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ABSTRACT Skin cancer is the most common type of cancer in the world and it is more treatable if
diagnosed early. The diagnosis process usually starts with segmenting the skin lesion area and planning
a follow-up treatment by the dermatologists. Thus, the segmentation process plays a critical role in the
treatment process. In recent years, machine learning methods, especially deep convolutional neural networks
are proposed to address the segmentation challenge. The common segmentation methods (e.g., U-Net)
deploy a series of encoding blocks to model the local representation and subsequently a series of decoding
blocks to capture the semantic relation. However, these structures are usually limited to model multi-scale
objects with large variations in texture and shape. To address these limitations, we propose a Multi-Scale
Attention U-Net (MSAU-Net) for skin lesion segmentation. In particular, we improve the typical U-net by
inserting an attention mechanism at the bottleneck of the network to model the hierarchical representation.
The attention module aggregates the multi-level representation in a non-linear fashion to selectively adjust
the representative features. Then it deploys a Bidirectional Convolutional Long Short-term Memory (BDC-
LSTM) structure to fetch the common discriminative features and suppress the less informative ones.
We incorporate the resulted features in each block of the decoding path to highlight the important regions.
We have evaluated our proposed network in three public skin lesion datasets, including ISIC 2017, ISIC
2018, and PH2 datasets. The experimental results demonstrate that the proposed pipeline outperforms the

existing alternatives.

INDEX TERMS Attention mechanism, deep learning, U-net, skin cancer, segmentation.

I. INTRODUCTION

The skin is the largest organ in the body that plays
important roles such as protecting the body from the outside
environment, receiving sensory stimuli from the external
environment, regulating body temperature through sweating,
and highlighting hair growth when cold. When skin cells
become disordered due to symptoms of the disease and grow
out of control, they can turn into skin cancer and sometimes
even spread to other parts of the body. Skin cancer is the
most common type of cancer in the United States [1] and
worldwide that threatens the lives of many people every
year. Skin cancer can be divided into two groups, melanoma
,and non-melanoma types. Melanoma skin cancer is the most
dangerous type of skin cancer and is reported as the most
lethal skin cancer [2]. This type of skin cancer is the result
of the unusual growth of melanocytes [3]. Melanocytes are
cells located in the lower part of the skin epidermis and
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are responsible for making melanin pigments. Any change
in the number of melanocytes or an increase or decrease
in their activity causes disorders. Although melanoma skin
cancer is not as common as other types of skin cancer, it
is a too dangerous type of cancer due to its high spread
rate to other parts of the, which holds a mortality rate of
1.62% [2]. According to the World Health Organization,
approximately three million non-melanoma skin cancers and
132,000 melanoma skin cancers are recorded worldwide
annually [4].

Like many cancers, the best treatment for melanoma is
early detection since it is more treatable in the early stages
of the disease. According to the studies [5], for the localized
stage melanoma, the five-year relative survival rate is 98%
which drops to about 14% in the latest stage. Therefore,
rapid detection of melanoma or the suspected skin lesions is
important and requires a method that can detect the disease
as quickly as possible. In this regard, dermatologists use
dermoscopic images to diagnose the disease. However, the
examination of these images by dermatologists is not only
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FIGURE 1. Some samples of skin lesion images along with the
segmentation map generated by the deep learning model.
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FIGURE 2. Typical challenging cases in dermoscopic images for skin
lesion segmentation.
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associated with a significant error rate but also is very time-
consuming, and in some cases not enough specialists are
available. In recent years, machine vision methods have
had many applications in the examination of pathology
images [6]. Among the many methods, automatic image
segmentation is very useful and efficient for detecting
disease [7]. In these methods, dermoscopic images are given
to the deep learning model, and after processing these images
by the network, places in these images that have a disease
pattern appear as segmented in the output so that later
dermatologists can focus directly on the disease areas and
apply appropriate treatment methods. Figure 1 shows some
examples of dermatology images, as inputs, and the skin
lesion segmentation results generated by a deep segmentation
model.

However, medical images segmentation, which separates
the affected areas from other surrounding healthy tissues, is a
challenging task due to some factors such as low contrast
in medical images, the presence of multiple tissues that are
similar, lesion sizes, color shift, and non-uniform lighting
system between different laboratories. Moreover, in skin
lesion segmentation,other obstacles such as body hair, air
bubbles, blood vessels, ebony frames, color illumination, and
patient-specific properties that may change skin colors make
this task more complicated. Figure 2 shows some typical
challenges in dermoscopic images [8].

Several methods have been proposed in the literature
to address the semantic segmentation task in the medical
domain. Among these approaches, deep-learning strategies
have made significant advances in medicine, making them
the best available methods for processing medical images.
One of the first convolutional networks introduced for the
image segmentation task is the fully convolutional network
(FCN) [9]. This deep model is an end-to-end and pixels-to-
pixels network for generating a semantic segmentation map
through the input image. In FCNs, all fully connected layers
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are replaced with convolution and deconvolution layers to
keep the original resolution. Ronneberger et al. [10] further
extended the idea of FCN into a U-shape structure. This
network architecture consists of symmetric encoding and
decoding paths. The encoder reduces the dimensionality of
input data and extracts a large number of feature maps. On
the other hand, the decoder part applies a hierarchical series
of up-convolutional layers to model the semantic information
and produce the segmentation maps.

Many extensions of U-Net have been proposed
[11]-[20] to improve its performance. These methods have
tried to strengthen the original U-Net using techniques
such as recurrent residual strategies, applying probabilistic
functions to resolve uncertainty [21], inserting attention
mechanisms, or using other non-linear functions in the
convolutional layers.

Nevertheless, CNN facilitates the learning of representing
abstract data, which robust the network to transfer local
features. However, in semantic segmentation, the abstraction
of spatial information may be undesirable. To address this
issue, several methods have been proposed. Chen et al. [22]
utilized ‘““Atrous spatial pyramid pooling” (ASPP) and
introduced Deeplab. This method uses several parallel ASPPs
to capture contextual information at multiple scales [23].
Furthermore, The approach improved by utilizing the skip
connection in the decoding path, similar to the U-Net
approach. Although the pyramid representation improved the
performance, it lacks to capture the common representation
shared among the hierarchy of the deep model (no attention
mechanism incorporated) to model robust and noise invariant
features.

In recent years, attention-based techniques have been
introduced to the deep models and have been widely used
in various computer vision tasks [24]. Unlike conventional
methods that use multiple similar feature maps, the attention
strategy increases network performance, mostly in semantic
segmentation tasks [24]-[27], by avoiding the use of similar
feature maps and selecting the most informative features for
a given task without additional supervision. In this paper,
we propose a Multi-Scale Attention U-Net (MSAU-Net) for
skin lesion segmentation. In particular, we improve U-net
by inserting an attention mechanism at the bottleneck of the
network. These attention modules aggregate the multi-level
representation in a non-linear fashion to selectively adjust
the representative features and finally deploy BDC-LSTM to
fetch the common discriminative features and suppress the
less informative ones. We incorporate the resulted features in
each block of the decoding path.

We perform the attention mechanism in two steps process:
firstly, to re-calibrate the feature map and pay more attention
to more informative channels in each layer, we applied the
channel-wise attention process. In other words, by assigning
different weights to different channels of feature maps, the
network focuses more on a channel with more discriminative
information. In the second step, to aggregate the features
extracted by the different blocks of the encoder module,
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we apply the BDC-LSTM module. The objective of this
module is to use the hierarchical representation to jointly
encode both local and global representation into a unique
transformed space, where the feature map can be used by
the decoder path to effectively emphasize the informative
regions. Furthermore, the hierarchical representation pro-
vided by the encoder module helps the BDC-LSTM layer
for learning objects in multi-scale and multi-level. Thus, the
resulted features are less sensitive to the variation in shape and
texture. The main contributions of the paper are as follows:
o Multi-scale attention mechanism to capture hierarchical
representation
« Including Bi-directional Convolutional LSTM module
to capture discriminative features
o Significant improvement over the
methods
The rest of the paper is organized as follows. Section 2 reviews
related work. The proposed network is presented in Section 3.
The experimental results are described in Section 4. Finally,
Section 5 concludes the paper.

state-of-the-art

Il. RELATED WORK

The semantic segmentation task plays one of the most
important roles in dermoscopic image processing. Numerous
automatic and semi-automatic methods for skin segmentation
have been proposed. Like other research lines in the
computer vision field, skin lesion segmentation methods
can be categorized into handcrafted and deep learning-
based approaches. The earlier approaches focus on designing
the specific feature to learn discriminative patterns from
the image itself. Histogram thresholding methods [28]-[30]
try to find a threshold that divides the images into two
sections: skin lesions and adjacent tissues. Unsupervised
color-based methods [31]-[33] try to use the color space
properties of RGB dermoscopic images to determine a
homogenous region for skin lesion areas and other tissues
and perform segmentation accordingly. Region-merging-
based approaches [34]-[36] compare neighboring regions
and merge them if they are close enough in some properties.
Active contour methods [37]-[39] segment lesion areas by
utilizing algorithms like metaheuristic, genetic, and snake
algorithms. Morphological operations-based methods [40],
[41] rely on the relative ordering of pixel values for
segmentation. However, these traditional image segmentation
methods do not show satisfactory results and cannot over-
come problems such as fuzzy lesion borders, hair artifacts,
low contrast, and ebony frames.

In recent years, deep learning methods have returned
to the field of artificial intelligence with more power and
they have achieved outstanding results in many machine
learning tasks [42], particularly semantic segmentation tasks.
These deep learning methods, especially CNNs, have become
standard baselines in many semantic segmentation problems.
The majority of the CNNs breakthroughs are resulted from
their capability of learning hierarchical as well as higher-level
features that are more robust than normal raw image features.
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The state-of-the-art CNN segmentation architectures include
but not limited to: Fully Convolutional Neural Network
(FCN) [9], U-Net [10], SegNet [43], hourglass [44], and
DeepLab [22]. Recently, many researchers have used CNN
architecture for skin lesions semantic segmentation because
of their high capability of learning diverse datasets. Some of
the State-of-the-art methods based on CNNs are reviewed in
the following.

Xie et al. [45] proposed MB-DCNN for improving skin
lesion segmentation performance by using a collaboration
between segmentation and classification. Each task facilitates
the other in a bootstrapping way. This method mutually
transfers coarse masks and location information between a
coarse segmentation network (coarse-SN) and a mask-guided
classification network (mask-CN). Maninis et al. [46] pro-
posed a Deep Extreme Cut (DEXTR) model which combines
original RGB images and extreme points (corner points on the
contours) to feed the network’s input. Although this method
requires the input of extreme points in which their quality
has an impact on the segmentation performance, they have
shown this combination can improve the performance of
instance segmentation. Abhishek ez al. [47] designed a novel
algorithm that improves skin lesion semantic segmentation
by utilizing illumination invariant of different tissues. They
combined information from illumination invariant grayscale
images, specific color bands, and shading-attenuated images.

Based on the classical encoder-decoder architecture,
Wu et al. [8] utilized a feature adaptive transformer network
(FAT-Net) that effectively captures global context informa-
tion and long-range dependencies by integrating an extra
transformer branch. Their approach uses a feature adaptation
module and a memory-efficient decoder to enhance the fea-
ture fusion between the adjacent-level features. In this regard,
they activate the effective channels and restart the irrelevant
background noise. The Laplacian Pyramid Super-Resolution
Network (LapSRN) proposed by Lai et al. [48] is capable of
progressively reconstructing the sub-band residuals of high-
resolution images for image super-resolution. It predicts the
high-frequency residuals by taking coarse-resolution feature
maps as input.

Azad et al. [20] proposed a two-stages attention mech-
anism for skin lesion segmentation. They set a weight for
each channel, which is determined by a set of feature
maps to capture the relationship between the channels.
Similar to the bi-directional strategies [14] this context gating
mechanism network is capable of emphasizing more on the
informative and meaningful channels. In addition, they use
a second-level attention strategy to integrate the different
layers of Atrous convolution, allowing the network to focus
on a more goal-related field of view. Liu et al. [49] used
auxiliary information based on the edge prediction technique
for the skin lesion segmentation task. To make the network
focuses on the boundary region of the segmentation task
they used a cross-connection layer module. This module
fed the intermediate feature maps of each task into the
subblocks of the other task. They also used a multi-scale
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FIGURE 3. The structure of the proposed method for skin lesion segmentation.

encoder module to learn hierarchical features.

feature aggregation module to increase network performance
using different scale features. Dai et al. [50] segmented a
variety of skin lesions by taking the advantage of multi-scale
residual encoding and decoding fusion (MS RED) to fuse
multi-scale features adaptively. Furthermore, they proposed a
multi-resolution and multi-channel feature fusion module to
enhance the capability of learning the feature representation.
In the down-sampling stages, they used a new pooling
module (Soft-pool) which retains more helpful information
and enhances the segmentation performance. One central
limitation of these multi-level fusion strategies is related to
their poor aggregation strategies, which are not capable of
combining different level features. To address this problem,
we include the attention mechanism on top of the multi-level
features to capture discriminative features.

lll. PROPOSED METHOD

We propose MSAU-Net, attention incorporated U-Net model
for skin lesion segmentation. The overview of our proposed
network is shown in Figure 3. In our structure, we apply
the encoder module to extract the hierarchical representation,
then by utilizing the attention mechanism we perform the
feature re-calibration process in a non-linear fashion. The
description regarding each section of the proposed method
is detailed in the following subsections.

A. ENCODER

Our proposed method utilizes a U-Net structure to model
the segmentation problem. The U-Net model follows a
symmetric structure and applies an encoder and decoder
modules to learn the segmentation map [10]. Although the
U-Net model is capable of capturing local information,
its structure does not pay more attention to the boundary
area [51], thus, itis less precise in separating skin lesions from
the overlapped background. In other words, to accurately
segment the skin lesion from other surrounding parts, both
the local appearance and the entropy of the area should be
learned through the training process. To model such region-
sensitive representation, we include an attention mechanism
on top of the encoder blocks. The purpose of the attention
layer is to model the multi-scale representation and highlight
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The proposed method incorporates the attention mechanism on top of the

the importance of each activated feature map during the
recognition process [52]. The resulting feature map from
the attention module can bring rich and scale-dependent
descriptions, which is crucial for skin lesion segmentation
tasks with various scales on the lesion patterns.

B. FEATURE RECALIBRATION

In conventional CNN networks, the resolution of the spatial
feature is significantly reduced due to the use of a set
of consecutive max-pooling and down-sampling functions.
In addition, images can contain objects with different
scales [53]. To diminish this problem, we propose to use
multi-scale representation results from each block of the
encoder module. In our design, we concatenate the different
feature maps resulting from the encoder block to form
a multi-scale representation. To scale the different feature
maps into the same shape we use an Atrous convolution.
To this end, on top of the last convolutional layer of each
encoder block, we use Atrous operation to up-sample the
representation filters. For up-sampling the filters, a hole
convolutional filter applies to the full resolution image, i.e.,
inserting zeros between the filters’ values. In this operation,
the number of parameters stays constant due to the fact
that non-zero filters’ values are only considered in the
calculations. The Atrous convolution provides a way to
control the spatial resolution of feature responses. In addition,
to calculate feature responses in each layer, we can enlarge the
field of view of the filters, which results in a combination of
larger context information. The Atrous convolution [22] for
one-dimensional signal is calculated as:

¥[i] = Zx[i+ rkwlk] (1)
k

where x is the input feature map, x’ is the output feature
map, i refers to a spatial location on y and w is a convolution
filter. Moreover, r refers to the Atrous rate and determines
the stride which we sample the input signal. By applying
the Atrous convolution we build a feature pyramid to form a
multi-scale representation (shown in Figure 4). To normalize
the feature pyramid, we utilize the squeeze and excitation
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module [54]. Using this strategy, the network uses the global
information of the input data to selectively empathize the
informative features and suppress the less useful ones. For
producing each input channel’s weight, the model exploits the
global context information of the input features. Therefore,
the global average pooling is calculated for each channel as:

1 H

w
¥ = ij_xfa,j) )

i

where H x W is the size of the channel, x; is the fi
channel, and z is the output of the global average pooling.
Moreover, we learn nonlinear interaction and also the non-
mutually-exclusive relationship between channels at the next
step. To capture the channel-wise dependencies two fully
connected layers are then utilized. The output of these layers
is calculated as:

sp=0 (W25 (W1Zf)) 3)

C. BI-DIRECTIONAL ConvLSTM

Standard LSTM uses full connections in input-to-state and
state-to-state transitions which is its main disadvantage due
to the fact that these networks do not consider the spatial
correlation. ConvLSTM [55] has been proposed to address
this problem. This method utilizes convolution operations
into input-to-state and state-to-state transitions. An input gate
ir, an output gate o,, a forget gate f;, and a memory cell C;
form the ConvLSTM. Input, output and forget gates act as
controlling gates to access, update, and clear memory cell.
The ConvLSTM formula is written as follows, for simplicity
we have avoided writing subscript and superscript.

i =0 Wy X +WpyixHiy + Wei xCo1 + b))
fi=o (fo * X + Wy x He 1 + Wer xCroy + bf)
Cr = fr oCi—1 +irtanh (Wye x Xp + Wi x He—y + be)
0r =0 (Wyo* Xy +Wpo xHi—1 + Wep 0Cr + be)
‘H; = o0; o tanh (C;) @)

where #* states the convolution, and o denotes Hadamard
functions. H; is the hidden sate tensor, and X; is the input
tensor. C; indicates the memory cell tensor, and, Wy, and Wj,
are 2D Convolution kernels corresponding to the input and
hidden state, respectively. Finally, the bias terms are indicated
with b;, by, by, and b..

In the proposed model, we utilize BConvLSTM [56] for
encoding the recalibrated feature pyramid into a single multi-
scale representation. In fact, BConvLSTM consists of two
ConvLSTMs, one for processing input data in the forward
path and the other for processing data in the backward
path direction. Unlike a standard ConvLSTM that only
processes the dependencies of the forward direction, the
BConvLSTM considers data dependencies in both directions
and makes a decision for the current input. Cui et al. [57]
have proved that considering both forward and backward
temporal perspectives boost the network performance. Since
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FIGURE 4. Attention mechanism proposed in our method to learn
hierarchical representation. This attention mechanism applies the
squeeze and excitation module to calibrate the feature pyramid based on
the informative channels and then uses a bi-directional convolutional
LSTM to aggregate different levels of the pyramid into a single
representation.

the BConvLSTM consists of two standard ConvLSTM,
we have two sets of parameters for backward and forward
states. The output of the BConvLSTM is calculated as

"7 HET
Y;:tal’lh Wy *H;+Wy H1+b (5)

where H, indicates the hidden state tensors for forward and
H, denotes the hidden state tensors for backward states.
Y, € RFfFP>*WixHi denotes the final output considering
bidirectional Spatio-temporal information. b shows the bias
term. We utilized hyperbolic tangent tanh for combining the
output of both forward and backward states through a non-
linear way. The detailed structure of the proposed mechanism
is shown in Figure 4.

D. DECODER

In our proposed model, the decoder is implemented according
to the regular U-Net. The features up-sampled from the
previous decoder layer are concatenated with features that are
imported directly from the encoder along with the multi-scale
representation derived from the attention module. We use two
Convolutional layers followed by the batch-normalization
and activation layer in each block of the decoding path
to learn the semantic representation. Finally, at the last
decoding block, we deploy a softmax activation to produce
the segmentation map.
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IV. EXPERIMENTAL RESULT

In this section, we provide (i) details about the training
process, (ii) the evaluation metrics we used to evaluate our
approach, and (iii) a description of each dataset we used
during our experimental evaluation.

A. TRAINING PROCESS

The proposed method is implemented in the Pytorch library
and has been carried out on an NVIDIA RTX 3090GPU with
a batch size of 8 without any data augmentation. We trained
all the models with initial learning rate le — 3 and the decay
rate 1e —4 for 100 epochs. For model weight initialization we
used a standard normal distribution, which provides a stable
start point for the network. Furthermore, during the training
process, in case the validation performance does not change
in 10 consecutive epochs, we stop the training process. The
baseline network in our experiments has the same structure as
a U-Net model without the proposed attention mechanism.It
is worthwhile to mention that during the training process on
each dataset, the optimization algorithm steadily decreased
the loss value on both train and validation sets and eventually
converged to the optimal solution. Thus, we did not observe
any instability during the training process.

B. EVALUATION METRICS
To experimentally evaluate our method performance, we have
employed commonly well-known metrics including accuracy
(AC), sensitivity (SE), specificity (SP), F1-Score, and Jaccard
similarity (JS). The terminologies used to describe how
metrics are calculated are given below.
True-Positive (TP) refers to the predicted label that is
correctly predicted as a lesion class.
False-Positive (FP) refers to the predicted label that is falsely
predicted as a lesion class.
True-Negative (TN) refers to the predicted label that is truly
labelled as a background pixel.
False-Negative (FN) refers to the predicted label that is
falsely labelled as a background pixel.
Accuracy shows the percentage of correct prediction,
TP + TN
ACC = (6)
TP + TN + FP + FN
Specificity measures the proportion of FP that are correctly
identified by model,

Specificit ™ @)
ecificity = ———
Peeiely = INr FP
Sensitivity measures the proportion of predicted TP that
are correctly identified by model,
e TP
Sensitivity/ Recall = ——— (8)
TP + FN
F1 score also known as balanced F-score or F-measure, is a
weighted average of the precision and recall,
2% TP

F1 score = O]
2% TP+ FP + FN
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Jaccard similarity is also known as a mean intersection
over union (mloU) in segmentation tasks, measures the
similarity between the predicted values y and real values y by
comparing members of two sets to see which members are
shared and which are distinct.

ns
Jaccard similarity = L (10)

Iyl + 13 =y N3l

C. DATASETS

The proposed method was evaluated on three publicly
available datasets ISIC 2017 [58], ISIC 2018 [59], PHZ [60].
In the next subsection we will provide more details about each
dataset.

1) ISIC 2017 DATASET

The International Skin Imaging Collaboration (ISIC)
2017 dataset is one of the most well-known datasets in skin
cancer diagnosis. This dataset consists of 2,000 dermoscopic
images of the skin taken using the technique of eliminating
the surface reflection of skin that brings a deeper level
of skin visualization [58]. For each instance, an expert
clinician has annotated the ground-truth label, using either
a semi-automated or manual process. The annotation data
provides further information for three subtasks: lesion
segmentation, localization, and skin disease classification.
In this research work, we focus on the segmentation task.
Following the literature work [13], we divided the original
dataset into a training set with 1250 samples, validation sets
consist of 150 samples, and a test set with 600 instances.
Furthermore, we used a resize function to reduce the spatial
dimension of the input data into 256*256 pixels.

2) ISIC 2018 DATASET

The ISIC 2018 dataset, like the former ISIC datasets,
includes a large collection of quality-controlled dermoscopic
images of skin lesions, introduced by an international
collaboration to improve melanoma diagnosis [59]. This
dataset contains 2594 images, each of which is accompanied
by a corresponding grand truth mask. Similar to ISIC 2017,
this dataset also defines three sub-tasks: lesion segmentation,
lesion attribute detection, and disease classification. We have
categorized the dataset into three sub-sections: train data with
1815 images, evaluation data with 259 images, and test data
with 520 images. Furthermore, to reduced the computational
and network training cost, we have resized the input images
from 20163024 pixels to 256 x256 pixels.

3) PH?

The PH? dataset consists of 200 dermoscopic images of
skin lesions region, acquired at the dermatology services of
Pedro Hispano Hospital, Matosinhos, Portugal. The main
objective of this dataset is to enable future researches on
classification and segmentation of cancerous regions in
dermoscopic images. Similar to [13], we have randomly
divided the dataset into two categories of 100 instances, one
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TABLE 1. Performance comparison of the proposed method vs the SOTA
approaches on the ISIC 2017 dataset.

TABLE 2. Performance comparison on the the ISIC 2018 dataset.

Methods F1 SE SP AC PC JS

Methods F1 SE SP AC JS Att U-net [26] 0.665 0.717 0967 0.897 0.787 0.566

Lesion Analysis [61] 0.8840  0.8250 0.9750 0.9340 0.9365 R2U-net [12] 0.679 0.792 0928 0.880 0.741 0.581

R2U-net [12] 0.8920 0.9414 0.9425 09424 0.9421 Att R2U-Net [12] 0.691 0.726  0.971 0.904 0.822 0.592

MCGU-Net [13] 0.8927 0.8502 0.9855 0.9570 0.9570 MCGU-Net [13] 0.895 0.848 0986 0955 0947 0.955

Baseline 0.8682 0.9479  0.9263 0.9314 0.9314 Baseline 0.647 0.708 0964 0.890 0.779 0.549

Proposed Method 0.9032 0.8870 0.9714 0.9576 0.9576 Proposed Method 0.896 0.841 0.979 0949 0.956 0.956
Input Image Ground Truth Segmentation Result Input Imagal Ground Truth Segmentation Result

FIGURE 5. Segmentation results of the proposed method on ISIC 2017. The
proposed method produces smooth segmentation result on the boundary
area and separates the lesion area from the overlapped background.

of which is used as training data and the other set for the
evaluation purpose.

D. RESULTS

The quantitative results of the proposed method on ISIC
2017 are illustrated in Table 1. The results show that the
proposed method outperforms the state-of-the-art (SOTA)
methods in almost all metrics. Compared to the recent
MCGU-Net model which utilizes an attention mechanism
inside the network, our strategy produces a better segmen-
tation map which further proves the effectiveness of our
method. In Figure 5, we depicted some visualization results
of the proposed method on the ISIC 2017.

We further evaluated our method on ISIC 2018 to
compare the results with SOTA approaches. As clear from
Table 2, our method marginally increases the performance
compared to the counterpart approaches. On the other hand,
incorporating the attention mechanism proposed in our paper
increases the U-Net F1 score by 0.25 as it is shown in
Table 2. To further demonstrate the effectiveness of the
proposed method from a qualitative perspective, we provide
Figure 6.

During the third experiment, we evaluated our approach
on the PH? dataset. Obtained results compared to the SOTA
strategies are shown in Table 3. We can observe that our
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FIGURE 6. Segmentation results of the proposed method on ISIC 2018.
The visualization shows that the proposed method learns the complex
pattern of the lesion and precisely segments the abnormal regions.

TABLE 3. Performance comparison on the PH2 dataset.

Methods DIC SE Sp AC JS
FCN [62] 0.8903  0.9030  0.9402  0.9282  0.8022
SegNet [43] 0.8936  0.8653 09661 0.9336  0.8077
FrCN [61] 09177 09372 0.9565 0.9508  0.8479
MCGU-Net [13] 09263  0.8322 0.9714 0.9537  0.9537
Baseline 0.8761  0.8163  0.9776  0.9255  0.7795
Proposed Method 0.9377  0.943  0.9698 0.9617 0.9617

method significantly improves (DSC 0.937) the performance
compared to both baseline (DSC 0.867) and recent MCGU-
Net [13] approaches (DSC 0.926). We also provide Figure 7
to represent some segmentation results of the proposed
method. As it can be seen from the visual results, our network
produced a smooth segmentation output on the boundary
area, which is remarkably useful from a clinical perspective.

To further compare the qualitative results of the proposed
method to the SOTA approaches, we visualized a sample of
the segmentation results in Figure 8, achieved by applying
different methods on ISIC 2018 dataset. It is crystal clear that
our proposed method pays more attention to the boundary
area compared to the U-Net model and outperform this
approach. Additionally, compared to the BCDU-Net method,
our network produces a smooth segmentation boundary
without an extra noisy area.
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FIGURE 7. Segmentation results of the proposed method on PH2. The
segmentation results illustrate that the proposed method accurately
segmented the skin lesion area from the surrounding tissue region.
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FIGURE 8. Comparing results of proposed method with other
state-of-the-art methods on the ISIC 2018 database [59]. (a) shows the
original input image, (b) indicates ground truth mask, (c) shows
segmentation results of U-Net method, (d) indicates the BCDU-Net
method’s segmentation results, and finally (e) shows segmentation
results of the proposed method.

E. ABLATION STUDY

This section provides an ablation study regarding the effect
of the proposed modules. To analyze the contribution
of modules individually we experimented with different
settings. In our settings, we designed a possible combination
of the proposed modules to provide a clear picture of how
these modules can effectively be incorporated to increase
the model generalization performance on a skin lesion
segmentation task. We further included the one-direction
version of the ConvLSTM to show the capability of the
bidirectional form on encoding a stronger representation
and consequently boosting the model performance. Our
founding indicates that each module contributes to the model
performance and together they provide a strong features
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TABLE 4. Performance comparison on the ISIC 2018 dataset.

Methods F1 SE SP AC PC
Baseline 0.647 0708 0.964 0.890 0.779
Baseline+one-directional ConvLSTM 0.751 0.781 0930 0911 0.880
Baseline+bi-directional ConvLSTM 0.792 0.852 0927 0924 0912
Baseline+SE block 0.783 0.843 0916 0923 0.909
Baseline+bi-directional ConvLSTM+SE block
(proposed method) 0.896 0.841 0979 0.949 0.956

representation for the network. Table 4 shows the obtained
results.

The conducted experiments (Table 4) show that adding
the ConvLSTM module on top of the hierarchical fea-
tures provided by the seminal U-Net (baseline) model
helps the model to learn a rich and generic multi-scale
representation and increases the performance considerably.
In addition, modifying the direction of the ConvLSTM
into a bi-directional further enhances the generalization
performance. This fact is in line with the previous research
work [14] which included the bi-directional ConvLSTM
in the skip connection of the U-Net model and obtained a
significant improvement. Besides the ConvLSTM module,
we can observe that incorporating the SE block inside the
proposed pipeline also increases the model performance.
Finally, the combination of these modules with the U-Net
model provides a strong feature learning strategy for the
medical image segmentation task, which is novel and unique
in its design. It is also worthwhile to mention that the
processing time for each batch of the eight samples in
our pipeline only takes four seconds which demonstrates
the suitability of the suggested network for real-time and
commercial application.

F. DISCUSSION

The proposed method has been evaluated using both quan-
titative and qualitative studies to demonstrate its capability
in learning rich and generic representation for skin lesion
segmentation tasks. The contribution of each proposed
components are also evaluated to ensure the effectivness of
the suggested design. Although our pipeleine uses U-Net
based model, the entire proposed strategy does not have any
restrictions on the selection of the segmentation network
(e.g., U-Net) and it can be incorporated into any segmentation
network, which further supports our contribution in terms
of the generalizability and scalability of the network design.
Moreover, in Figure 9, we provided sample results of the
proposed method where the model fails to segment the skin
lesion area. The model performance is largely impacted
by the accurate annotation of the images. Therefore, noisy
annotation, which is common in the clinical domain, degrades
the training performance. Our model cannot detect the inac-
curate annotation, and consider all images even if they have
inaccurate annotation. As we discussed in the ablation study,
the proposed method contains several components which
gradually increase the overall performance of the model. One
drawback of these modules is their need for computational
resources. Hence, although these modules increase the model
generalization performance, in the meanwhile they increase
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Segmentation Result

FIGURE 9. Some poor segmentation results of the proposed method on
the ISIC 2018 dataset. Visualization shows that the proposed method
shows poor performance in cases where the input images have structural
complexity and the related annotation mask are inappropriately provided
by the specialist (noisy annotation).

the number of parameters and consequently require more
computational powers. In this case, there is a trade-off
between the performance and the complexity of the model.

V. CONCLUSION

In this paper, we proposed a multi-scale attention mech-
anism to learn a hierarchical representation. Our attention
module receives multi-level feature maps from the encoding
model and applies a channel-wise normalization method to
recalibrate the feature vectors based on their contribution to
the object recognition level, then it utilizes a bi-directional
ConvLSTM to learn a hierarchical non-linear representation.
By including the resulted feature in each block of the
decoding path we incorporate the scale-invariant features
inside the network to further boost the performance. The
experiment results described throughout the paper proved
the effectiveness of our proposal. One possible direction for
future work to extend our idea is to model the underlying
uncertainty in the skin lesion annotation task. More specif-
ically, with precise modelling the weak annotation of the
skin lesion during the training process, the model can further
increase its performance.
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