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ABSTRACT In this paper, we propose a class of nonlinear diffusion filtering based on Hammerstein
function with the spline adaptive filter (HSAF) implemented by normalised version of orthogonal gradient
adaptive (NOGA) algorithm over the distributed network. Diffusion adaptation algorithm approximates a
variable vector with the help of a network of agents using a joint optimisation on the sum of cost function.
A HSAF comprises of memoryless function during learning by interpolating polynomials with respect to the
linear filter. We derive a diffusion adaptation framework on HSAF motivated from NOGA algorithm; called
DHSAF-NOGA. There are two types of adaptive diffusion strategies with the combine-then-adapt (CTA)
algorithm and the adapt-then-combine (ATC) algorithm that are considered and implemented by DHSAF-
NOGA algorithm. The network stability and performance over mean square error networks is derived.
Experiment results depict that proposed CTA-DHSAF-NOGA and ATC-DHSAF-NOGA algorithms can
learn robustly underlying the nonlinear Hammerstein model compared with a non-cooperative solution and
existing techniques.

INDEX TERMS Spline adaptive filtering, Hammerstein model, diffusion strategy, orthogonal gradient
adaptive algorithm.

I. INTRODUCTION
Nonlinear spline-based adaptive filtering (SAF) has been
interested for nonlinear system identification and mod-
elling [1]–[5]. SAF structure consists of the adaptive linear
finite impulse response (FIR) and the adaptive look-up
table (LUT) by spline interpolation based on the least
mean square (LMS) algorithm [1] and normalised LMS
(NLMS) [2] in the nonlinear structure. In order to model with
the gradient method, an adaptive combination of SAF based
on LMS algorithm has been demonstrated in a non-stationary
environment [3]. In [4], the authors have studied the SAF
based on infinite impulse response (IIR) against the impulsive
noise with the low computational complexity. As concerned
with the fast convergence, an orthogonal gradient adaptive
algorithm based on SAF framework has been revealed with
the low disadjustment [5].
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According to the multitask case in the real world appli-
cation [6]–[8], the authors in [6] has described the adapta-
tion and learning of nonlinear filtering over the distributed
network. A distributed with sparsity-aware adaptive algo-
rithm [7] has been proposed to verify the Voterra system
that can provide a good performance in the wireless sensor
network (WSN). In [8], a censored-regression has been intro-
duced to compensate the bias estimation over the nonlinear
WSN.

To deal with the impulsive noise scenario, a diffusion
normalised least mean M -estimate algorithm [9] has been
equipped for learning capability over the distributed net-
work. In [10], the development of robust diffusion recursive
least square algorithm has been designed with a side data
from neighbouring nodes in the distributed network. In terms
of robust algorithm against the impulsive noise, the robust
Geman-McClure SAF has been obtained in [11]. In [12], the
authors has been organised the combined nonlinear adaptive
filters in a networkwith two subnetworks by linking the nodes
in each subnetwork.
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Hammerstein architecture is the block-oriented nonlinear
model consisting of a cascade topology with memoryless
functions in the linear time invariant (LTI) model called as
nonlinear-linear model [13]. Hammerstein system has been
used as a kernel method modelled for the echo path in a
nonlinear acoustic echo cancellation [14], [15]. Hammerstein
SAF (HSAF) has been proposed on the stochastic gradient
scheme in the impulsive noise environment [16]–[18]. Sta-
bility performance of HSAF has been proved by considering
the steepest descent method [17]. In [18], HSAF-based self-
interference digital cancellation has been evaluated inband
full-duplex system at 2.4GHz.

As stated to standard linear filtering, the diffusion filtering
is the extended version of linear filtering in case of distributed
optimisation by local upldate as gradient descent method
with the global steps, while the data from each node is
processed and diffused by its neighbours across the network
[19], [20]. Distributed estimation is widely used with the
diffusion adaptive network in the field of signal process-
ing and control engineering [21]–[23]. Distributed active
noise canceller has been implemented over the realistic sce-
nario of wireless acoustic sensor network with the different
nodes and interaction between them [24], [25]. Simulation
results proved that the distributed algorithm can achieve good
performance in both centralised and distributed practical
nonlinear acoustic sensor network. Distributed Hammerstein
filters [26] have been developed and performed in robustness
for estimation. In [27], a diffused version of recursive least
square algorithm based on Cholesky factorisation has been
performed in the system identification. Based on the SAF,
a diffusion spline adaptive filtering has been introduced using
the gradient descent method [28]. The simulation results are
shown to outperform robustly the nonlinear model compared
with the non-cooperative SAF.

In order to improve the convergence properties, the adap-
tive orthogonal gradient-based algorithm has been presented,
which can provide with the development of simple and
robust adaptive filtering across the wide range of input envi-
ronments [29], [30]. Motivation for using the orthogonal
gradient-based algorithm is concerned with the development
of simple and robust adaptive filtering by the normalised
orthogonal gradient adaptive (NOGA) algorithm.

As a remark on the fast convergence of NOGA algo-
rithm, we introduce a diffused version of SAF frame-
work with Hammerstein model named HSAF. To the
best of my knowledge, a proposed diffusion Hammer-
stein spline-based adaptive filtering based on normalised
orthogonal gradient adaptive (DHSAF-NOGA) algorithm
employs to achieve the robustness over the distributed
network.

The rest of paper is arranged as follows. Section II presents
the framework of proposed HSAF based on NOGA algo-
rithm in details. Section V introduces the diffusion model of
HSAF architecture based on NOGA algorithm. Section VI
shows how to derive the network stability and performance
over mean square error networks. Subsequently, Section VII

shows the simulation results. Finally, Section VIII concludes
this paper.

The notations are used throughout this paper as follows.
Normal and boldface lowercase letters denote as scalars and
vectors, where boldface uppercase letters are matrices. The
operators E{·}, (·)T and b·c stand for the expectation, trans-
pose and floor operators, respectively.

II. PROPOSED HAMMERSTEIN SPLINE ADAPTIVE
FILTERING BASED ON NORMALISED ORTHOGONAL
GRADIENT ADAPTIVE ALGORITHM
In this paper, we denote the input xn at index n to HSAF [13]
and xn = [ xn, . . . , xn−M+1 ]T at M samples. We assume to
be dealing with the real inputs and an unknownWiener model
generates the desired response adding with the Gaussian
noise dn as

dn = f (wT
o xn)+ νn, (1)

where wo ∈ RM are the linear weight, xn is the input vector.
f (·) is a nonlinear function and νn ∼ N (0, σ 2) is a Gaussian
noise term.

A spline function is a polynomial defined by a set of Q
control point. We suppose that the control points coefficient
or non-linear weight coefficient qi is uniformly distributed as
qi+1,n = qi,n +1x, for a fixed 1x ∈ R.

We refer to the linear filter input sn, that is a uniform
spline interpolation of adaptive control points in a look-up
table (LUT). By considering that sn is a function of two local
parameters un and i which depends on xn as

un =
xn
1x
−

⌊ xn
1x

⌋
, (2)

i =
⌊ xn
1x

⌋
+
Q− 1
2

, (3)

where 1x is the uniform space between the control points
coefficients, Q is the total number of control points and b·c is
a floor operator.

Similarly, a HSAF computes the output in a two-step
process as shown in Figure 1. First, it performs a spline
interpolation on the nonlinear weight coefficient qi,n as [13]

sn = uTn Cqi,n, (4)

where the spline basis matrix C ∈ R4×4 is a pre-computed
matrix. The input vector un ∈ R4×1

= [ u3n u2n un 1 ]T and
qi,n ∈ R4×1

= [ qi qi+1 qi+2 qi+3 ]T .
Then, the final output yn is calculated through the linear

filtering operation wn as

yn = wT
n sn. (5)

We consider to minimise the expected mean square
error (MSE) constraint for both the nonlinear and linear part
of HSAF given by [17]

J(qn wn) =
1
2
E{ e2n }, (6)
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FIGURE 1. Proposed HSAF structure based on NOGA algorithm.

where E{·} denotes an expectation operator and en is a priori
error as

en = dn − yn = dn − wT
n sn, (7)

where sn is given in (4).
For theminimisation of the cost function in (6) with respect

to (w.r.t) the linear weight coefficient wn, we apply the
stochastic gradient adaptation at index n as follows.

∇qJ(qn,wn) = −en
∂yn
∂sn

∂sTn
∂qi,n

= −C uTn wn en. (8)

For the derivative of (6) w.r.t the control points qi,n, we apply
the chain rule as

∇wJ(qn,wn) = en
∂yn
∂wn
= −sn en. (9)

Further, an iterative learning of the control points qi,n can be
expressed as

qi,n+1 = qi,n + µq dqn , (10)

where the learning rate µq is a small constant and dqn is the
directional vector for the non-linear weight coefficient qi,n as

dqn+1 = λq dqn − gqn , (11)

where λq and gqn denote the forgetting-factor and the neg-
ative gradient of non-linear weight qi,n by deriving the cost
function in (6) w.r.t qi,n as

gqn+1 = λq gqn −
∂J(qn,wn)
∂qi,n

= λq gqn + CuTn wn en. (12)

Following [5], the forgetting factor λq places on the orthog-
onal projection of gradient vector gqn and the previous direc-
tional vector dqn−1 as

λq =
dTqn−1 gqn
dTqn dqn−1

. (13)

It is noted that an idea of the orthogonal gradient adaptive
algorithm is how to update the forgetting-factor parameter
using the orthogonal projection of gradient vector and direc-
tional vector shown in (11), (12) and (13), respectively.

In a similar fashion, an iterative learning of the linear
tap-weight vector wn based on NOGA algorithm can be
written as

wn+1 = wn + µw dwn , (14)

where the learning rate µw is a small constant and dwn is the
directional vector for the linear weight wn as

dwn+1 = λw dwn − gwn , (15)

where λw and gwn represent the forgetting factor parameter
and the negative gradient of linear weight by applying the
derivation of cost function in (6) w.r.t wn as

gwn+1 = λw gwn −
∂J(qn,wn)
∂wn

= λw gwn + sn en. (16)

where the forgetting factor λw can be expressed as

λw =
dTwn−1 gwn
dTwn dwn−1

. (17)

The overall of HSAF based on NOGA is summarised in
Algorithm 1.
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Algorithm 1: HSAF-NOGA Algorithm

1: Initialise: w0 = δn · [1 0 . . . 0]T ,q0 = [1 0 . . . 0]T

2: for n = 0, 1, . . . do

3: sn = uTn Cqi,n
4: qi,n+1 = qi,n + µq dqn
5: dqn+1 = λq dqn − gqn
6: gqn+1 = λq gqn + uTn Cwn en

7: λq =
dTqn−1gqn
dTqndqn−1

8: wn+1 = wn + µw dwn
9: dwn+1 = λw dwn − gwn
10: gwn+1 = λw gwn + sn en

11: λw =
dTwn−1gwn
dTwndwn−1

12: en = dn − wT
n sn

13: end
14: end

III. DIFFUSION ADAPTATION STRATEGY ON
HAMMERSTEIN SPLINE ADAPTIVE FILTERING
Following [19], the idea of diffusion adaptation strategies for
the distributed network is to allow the multi-agent to diffuse
information in the network. It can diminish the effects of
stochastic gradient noise through the learning process. The
concept of diffusion adaptation can be modified for minimum
mean square error (MMSE) estimation over the distributed
network.

For the standard network model in [28], [31], we consider
a network of L agents connected with � ∈ RL×L , where
�kl ≥ 0. If agents k and l are connected, otherwise is zero.
We consider a network consisting of N agents that each agent
k has its own neighbourNk connected to the agent k including
itself as shown in Figure 2, where the symbol Nk denotes
the neighborhood of agent k . Each agent is connected to
a neighborhood of other and it updates a local estimate of
HSAF model. Each agent in the distributed network operates
its own adaptive filters. We assume the {�kl} is non-negative

FIGURE 2. Schematic of DHSAF interpolation over a network agents.

scalar that satisfies the following conditions as

L∑
k=1

�kl = 1 and �kl = 0, if l /∈ Nk , (18)

for k = 1, 2, . . . ,L. An L × L matrix � consists of the
entries {�kl} that the l th row of � is formed of {�kl, k =
1, 2, . . . ,L}.
So, the output signal dn,k at sample n and agent k is given

as

dn,k = uTn,k wo + νn,k , (19)

where the input vector un,k = [ un,k un−1,k . . . un−M+1,k ]T ,
wo denotes as the linear weight and νn,k ∼ N (0, σ 2) is
defined as a Gaussian noise.

For the distributed network, there are two local parameters
un,k and index i in a LUT for each agent are as

un,k =
xn,k
1x
−

⌊xn,k
1x

⌋
(20)

i =
⌊xn,k
1x

⌋
+
Q− 1
2

, (21)

where 1x is the distance between the control points coeffi-
cient qi,n,k .
Next, the objective of network is to optimise the HSAF

non-linear weight coefficient qi,n,k and linear weight coef-
ficient wn,k by following the minimised global cost function
by aggregating the sum of local cost function as [32]

Jglobal(qi,n,k wn,k ) =
L∑
k=1

Jlocal,k (qi,n,k ,wn,k )

=

L∑
k=1

E { e2n,k }, (22)

where each expectation is computed w.r.t the local input.
An individual local cost function Jlocal,k (qi,n,k ,wn,k ) of each
agent is assumed in terms of MMSE, where en,k is a local
error of each agent.

IV. PROPOSED DIFFUSION HAMMERSTEIN SPLINE
ADAPTIVE FILTERING BASED ON LEAST MEAN
SQUARE ALGORITHM
In this section, we employ the diffusion adaptation on
HSAF (DHSAF) with the standard stochastic gradient
descent method. Proposed DHSAF based on least mean
square (DHSAF-LMS) algorithm is followed [28], [31] by
consisting of two types diffusion strategies as combine-
then-adapt (CTA) algorithm and adapt-then-combine (ATC)
algorithm.

A. COMBINE-THEN-ADAPT DHSAF-LMS ALGORITHM
We present a combine-then-adapt (CTA) of diffusion
Hammerstein spline filtering based on least mean square
(CTA-DHSAF-LMS) algorithm consisting of the combina-
tion and adaptation parts.
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For the nonlinear part of DHSAF, each agent diffuses its
own estimate in the combination part of the nonlinear part
ζ i,n,k in terms of the controls point coefficients qi,n,k as

ζ i,n,k =
∑
l∈Nk

�kl qi,n,l, (23)

where the combination coefficient {�kl} is non-negative
scalar. In the adaptation part, the combined of each diffused
agent can be obtained adaptively as

qi,n+1,k = ζ i,n,k + µq u
T
n,k Cwn,k en,k , (24)

where C is a spline basis matrix and ζ n,k is given in (23).
For the linear part of DHSAF, each agent diffuses its own

estimate in the combination part of the linear part 0i,n,k in
terms of linear tap-weight coefficients wn,k as

0i,n,k =
∑
l∈Nk

�kl wn,l, (25)

where the combination coefficient {�kl} is non-negative
scalar. In the adaptation part, the combined of each diffused
agent of wn,k can be expressed adaptively as

wn+1,k = 0n,k + µw uTn,k Cqi,n,k en,k , (26)

where 0n,k is given in (25) and the local error en,k is defined
as

en,k = dn,k − wn,k uTn,k Cqi,n,k . (27)

The summary of CTA version of DHSAF-LMS is shown
in Algorithm 2.

Algorithm 2: CTA-DHSAF-LMS Algorithm

1: Initialise: w0 = δn · [1 0 . . . 0]T ,q0 = [1 0 . . . 0]T

2: for n = 0, 1, . . . do
3: for k = 1, . . . ,L do

4: ζ i,n,k =
∑

l∈Nk
�kl qi,n,l

5: qi,n+1,k = ζ i,n,k + µq u
T
n,k Cwn,k en,k

6: 0i,n,k =
∑

l∈Nk
�kl wn,l

7: wn+1,k = 0n,k + µw uTn,k Cqi,n,k en,k

8: en,k = dn,k − wn,k uTn,k Cqi,n,k
9: end
10: end

B. ADAPT-THEN-COMBINE DHSAF-LMS ALGORITHM
We present a adapt-then-combine (ATC) of diffusion Ham-
merstein spline filtering based on least mean square (ATC-
DHSAF-LMS) algorithm consisting of the combination and
adaptation parts.

For the nonlinear part of DHSAF, each diffused agent of the
controls point coefficients ζ̃ i,n,k can be obtained adaptively in
the adaptation part as

ζ̃ i,n,k = q̃n+1,k + µq uTn,k C w̃n,k ẽn,k , (28)

where ẽn,k is given by

ẽn,k = dn,k − w̃n,k uTn,k C q̃i,n,k . (29)

In the combination part of the nonlinear part in terms of the
controls point coefficients q̃i,n,k , each agent diffuses its own
estimate as

q̃i,n+1,k =
∑
l∈Nk

�kl ζ̃ i,n,k , (30)

where the combination coefficient {�kl} is nonnegative scalar
and ζ̃ n,k is given in (28).
For the linear part of DHSAF, each diffused agent of the

linear coefficients 0̃n,k can be obtained adaptively in the
adaptation part as

0̃n,k = w̃n+1,k + µw uTn,k C q̃i,n,k ẽn,k , (31)

where en,k is given in (27).
In the combination part of the nonlinear part in terms of the

linear coefficients w̃n,k , each agent diffuses its own estimate

w̃n+1,k =
∑
l∈Nk

�kl 0̃i,n,k , (32)

where the combination coefficient {�kl} is nonnegative scalar
and 0̃n,k is given in (31).
The summary of ATC version of DHSAF-LMS is shown

in Algorithm 3.

Algorithm 3: ATC-DHSAF-LMS algorithm

1: Initialise: w̃0 = δn · [1 0 . . . 0]T , q̃0 = [1 0 . . . 0]T

2: for n = 0, 1, . . . do
3: for k = 1, . . . ,L do

4: ζ̃ i,n,k = q̃n+1,k + µq uTn,k C w̃n,k ẽn,k

5: q̃i,n+1,k =
∑

l∈Nk
�kl ζ̃ i,n,k

6: 0̃n,k = w̃n+1,k + µw uTn,k C q̃i,n,k ẽn,k

7: w̃n+1,k =
∑

l∈Nk
�kl 0̃i,n,k

8: ẽn,k = dn,k − w̃n,k uTn,k C q̃i,n,k
9: end
10: end

V. PROPOSED DIFFUSION HAMMERSTEIN SPLINE
ADAPTIVE FILTERING BASED ON NORMALISED
ORTHOGONAL GRADIENT ADAPTIVE ALGORITHM
As stated in [31], we inspire the diffusion filtering approach
on the parallel adaptation with the diffusion steps, where
data on the present estimates are combined locally on the
matrix �. The structure of proposed DHSAF based on nor-
malised orthogonal gradient adaptive algorithm (DHSAF-
NOGA) is depicted in Figure 3.

In this section, there are two types of adaptive diffusion
strategies with the CTA algorithm and ATC algorithm [31]
implemented on the proposed DHSAF-NOGA algorithm as
follows.
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FIGURE 3. Proposed diffusion hammerstein spline adaptive filtering (DHSAF) structure based on NOGA algorithm.

A. DHSAF-NOGA WITH COMBINE-THEN-ADAPT STRATEGY
We propose a CTA version of DHSAF based on NOGA
(CTA-DHSAF-NOGA) algorithm. Each agent diffuses its
own estimate of the nonlinear part of DHSAF as

ξ i,n,k =
∑
l∈Nk

�kl q̂i,n,l, (33)

where the combination coefficient {�kl} is nonnegative scalar
shown in (18).

In particular, the combination weight ξ i,n,k is computed in
the output of the nonlinear filtering part as

ŝn,k = uTn,k C ξ i,n,k , (34)

where ξ i,n,k is defined in (33).
For the linear filtering part, a second diffusion step of the

weight 9n,k is combined as

9n,k =
∑
l∈Nk

�kl ŵn,l . (35)

Since, the local error ên,k at each agent is given as

ên,k = dn,k −9T
n,k ŝn,k , (36)

where yn,k denotes as the output of the liner filtering part.
The vectors sn,k and 9n,k are defined in (34) and (35),
respectively.

Then, the control points coefficient q̂i,n,k for nonlinear
part of DHSAF-NOGA is adapted recursively with the CTA
version as

q̂i,n+1,k = ξ i,n,k + µq d̂qn,k , (37)

whereµq is the step-size parameter, ξ i,n,k is given in (33) and
the directional vector dqn,k is defined as

d̂qn+1,k = λ̂qn,k d̂qn,k − ĝqn,k , (38)

and the gradient vector ĝqn,k is given as

ĝqn+1,k = λ̂qn,k ĝqn,k −∇qJ(ξ i,n,k ), (39)

and the forgetting-factor λ̂qn,k is given as

λ̂qn,k =
d̂Tqn−1,k ĝqn,k

d̂Tqn,k d̂qn−1,k
. (40)

The derivative of cost function ∇qJ(ξ i,n,k ) in (22) w.r.t
q̂i,n,k is applied with the chain rules [13] as

∇qJ(ξ i,n,k ) = −ên,k
∂yn,k
∂ ŝn,k

∂sn,k
∂ξ i,n,k

= −uTn,kC9n,k ên,k , (41)

where 9n,k is defined in (35).
Moreover, the linear tap-weight coefficient ŵn,k for linear

part of DHSAF adaptation is updated recursively with the
CTA version as

ŵn+1,k = 9n,k + µw d̂wn,k , (42)

whereµw is the step-size parameter and the directional vector
d̂wn,k can be expressed as

d̂wn+1,k = λ̂wn,k d̂wn,k − ĝwn,k . (43)
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Following [5], the forgetting-factor λ̂wn,k is given as

λ̂wn,k =
d̂Twn−1,k ĝwn,k

d̂Twn,k d̂wn−1,k
, (44)

where ĝwn,k denotes as the gradient vector of linear coefficient
ŵn+1,k that can be obtained as

ĝwn+1,k = λ̂wn,k ĝwn,k −∇wJ(9 i,n,k ), (45)

and the derivative of cost function ∇wJ(9 i,n,k ) in (22) w.r.t
ŵn,k is defined as

∇wJ(9 i,n,k ) = −ŝn,k ên,k , (46)

where ŝn,k is given in (34).
Therefore, the overall DHSAFwith CTA version of NOGA

is summarised in Algorithm 4.

Algorithm 4: Proposed DHSAF-NOGA AlgorithmWith
CTA Strategy

1: Initialise: ŵ0 = δn · [1 0 . . . 0]T , q̂0 = [1 0 . . . 0]T

dq0 = dw0 = [1 0 . . . 0]T , gq0 = gw0 = [1 0 . . . 0]T

2: for n = 0, 1, . . . do
3: for k = 1, . . . ,L do

4: ŝn,k = uTn,k Cξ i,n,k
5: ên,k = dn,k −9T

n,k ŝn,k
6: ξ i,n,k =

∑
l∈Nk

�kl q̂i,n,l

7: q̂i,n+1,k = ξ i,n,k + µq d̂qn,k
8: d̂qn+1,k = λ̂qn,k d̂qn,k − ĝqn,k
9: ĝqn+1,k = λ̂qn,k ĝqn,k + uTn,k C9n,k ên,k

10: λ̂qn,k =
d̂Tqn−1,k ĝqn,k
d̂Tqn,k d̂qn−1,k

11: 9n,k =
∑

l∈Nk
�kl ŵn,l

12: ŵn+1,k = 9n,k + µw d̂wn,k
13: d̂wn+1,k = λ̂wn,k d̂wn,k − ĝwn,k
14: ĝwn+1,k = λ̂wn,k ĝwn,k + ŝn,k ên,k

15: λ̂wn,k =
d̂Twn−1,k ĝwn,k
d̂Twn,k d̂wn−1,k

16: end
17: end

B. DHSAF-NOGA WITH ADAPT-THEN- COMBINE
STRATEGY
We propose an ATC version of DHSAF based on NOGA
(ATC-DHSAF-NOGA) algorithm. The output of nonlinear
filtering part of DHSAF s̃n,k is defined as

s̃n,k = uTn,k C q̌i,n,k . (47)

Hence, the local error ěn,k at each agent can be expressed
as

ěn,k = dn,k − w̌T
n,k s̃n,k , (48)

where s̃n,k is given in (47).
So, each agent adapts its own estimate of the nonlinear part

of the DHSAF as

ξ̃ i,n,k = q̌i,n,k + µq d̃qn,k , (49)

whereµq is the step-size parameter and the directional vector
d̃qn,k of controls point coefficient q̌i,n,k is defined as

d̃qn,k = λ̃qn,k d̃qn,k − g̃qn,k , (50)

and the gradient vector g̃qn,k is given as

g̃qn+1,k = λ̃qn,k g̃qn,k −∇qJ(q̌i,n,k ), (51)

and the forgetting-factor λ̃qn,k is defined by [5]

λ̃qn,k =
d̃Tqn−1,k g̃qn,k
d̃Tqn,k d̃qn−1,k

, (52)

and the derivative of cost function ∇qJ(q̌i,n,k ) w.r.t q̌i,n,k is
defined as

∇qJ(q̌i,n,k ) = −ěn,k
∂yn,k
∂ s̃n,k

∂ s̃n,k
∂q̌i,n,k

= −uTn,kCw̌n,k ěn,k , (53)

where ěn,k is given in (48).
Then, the control points coefficient q̌i,n,k is combined as

q̌i,n,k =
∑
l∈Nk

�kl ξ̃ i,n,l, (54)

where ξ̃ i,n,l is given in (49).
For the linear filtering part, the weight 9̃n,k can be updated

adaptively as

9̃n,k = w̌n,k + µw d̃wn,k , (55)

whereµw is the step-size parameter and the directional vector
d̃wn,k is given as

d̃wn+1,k = λ̃wn,k d̃wn,k − g̃wn,k , (56)

and the gradient vector g̃wn,k can be calculated as

g̃wn+1,k = λ̃wn,k g̃wn,k −∇wJ(w̌n,k ). (57)

Following [5], the forgetting-factor λ̃wn,k is defined by

λ̃wn,k =
d̃Twn−1,k g̃wn,k
d̃Twn,k d̃wn−1,k

, (58)

and the derivative of cost function ∇wJ(w̌n,k ) in (22) w.r.t
w̌n,k is defined as

∇wJ(w̌n,k ) = −s̃n,k ěn,k , (59)

where s̃n,k is given in (47).
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Therefore, the linear tap-weight coefficient w̌n,k can be
expressed as

w̌n,k =
∑
l∈Nk

�kl 9̃n,l . (60)

The overall DHSAF with ATC version of NOGA is sum-
marised in Algorithm 5.

Algorithm 5: Proposed DHSAF-NOGA AlgorithmWith
ATC Strategy

1: Initialise: w̌0 = δn · [1 0 . . . 0]T , q̌0 = [1 0 . . . 0]T ,
d̃q0 = d̃w0 = [1 0 . . . 0]T , g̃q0 = g̃w0 = [1 0 . . . 0]T

2: for n = 0, 1, . . . do
3: for k = 1, . . . ,L do

4: ěn,k = dn,k − w̌T
n,k s̃n,k

5: ξ̃ i,n,k = q̌i,n−1,k + µq d̃qn,k
6: d̃qn+1,k = λ̃qn,k d̃qn,k − g̃qn,k
7: g̃qn+1,k = λ̃qn,k g̃qn,k + uTn,k C w̌n,k ěn,k

8: λ̃qn,k =
d̃Tqn−1,k g̃qn,k
d̃Tqn,k d̃qn−1,k

9: q̌i,n,k =
∑

l∈Nk
�kl ξ̃ i,n,l

10: s̃n,k = uTn,k Cq̌i,n,k

11: 9̃n,k = w̌n−1,k + µw d̃wn,k
12: d̃wn+1,k = λ̃wn,k d̃wn,k − g̃wn,k
13: g̃wn+1,k = λ̃wn,k g̃wn,k + s̃n,k ěn,k

14: λ̃wn,k =
d̃Twn−1,k g̃wn,k
d̃Twn,k d̃wn−1,k

15: w̌n,k =
∑

l∈Nk
�kl 9̃n,l

16: end
17: end

The comparison of computational complexities for the pro-
posed algorithms is shown in Table 1. Following [16], [33],
calculation of output of nonlinear filtering part is
used 4P multiplications and 4P additions with data
reusing of previous computations, where P is the spline
order.

VI. NETWORK STABILITY AND PERFORMANCE FOR
DISTRIBUTED STRATEGIES
In this section, we investigate the network stability and per-
formance analysis that are referred to the stochastic gradient
approximation for the diffusion strategies.

A. NETWORK STABILITY
Following [31], we analyse by proposing from the gra-
dient descent algorithm dealing with the MSE networks.
We consider theMSE network that involves with the common
minimisation (w0, q0) for the non-cooperative and diffusion

TABLE 1. Number of required arithmetic operations of proposed
algorithms.

strategies in terms of three sets of combination coefficients
{�0,kl, �1,kl, �2,kl}.
Let us consider firstly that involves with the nonlinear part

of DHSAF-NOGA algorithm as

ζ i,n,k−1 =
∑

l∈Nk
�1,kl qi,l,k−1,

qi,n,k =
∑

l∈Nk
�2,klξ i,l,k ,

ξ i,n,k =
∑

l∈Nk
�0,kl ζ i,l,k−1 + µq dqn,k ,

dqn,k = λqn,k dqn,k−1 − gqn,k ,
gqn,k = λqn,k gqn,k−1 − µq ∇q J(q,w),

= λqn,k gqn,k−1 + µqu
T
n,k Cwn,k , en,k ,

and {ζ i,n,k−1, ξ i,n,k} represent the M × 1 vector. While the
combination coefficients {�0,kl, �1,kl, �2,kl} are the nonneg-
ative L × L matrices followed the conditions in (18).
Then, we associate with each agent k following three

errors as

q̃i,n,k , q0 − qi,n,k , (61)

ξ̃ i,n,k , q0 − ξ i,n,k , (62)

ζ̃ i,n,k , q0 − ζ i,n,k , (63)

where q0 denotes the global minimisation.
Next, we measure the deviation from q0 by subtracting

q0 from both sides of (61) and substituting the local error en,k
and sn,k as

en,k = dn,k − wT
n,k sn,k , (64)

sn,k = uTn,k C ζ̃ i,n,k . (65)

So, we can reorganise the nonlinear part of DHSAF-NOGA
algorithm for q̃i,n,k as

ζ̃ i,n,k−1 =
∑

l∈Nk
�1,kl q̃i,l,k−1,

q̃i,n,k =
∑

l∈Nk
�2,kl ξ̃ i,l,k ,

ξ̃ i,n,k =
∑

l∈Nk
�0,kl ζ̃ i,l,k−1 + µq, d̃qn,k ,

d̃qn,k = λqn,k d̃qn,k−1 − g̃qn,k ,
g̃qn,k = λqn,k g̃qn,k−1

+ µquTn,kCw̃n,k [dn,k − wT
n,ksn,k ]

= λqn,k g̃qn,k−1 + µqu
T
n,k C w̃n,k , νn,k

− µquTn,kC w̃T
n,kwn,kuTn,kC ζ̃ i,n,k ,

where νn,k denotes as a Gaussian noise term given in (19).
In (66), we define the non-negative entries of N × N

matrices as

A0 = [�0,kl],A1 = [�1,kl],A2 = [�2,kl]. (66)

Since, we examine the error dynamic evolution across the
network, we collect the error vector into N ×1 block vectors,
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while the individual entries are ofM × 1 vectors as
q̃i,n,k , [ q̃i,1,k q̃i,2,k . . . q̃i,N ,k ]T ,
ξ̃ i,n,k , [ ξ̃ i,1,k ξ̃ i,2,k . . . ξ̃ i,N ,k ]

T ,

ζ̃ i,n,k , [ ζ̃ i,1,k ζ̃ i,2,k . . . ζ̃ i,N ,k ]
T .

Furthermore, we use the Kronecker products

A0 , A0 ⊗ I, A1 , A1 ⊗ I,A2 , A2 ⊗ I, (67)

where I is the identity matrix.
And, the following N × N block diagonal matrices and

individual entries are ofM ×M are as follows

M , diag{uT1C, u
T
2C, . . . , u

T
NC}, (68)

Rw , diag{w̃T
1,jw1,j, w̃

T
2,jw2,j, . . . , w̃

T
N ,jwN ,j}. (69)

Let us define the gradient noise process ηqn,k at each k as

ηqn,k = ∇̂qJ(q,w)−∇qJ(q,w) = uCT w̃n,k−1, νn,k , (70)

where ∇̂qJ(q,w) denotes as an approximate gradient vector
and νn,k denotes as a Gaussian noise term.

From (66), we can verify that the block network variables
satisfy the recursion as

ζ̃ i,n,k−1 = A1 q̃i,n,k−1
q̃i,n,k = A2 ξ̃ i,n,k ,

ξ̃ i,n,k =
[
A0 − µqMRT

wM
]
, ζ̃ i,n,k−1 + µq, d̃qn,k

d̃qn,k = λqn,k d̃qn,k−1 − g̃qn,k ,
g̃qn, = λqn,k g̃qn,k−1 + µq ηqn,k .

So that, the network weight error vector q̃i,n,k evolves as

q̃i,n,k = A2
(
A0 − µqMRT

wM
)
A1q̃i,n,k−1

+µqA2 d̃qn,k . (71)

For a straightforward case, we can rewritten equivalently
in terms of the gradient noise vector ηq as

q̃i,n,k = D q̃i,n,k−1 + µqA2 d̃qn,k (72)

d̃qn,k = λqn,k d̃qn,k−1 − g̃qn,k (73)

g̃qn,k = λqn,k g̃qn,k−1 + µq ηqn,k , (74)

where the constant matrix D is given as

D , A2,
(
A0 − µqMRT

wM
)
,A1. (75)

In a manner way, we consider the common minimisation
w0 for the non-operative and diffusion strategies in terms
of three sets of combine coefficients {�0,kl, �1,kl, �2,kl}.
We consider the linear part of DHSAF-NOGA algorithm that
involves with

8n,k−1 =
∑

l∈Nk
�1,kl wl,k−1,

wn,k =
∑

l∈Nk
�2,kl9 l,k ,

9n,k =
∑

l∈Nk
�0,kl 8l,k−1 + µw,dwn,k ,

dwn,k = λwn,k dwn,k−1 − gwn,k ,
gwn,k = λwn,k gwn,k−1 + µw,∇wJ(q,w)
= λwn,k gwn,k−1 + µw sn,k en,k ,

where {8n,k−1,9n,k} represent theM × 1 vector.

Then, we orchestrate with each agent k following three
errors as

w̃n,k , w0 − wn,k , (76)

9̃n,k , w0 −9n,k , (77)

8̃n,k , w0 −8n,k , (78)

where w0 denotes the global minimisation.
Since, the deviation from w0 can be measured by subtract-

ing w0 from both sides of (76) and substituting the local error
en,k and sn,k as

en,k = dn,k − 8̃
T
n,k−1, sn,k (79)

sn,k = uTn,k Cqi,n,k . (80)

From (76), we can reorganise the linear part of
DHSAF-NOGA algorithm for w̃n,k as

8̃n,k−1 =
∑

l∈Nk
�1,kl w̃l,k−1

w̃n,k =
∑

l∈Nk
�2,kl 9̃ l,k ,

9̃n,k =
∑

l∈Nk
�0,kl8̃l,k−1 + µw, d̃wn,k ,

d̃wn,k = λwn,k d̃wn,k − g̃wn,k
g̃wn,k = λwn,k g̃wn,k

+ µwuTn,kCq̃i,n,k
[
dn,k − 8̃n,k−1uTn,kCq̃i,n,k

]
= λwn,k g̃wn,k + µwu

T
n,kC q̃i,n,kνn,k

− µwuTn,k C q̃Ti,n,k8̃n,k−1uTn,kCq̃i,n,k .

We examine the error vector into N × 1 block vectors,
whose individual entries are size ofM × 1 vectors as

w̃n,k , [ w̃1,k w̃2,k . . . w̃N ,k ]T ,
9̃n,k , [ 9̃1,k 9̃2,k . . . 9̃N ,k ]T ,
8̃n,k , [ 8̃1,k 8̃2,k . . . 8̃N ,k ]T .

Let us denote the gradient noise process ηwn,k based on the
linear part of DHSAF at each k as

ηwn,k = ∇̂wJ(q,w)−∇wJ(q,w) = uTn,k Cq̃i,n,k−1 νn,k ,

(81)

where ∇̂wJ(q,w) is an approximate gradient vector.
From (81), we satisfy that the block network variables

verify the recursions as

8̃n,k−1 = A1 w̃n,k−1

w̃n,k = A2 9̃n,k ,

9̃n,k =
[
A0 − µwMRT

qM
]
8̃n,k−1 + µw, d̃wn,k

d̃wn,k = λwn,k d̃wn,k−1 − g̃wn,k
g̃wn,k = λwn,k g̃wn,k−1 + µw, ηwn,k .

whereM is given in (68) andRq is defined by

Rq , diag{q̃Ti,1,k q̃i,1,k , q̃
T
i,2,k q̃i,2,k , . . . , q̃

T
i,N ,k q̃i,N ,k}.

(82)

Since, the network weight error vector w̃n,k can be
expressed as

w̃n,k = A2
(
A0 − µwMRT

qM
)
A1w̃n,k−1 + µwA2 d̃wn,k .

(83)
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Therefore, we can rewritten equivalently in terms of the
gradient noise vector ηwn,k as

w̃n,k = G w̃n,k−1 + µwA2 d̃wn,k , (84)

d̃wn,k = λwn,k d̃wn,k−1 − g̃wn,k (85)

g̃wn,k = λwn,k g̃wn,k−1 + µw, ηwn,k , (86)

where the constant matrix G is defined as

G , A2
(
A0 − µwMRT

qM
)
A1. (87)

B. PERFORMANCE ANALYSIS
We examine the performance analysis of proposed
CTA-DHSAF-NOGA and ATC-DHSAF-NOGA algorithms
based on the mean square value of linear tap-weight
estimation.

Firstly, Let us consider the estimated error vectors εn,k
and ε̃n,k at sample n and agent k from CTA-DHSAF-NOGA
algorithm by [34]

εn,k = ŵn,k − wopt, (88)

ε̃n,k = 9n,k − wopt, (89)

where wopt defines as the optimum linear tap-weight coeffi-
cient, 9n,k is the tap-weight vector at the combination step
and ŵn,k is the estimated coefficient at the adaptation step.

Following [30], [35], we rewrite the linear tap-weight vec-
tor ŵn,k in the recursive form as

ŵn,k = 9n,k + µw

k∑
r=1

λk−iw ŝn,r ên,r , (90)

where ên,k is a priori estimated error as

ên,k = dn,k −9T
n,k ŝn,k , (91)

where sn,k is the output of nonlinear filtering part of
CTA-DHSAF-NOGA structure.

Subtracting both sides of (90) with wopt and then to eradi-
cate ŵn,k by (91), we get(

ŵn,k − wopt
)
=
(
9n,k − wopt

)
+µw

k∑
r=1

λk−iw ŝn,r
{
dn,r −9T

n,r ŝn,r
}

+µw

k∑
r=1

λk−iw ŝn,r
(
wT
opt ŝn,r

)
−µw

k∑
r=1

λk−iw ŝn,r
(
wT
opt ŝn,r

)
. (92)

Replacing (88), (89) in (92), we arrive at

εn,k = ε̃n,k − µw

k∑
r=1

λk−iw ŝTn,r ε̃n,r , ŝn,r

+µw

k∑
r=1

λk−iw ŝn,r
{
dn,r − wT

opt ŝn,r
}
. (93)

So, the estimated error εn,k can be reorganised as

εn,k =
[
I− µw

k∑
r=1

λk−iw ŝTn,r ŝn,r
]
ε̃n,k

+µw

k∑
r=1

λk−iw ŝn,r eopt, (94)

where eopt is the optimum error as

eopt = dn,k − wT
opt ŝn,k , (95)

where sn,k is given in (34).
Hence, we clarify (94) by the orthogonality principle as

E{sn,k , eopt} ' 0, we get

εn,k =
[
I− µw

k∑
r=1

λk−iw ŝTn,r ŝn,r
]
ε̃n,k . (96)

It is noticed that the convergence rate depends on the input of
the linear filtering part.
Assumption 1: We assume the condition for convergence,

lim
k→∞

E{‖εn,k‖} = 0,

lim
k→∞

E{‖ε̃n,k‖} = 0,

lim
k→∞

E{ ŵn,k } = lim
k→∞

E{ w̌n,k } = wopt,

where E{·} is the expectation operator and ‖ · ‖ is the
Euclidean norm operator.

Substituting 9n,k in (89) into (91), we have the estimated
error ên,k in terms of the optimum error eopt in (95) by

ên,k = eopt + ε̃
T
n,k ŝn,k . (97)

Accordingly, we consider the mean square error of (97) as

J(n, k) = E{|ên,k |2}

= E{|eopt|2} + 2E{ε̃Tn,k ŝn,k eopt}

+E{ε̃Tn,k ε̃n,k ŝ
T
n,k ŝn,k}. (98)

Following Assumption 1, we may write

J(n, k) = Jmin(n, k)+ Jex(n, k), (99)

where Jmin(n, k) denotes as the minimum mean square
error (MMSE) implemented by the optimumWiener solution
and Jex(n, k) is the excess mean square error (EMSE) of
proposed CTA-DHSAF-NOGA algorithm as

Jmin(n, k) = E{|eopt|2} + 2E{ε̃Tn,k ŝn,k eopt}, (100)

Jex(n, k) = E{ε̃Tn,k ε̃n,k ŝ
T
n,k ŝn,k}, (101)

where ŝn,k = uTn,kC, ξ i,n,k and ξ i,n,k is the combination step
of q̂i,n,k .

We perform an autocorrelation matrix R̂s = E{ŝTn,k , ŝn,k},
where ŝn,k is the input of linear filtering part. Therefore,
Jex(n, k) can be obtained by

Jex(n, k) = E{ε̃Tn,k R̂s ε̃n,k}, (102)

where ε̃n,k is the estimated weight error in (89).

VOLUME 10, 2022 57407



S. Sitjongsataporn: Diffusion Hammerstein Spline Adaptive Filtering Based on Orthogonal Gradient Adaptive Algorithm

In a similar fashion, the performance analysis of
proposed ATC-DHSAF-NOGA algorithm based on the
mean square value of linear tap-weight estimation is
considered.

We recognise the estimated error vectors εn,k and ε̃n,k at
sample n and agent k by [34]

εn,k = w̌n,k − wopt, (103)

ε̃n,k = 9̃n,k − wopt, (104)

where wopt denotes as the optimum linear tap-weight coeffi-
cient, 9̃n,k is the estimated tap-weight vector at the adaptation
step and then w̌n,k is linear weight vector at the combination
step.

We reorganise the linear tap-weight vector 9̃n,k into a
recursive form following [30], [35] as

9̃n,k = w̌n,k + µw

k∑
r=1

λ̃k−iw s̃n,r ěn,r , (105)

where ěn,k is a priori estimated error as

ěn,k = dn,k − w̌T
n−1,k s̃n,k , (106)

where s̃n,k is the output of nonlinear filtering part of
ATC-DHSAF-NOGA structure.

Subtracting both sides of (105) by wopt and replacing
(103), (104), we have

ε̃n,k = εn,k − µw

k∑
r=1

λ̃k−iw s̃Tn,r ε̃n,r s̃n,r

+µw

k∑
r=1

λ̃k−iw
{
dn,r − wT

opt s̃n,r
}
. (107)

So, the estimated error ε̃n,k can be rewritten as

ε̃n,k =
[
I− µw

k∑
r=1

λ̃k−iw s̃Tn,r s̃n,r
]
εn,k

−µw,

k∑
r=1

λ̃k−iw s̃+ µw
k∑

r=1

λ̃k−iw s̃n,r ẽopt, (108)

where ẽopt is the optimum error as

ẽopt = dn,k − wT
opt s̃n,k , (109)

where s̃n,k is given in (47).
Consequently, we simplify (108) by the orthogonality prin-

ciple as E{s̃n,k , ẽopt} ' 0, we get

ε̃n,k =
[
I− µw

k∑
r=1

λk−iw s̃Tn,r s̃n,r
]
εn,k . (110)

Substituting 9̃n,k in (104) into (105), we can evaluate the
estimated error ěn,k in terms of the optimum error ẽopt in (109)
by

ěn,k = ẽopt + ε̃
T
n,k s̃n,k . (111)

We represent the mean square error of (111) as

J̃(n, k) = E{|ěn,k |2}

= E{|eopt|2} + 2,E{εTn,k s̃n,k eopt}

+E{εTn,k R̃s εn,k} (112)

where R̃s = E{s̃Tn,k , s̃n,k}.
Following Assumption 1, we may write

J̃n,k = J̃min(n, k)+ J̃ex(n, k), (113)

where J̃min(n, k) denotes as the MMSE implemented by the
optimum Wiener solution and J̃ex(n, k) is the EMSE of pro-
posed ATC-DHSAF-NOGA algorithm as

J̃min(n, k) = E{|eopt|2} + 2,E{εTn,k s̃n,k eopt}, (114)

J̃ex(n, k) = E{εTn,k R̃s εn,k}, (115)

and s̃n,k = uTn,kC, q̌i,n,k and εn,k is the estimated weight error
in (103).

VII. SIMULATION DESIGN AND RESULTS
In this section, the experiments are conducted with the system
identification through computer simulations with the additive
white Gaussian noise in order to verify the proposed nonlinear
DHSAF adaptive filtering. The input colour signal xn com-
poses of 5,000 samples by averaging over 20 times can be
generated by the following [28]

xn = ω · xn−1 +
√
1− ω2 ϕ, (116)

where ϕ is a unitary variance of zero mean white Gaussian
noise. The local correlation coefficients ω between the adja-
cent samples [13] is as 0 ≤ ω < 1. The network topology is
determined in Figure 4 and the topology weight�kl is shown
in Table 2, where Nk = 8 agents. The desired signal dn,k

FIGURE 4. Network topology with Nk = 8 agents including the noise
variance at each agent.

TABLE 2. Topology weight �kl of each agents with Nk = 8.

57408 VOLUME 10, 2022



S. Sitjongsataporn: Diffusion Hammerstein Spline Adaptive Filtering Based on Orthogonal Gradient Adaptive Algorithm

is defined in (1), where the noise variances at each k agent
are assigned in terms of signal to noise ratio (SNR) at each k
agent as SNRk = {35, 25, 25, 30, 30, 25, 35, 30}dB used for
simulation.

The constant matrixCB is called a B-splinematrix as given
by [13]

CB =
1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 .
For the simulation following [28], a series of the

DHSAF-based algorithms are compared with the non-
cooperative HSAF-NOGA and based on HSAF-LMS [13]
algorithms. The choice of used parameters are of the proposed
HSAF-based algorithm are followed in [13], [36] with the
learning rate set to µq = µw = 10−3, while these parameters
of NOGA-based algorithm are referred to [5] with the learn-
ing rate set between µq = µw = 10−4 and µq = µw = 10−3

by randomly trial and error of learning rate to get the best
solution for each algorithm.

For the proposed DHSAF-based algorithm, the initial
parameters are as follows: 1x = 0.2, δ = 0.001, number of
tap lengthM = 7, number of control pointsQ = 23, λw(0) =
1.525 × 10−4 and λq(0) = 1.425 × 10−4. Initial parameters
for the DHSAF-LMS are as: µw = 1.215× 10−4, and µq =
1.515 × 10−4. Other initial parameters for HSAF-NOGA
algorithm are as:µw = 1.525×10−2 andµq = 3.125×10−3,
and of HSAF-LMS algorithms are as:µw = 7.025×10−3 and
µq = 3.225 × 10−3. The local correlation coefficients is set
as ω = 0.10, 0.70.
Mean square error (MSE) is used for performance index.

Table 3 presents the summary of MSE of each algo-
rithm for simulations. Figure 5 and Figure 6 show the
MSE trajectories curves of proposed CTA-DHSAF-NOGA
and CTA-DHSAF-LMS algorithms compared with the
HSAF-NOGA and HSAF-LMS algorithms at agent #6 using
the different local correlation coefficients ω = 0.10, 0.70 in
(116). And Figure 7 and Figure 8 show the MSE curves
of proposed ATC-DHSAF-NOGA and ATC-DHSAF-LMS

TABLE 3. Summary of MSE for simulations.

FIGURE 5. MSE curves for the HSAF-NOGA and HSAF-LMS at agent #6
and proposed CTA-DHSAF-NOGA algorithm using µw = 3.025× 10−3, and
µq = 1.225× 10−3, where ω = 0.10 in (116).

FIGURE 6. MSE curves for the HSAF-NOGA and HSAF-LMS at agent #6
and proposed CTA-DHSAF-NOGA algorithm using µw = 3.025× 10−3, and
µq = 1.225× 10−3, where ω = 0.70 in (116).

algorithms compared with the HSAF-NOGA and HSAF-
LMS algorithms at agent #6 using ω = 0.10, 0.70 in (116).

To evaluate the EMSE of proposed CTA-DHAF-NOGA
algorithm in (102), we modify the estimated error vector ε̃n,k
in (89) by the instantaneous weight deviation ε̃dn,k as

ε̃dn,k = |9n,k − ŵn−1,k |. (117)

Therefore, JCTAex (n, k) can be obtained by

JCTAex (n, k) = |9n,k − ŵn−1,k |
T R̂s |9n,k − ŵn−1,k |,

(118)

where R̂s = ŝTn,k , ŝn,k and ŝn,k is given in (34).
Similarly, the EMSE of proposed ATC-DHAF-NOGA

algorithm in (115) is calculated by replacing the estimated
error vector εn,k in (103) with the instantaneous weight devi-
ation εdn,k as

εdn,k = |w̌n,k − w̌n−1,k |. (119)
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FIGURE 7. MSE curves for the HSAF-NOGA and HSAF-LMS at agent #6
and proposed ATC-DHSAF-NOGA algorithm using µw = 2.525× 10−4, and
µq = 1.225× 10−4, where ω = 0.10.

FIGURE 8. MSE curves for the HSAF-NOGA and HSAF-LMS at agent #6
and proposed ATC-DHSAF-NOGA algorithm using µw = 2.525× 10−4, and
µq = 1.225× 10−4, where ω = 0.70.

Therefore, JATCex (n, k) can be expressed by

JATCex (n, k) = |w̌n,k − w̌n−1,k |
T R̃s |w̌n,k − w̌n−1,k |,

(120)

where R̃s = s̃Tn,k , s̃n,k and s̃n,k is given in (47).
Figure 9 shows the EMSE curves of proposed algorithms

that can evaluate from (118) and (120) using ω = 0.10
in (116).

This paper presents a novel nonlinear-linear model of
DHSAF structure based on NOGA algorithm following the
DSAF in [28]. The advantage of Hammerstein model [13] is
that can determine properly the high-order nonlinearity with
the low order polynomial and low computational cost. As a
remark in [13], the behaviour of proposed DHSAF structure
is different from DSAF model [1], where the derivative of
mean-square error cost function with respect to the coeffi-
cients of spline control points in the first nonlinear filtering
part of DHSAF model depends on the present input signal

FIGURE 9. EMSE curves of proposed CTA-DHSAF-NOGA and
ATC-DHSAF-NOGA algorithms from (118) and (120).

concerned with the diffusion cooperative strategies on the
combination and adaptation steps.

As mentioned in [26], the NLMS algorithm is applied
to protect a large difference of tap-weight coefficients that
should cause notably a fluctuation for nonlinear system.
In order to decrease the sensitivity model of proposed
DHSAF algorithm, the NOGA algorithm is furnished accord-
ing to the diffusion adaptation. In addition, the proposed
DHSAF-NOGA algorithm is similar to HSAF based on the
stochastic gradient approach as HSAF-LMS algorithm [13]
implemented in the form of diffusion adaptation on DSAF
model based on the LMS algorithm as DSAF-LMS [28].

Noted that, the proposed CTA-DHSAF-NOGA and ATC-
DHSAF-NOGA algorithms can testify the fast convergence
with the non-cooperative HSAF-NOGA algorithm and stan-
dardHSAF-LMS algorithm in themulti-agent distributed net-
work, similarly to DSAF-LMS compared with the SAF-LMS
algorithm in [28]. According to Table 2, the topology weight
�kl of each agents with Nk = 8 are shown that each agent
is influenced for connected agents, which is caused that
the MSE curves of the non-cooperative HSAF-NOGA and
HSAF-LMS algorithms in the simulation results are shown
with slow convergence. While the proposed diffusion-based
adaptation algorithms can manage by the information
combined with their own neighbour agents in terms of
CTA and ATC algorithm for the nonlinear-linear HSAF
network.

In comparison with the state of art solution as DSAF-LMS
algorithm [28], the proposed DHSAF-NOGA algorithm with
a small increasing complexity shown in Table 1 has been
orchestrated with two diffusion and two stochastic gradient
steps requiring in approximately twice time of computations
compared with the standard HSAF-LMS algorithm.

VIII. CONCLUSION
We have introduced a set of DHSAF-NOGA algorithm as
the CTA and ATC strategies over the distributed network.
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Diffusion-based adaptation on the multi-agent network based
on a joint optimisation is considered. Diffusion adaptation
framework on memoryless function in terms of adaptive
look-up table and linear filter named HSAF has been mod-
ified from the NOGA algorithm. A set of adaptive dif-
fusion strategies with the CTA and ATC algorithms that
have been derived by DHSAF-NOGA algorithm. The net-
work stability and performance over the MSE networks
of proposed DHSAF-NOGA algorithms have been derived.
Experiment results depict that DHSAF-NOGA algorithm
can learn underlying the nonlinear Hammerstein model
compared with a non-cooperative solution and existing
techniques.

For the real-time dynamic system, diffusion strategy
on Hammerstein spline adaptive filtering model is being
investigated in the adaptive signal processing for wire-
less communications and data analysis over the distributed
network.
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