairs have a position difference of 0.5 m, the criterion

will be
√
0.52 + 0.52. As mentioned earlier, NN searches

were evaluated with three image-pose pairs that have differ-
ent resolutions. This is to see the relationship between the
number of image-pose pairs and the NN search’s accuracy.
As expected, the NN search showed a low localization error
as the image-pose pair’s resolution increased but required
more time for the search. Meanwhile, NN search with a small
number of pairs occasionally reached the image update rate
of actual imaging sonar, though the localization inaccuracy
was slightly increased. Overall, the imaging position from the
target object had amore significant impact on theNN search’s
results than the number of pair groups. The NN search
showed localization errors that allow the intervention system
to maneuver around subsea structures, which is a satisfactory
result considering the low resolution of the imaging sonar we
used.
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FIGURE 5. Results of acoustic image alignment: The results were represented with superimposed images between input images (gray)
and NN search results (magenta). The input images here are the same as that of Fig. 4, and these results were obtained with the
initials of the NN search for Fig. 4. All results were well aligned, but with some errors for distant object images.

TABLE 3. Results of acoustic image alignment: The results were calculated in the same way as the NN search results in Table. 2. Na and Nn denote the
number of successful image alignments and NN searches for the entire path. The subscript 5 refers to attempts occurred within a distance of 5 meters
from the mock-up models.

2) RESULTS OF ACOUSTIC IMAGE ALIGNMENT
Since image alignment is the post-processing of NN search,
it was evaluated with NN search results. Fig. 5 represents the
superimposed image of the actual image and the simulated
image obtained by image alignment. In each image, the gray
background image is the actual acoustic image, and this is
equivalent to Fig. 4. The magenta foreground image repre-
sents the simulated image returned by image alignment. Fig. 5
shows that the two images are well aligned, which indicates
that image alignment can improve the NN search results.
Meanwhile, image alignment often failed or had some posi-
tional errors (see the first figure in Fig. 5); there are several
reasons for this: First, image alignment assumes slight image
differences between simulated and actual images at the same
imaging position, but our simulator was not able to produce
identical images to the actual camera, especially for distant
objects. Second, as NN search had relatively high positional
errors, image alignment employing the NN search’s results
in parameter estimation had to begin parameter estimation at
incorrect initial values.

Table 3 summarizes the root-mean-squared error (RMSE),
success rate, and computation time of image alignment.
As with the NN search, this is computed over the entire data
we collected. Here, the success rate was calculated for image

alignment with a position error of less than 0.07 m, and this
was a rather strict criterion given the resolution of the imaging
sonar we used. Because the parameter estimation employs
the NN search results as initial values, the image alignment’s
results were represented according to the pair group’s reso-
lution. Here, image alignment showed satisfactory error and
convergence speed in the high-resolution pair group because
NN search at this resolution had high positional accuracy.
Image alignment, on the other hand, took longer to converge
due to the NN search’s poor results in the low-resolution pair
group.

Image alignment showed different positional errors
depending on some factors we stated, but it was more
affected by the imaging position from the object than the
pair group’s resolution. Overall, image alignment showed
a satisfactory ability to make localization corrections for
intervention robots. In particular, this is an encouraging
result in that global localization is possible with a low-
resolution single-shot acoustic image without any image
registration process. Meanwhile, image alignment usually
works slowly but sometimes approaches the image update
rate of a real camera. This could be improved as image
alignment allows for a trade-off parameter between speed and
accuracy.
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FIGURE 6. Localization results of dead reckoning and proposed localization system: The two rectangles represent the
mock-up models; their shape and layout are the same as that of the experiment. In (a), the blue and red lines represent
the ground truth and dead reckoning paths, respectively. In (b), the red line indicates the path by the proposed
localization. Yellow markers indicate where the relative pose to the mock-up models was measured using pose estimation
by image alignment.

TABLE 4. Localization error statistics in Fig. 6: (a) Localization accuracy of the proposed technique and dead reckoning was evaluated for the entire path.
(b) Localization error was calculated for paths within 2, 3, 5, and 7 meters distance d from the mock-up models.

3) RESULTS OF UNDERWATER LOCALIZATION
The proposed localization system is compared to dead reck-
oning and ground truth system in this section. In this compar-
ison, all localization systems employ the same filter system
but use different information for filter update. Dead reck-
oning, in particular, employs just the DVL measurements
to correct the linear velocity in the state vector. In addition
to using DVL data, the proposed localization system uses
relative poses for the mock-up model, and the ground truth
system uses relative poses for the visual marker.

Figs. 6a and 6b show the trajectories the mounting frame
traveled, which were estimated by the three localization sys-
tems. In both figures, the two yellow squares represent a
mock-up model placed in a water tank, and its dimensions
and layout are identical to the experimental setup. The blue
lines indicate the path estimated by the ground truth system.
The mounting frame traveled several times along a rect-
angular path in the data acquisition experiment. Therefore,
the frame’s trajectory in each round was slightly different
because the operator manually controlled it.

The red line in Fig. 6a represents the trajectory estimated
by the dead reckoning. This showed a more significant error
than expected, even though the mounting frame moved a
short distance. This was because the mounting frame to
which all the sensors were attached experienced significant
vibration during movement. The red line in Fig. 6b indicates

the trajectory estimated by the proposed localization system,
and the yellow circle markers indicate the location where
localization corrections were done. As can be seen from the
previous results, most of the localization correction occurred
near the mock-up model, and for this reason, the proposed
system showed different localization accuracy according to
the distance from the mock-up model.

Table 4 summarizes the localization errors of dead reck-
oning and the proposed localization system. Overall, our
localization system increased localization error as it moved
away from the mock-up model, but this is acceptable accu-
racy, enabling the intervention robot to maneuver near subsea
structures and maintain its position on the structures for
intervention tasks. In particular, our localization system had
a positional error of about 0.1 m near the mock-up model,
which is very encouraging considering the resolution of the
imaging sonar we used. The proposed system is especially
useful for autonomous intervention robots because it can be
implemented with only a few onboard sensors without any
external infrastructure.

V. CONCLUSION
This study addressed an underwater localization algorithm
using an acoustic imaging sonar for an autonomous inter-
vention system, and its feasibility and usability were veri-
fied using a dataset obtained in a test tank. The proposed
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localization system exhibited localization accuracy for the
intervention system to maneuver near offshore platforms and
perform autonomous intervention tasks without the require-
ment for external beacons for positioning. This study is
the first attempt to implement global localization using
single-shot acoustic images. Although some technical chal-
lenges remain to be solved, this study demonstrated the use-
fulness of localization using an acoustic imaging sonar in
implementing autonomous intervention systems, which can
significantly improve the overall efficiency and reliability of
underwater operations.
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