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ABSTRACT The widespread diffusion of synthetically generated content is a serious threat that needs urgent
countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data
like videos, photographs or audio sequences, but covers a significantly vast area that can include biological
images as well, such as western blot and microscopic images. In this paper, we focus on the detection of
synthetically generated western blot images. These images are largely explored in the biomedical literature
and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual
inspection or by using standard forensics detectors. To overcome the absence of publicly available data for
this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic
western blot images, generated using four different state-of-the-art generation methods. We investigate
different strategies to detect synthetic western blots, exploring binary classification methods as well as one-
class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The
achieved results show that synthetically generated western blot images can be spot with good accuracy, even
though the exploited detectors are not optimized over synthetic versions of these scientific images. We also
test the robustness of the developed detectors against post-processing operations commonly performed on
scientific images, showing that we can be robust to JPEG compression and that some generative models are
easily recognizable, despite the application of editing might alter the artifacts they leave.

INDEX TERMS Western blots, GANs, denoising diffusion probabilistic models, synthetically generated
images, image forensics.

I. INTRODUCTION
Synthetically generated multimedia content has been flood-
ing the web lately, catching people’s attention mainly thanks
to the entertainment and the artistic possibilities than can
arise from these new technological advancements. State-of-
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the-art methods for synthetic content generation allow one
to synthesize incredibly realistic images and audio sequences
[1]–[5]. It is also possible to transfer the identity of a per-
son [6], or even the body movements [7], from one video to
another one. The majority of these innovative tools owe their
birth to Generative Adversarial Networks (GANs) and proba-
bilistic generative models, which are leading technologies for
synthesizing multimedia data. All these tools usually present
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easy-to-use free interfaces, such that any amateur without
particular experience in digital arts can use them.

In spite of these evident new artistic opportunities, the
vast production of synthetic content inevitably introduces
serious threats related to data trustworthiness and integrity.
Novel technologies can be maliciously exploited for data
counterfeiting. This phenomenon is not only limited to dig-
ital multimedia content but it has been spreading worldwide
over a significantly larger area, potentially including images
reported in scientific publications [8]–[10].

In particular, western blot images are widely used in
the biomedical literature concerning molecular biology and
immunogenetics. They concern the analysis of proteins at a
high sensitivity and precision level [11]. The scientific com-
munity started arguing about their authenticity since 2016,
when the authors of [12] began to scan images frommore than
20K scientific papers, eventually discovering an incredibly
high manipulation rate (around 4%) with several duplicated
or tampered with images.

Nowadays, the most common procedure to spot manip-
ulations on western blot images is visual inspection. As a
matter of fact, forensics techniques aiming at spotting local
image tampering have a hard time in detecting manipulations
applied to scientific images. This is often due to their reduced
pixel resolution and the numerous amount of processing oper-
ations applied to create realistic forgeries [13].

The visual observation by an expert is still the most
widespread approach, although requiring one important
hypothesis: the investigated images are supposed not to be
synthetic. The manipulated region is supposed to be derived
from an already existing image, aptly processed to hinder
tampering traces. If the western blot image under analysis has
been synthetically generated, either in its entirety or locally
only in specific pixel regions, there would be essentially no
hope to spot such traces by visual inspection [10]. Indeed,
during some preliminary experiments, the authors of [10]
verified that standard image generation techniques based
on GANs [14], [15] can synthesize almost indistinguishable
western blots with respect to the real ones, even at the
experts’ eyes.

In this paper, we tackle the detection of western blot images
which have been synthetically generated through GANs and
probabilistic generative models. Our goal is to explore foren-
sics methodologies to automatically classify synthetic and
real western blots. We investigate how different forensics
strategies developed for natural images perform over scien-
tific images. In doing so, we simulate the realistic scenario
in which synthetic versions of western blot images are not
available to the analyst, who therefore cannot develop a foren-
sic detector specifically tailored to them.We experiment with
two main approaches:

1) a binary classification approach, borrowed from a
recently proposed method for detecting synthetic ver-
sions of natural images [16]. This method relies upon
a Convolutional Neural Network (CNN) purposely
designed to tell real and synthetic images apart. In par-

ticular, we never train the detector on western blot
images, thus testing its robustness on images of diverse
nature such as western blots;

2) a one-class classification approach, in which we train
a detector only on original western blots, looking for
any anomalies or inconsistencies appearing in the syn-
thetic images.

To compensate for the absence of a publicly available
dataset of real and synthetic western blots, we create a new
one comprising 14K real and 24K synthetic images, gener-
ated by means of three different GANs and one probabilistic
generative model. To the best of our knowledge, the detection
of synthetic images generated through probabilistic genera-
tive models has not been faced yet in the literature. Since
these models have recently proved to synthesize images with
high fidelity and diversity in a comparable manner to GANs,
we propose a first insight on their detectability.

We extensively evaluate the proposed techniques, compar-
ing various binary detectors and one-class detectors over the
generated dataset. The achieved results demonstrate that the
currently available strategies developed for natural images
can be a valid option for identifying synthetic western blots.

Moreover, we test the detector robustness to common
post-processing operations like image compression and resiz-
ing. We show that the proposed one-class classification
approach can be robust to JPEG compression and can detect
the synthetic images generated through some generativemod-
els almost independently from the post-processing applied.

To summarize, the main contributions of this paper are:
• We create a new dataset of western blot images including
14K real images and 24K synthetic images, generated
by means of four different generative models including
probabilistic models as well, whose detectability has
never been investigated in the state-of-the-art.

• We investigate forensics strategies for the detection of
synthetically generated western blots, proposing both
binary and one class detection approaches that never
exploit synthetic western blots at training stage.

• We explore the robustness of the proposed approaches
in case the scientific images are post-processed with
common editing operations.

• Results demonstrate the validity and generalization of
the proposed methods, although additional research is
needed to enhance robustness against standard process-
ing operations and unseen generative models.

The rest of the paper is organized as follows. In Section II,
we describe the generation process of synthetic western blots
and present the created dataset. In Section III, we provide
details on the proposed detection methods to distinguish real
from synthetic western blots. In Section IV, we describe the
experimental setup and discuss the obtained results. Eventu-
ally, in Section V, we draw our conclusions.

II. SYNTHETIC WESTERN BLOT GENERATION
In this section, we provide details about the generation pro-
cess of synthetic western blot images. We start with a brief
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description of the methods used for synthetic image gen-
eration, then we illustrate the original images employed as
reference for the creation of synthetic samples. Eventually,
we present the synthetic generation process and the gener-
ated dataset, providing some examples and highlighting the
differences among the generation strategies.

A. ARCHITECTURES
To generate synthetic western blot images, we adopt well-
known CNN architectures from the literature of natural
images generation.

Three of the proposedCNNs belong to the family of GANs,
which have been extensively used to generate synthetic
images of human faces, animals and various objects. We first
illustrate GANs dealing with the image-to-image translation
problem. Among the various methods presented in the liter-
ature, we focus on Pix2pix [14] and CycleGAN [17] mod-
els, being two of the best performing and most widespread
generation methods. We also consider style-based GANs [1],
[2], [18], [19]; in particular, we employ the StyleGAN2 with
Adaptive Discriminator Augmentation (StyleGAN2-ADA),
one of the newest and most promising models [1] for the task.

The last considered technique is based on probabilistic
generative models, which have been recently proposed as an
alternative to GANs for creating synthetic data with high-
fidelity [20]–[23]. In particular, we select the Denoising Dif-
fusion Probabilistic Model (DDPM) proposed in [23].

1) IMAGE-TO-IMAGE TRANSLATION GANs
Image-to-image translation GANs cover the vast area of
generative networks which learn a mapping between two
image categories and translate one category into the other
one. To perform image-to-image translation, we need to train
GAN architectures with multiple images selected from the
two distinct groups.

a: Pix2pix
Pix2pix [14] is an image-to-image translation GAN inspired
by conditional adversarial networks. It follows the typical
paradigm of image-to-image translation models as it requires
a training set of aligned image pairs in which it exists a
correspondence between two images of distinct categories.
For instance, an aligned image pair could be composed by a
color image and its grayscale version, or by an edge-map and
the corresponding photograph. Specifically, Pix2pix exploits
a conditional GAN which conditions on an input image and
generates an output translated image [14].

b: CycleGAN
CycleGAN [17] is a particular class of image-to-image trans-
lation GANs defined as unpaired image-to-image translation
model. Since finding paired training data is not always pos-
sible and it can be difficult and expensive [17], CycleGAN
is trained to translate between images of distinct domains
without exploiting aligned image pairs.

The main feature of CycleGAN is its ‘‘cycle-consistency’’
property which translates an input image to an output mean-
ingful synthetic image belonging to a different category [17].

2) STYLE-BASED GANs
Style-based GANs were born in 2019 as an alternative to
traditional generation models [24]. The generator of Style-
GAN [18] introduces a mapping of the latent code into an
intermediate latent code, which is transformed to different
‘‘styles’’ that control the layers of the synthesis network. The
proposed architecture has been further improved with the
StyleGAN2 [19], StyleGAN2-ADA [1] and StyleGAN3 [2]
models, which remove undesired blob artifacts and enable
achieving outstanding synthesis quality by training only on
few samples. The main difference between image-to-image
translation GANs and style-based ones lies on the input data
to be provided for training and for synthesizing new images.
If the former needs pairs of input images selected from two
distinct categories for training and one image category for
synthesizing, the latter requires images of a single category
for training and synthesizes new images with the same style
starting from the latent code provided to the generator.

3) PROBABILISTIC GENERATIVE MODELS
Probabilistic generative models are a class of generative
models which sequentially disturb training data with slowly
increasing noise, and then learn to reverse this corruption
in order to build a generative model of the original clean
data [22]. Among them, DDPMs [20], [21], [23], [25] were
introduced in 2015 by [25]. They model the ‘‘noising’’ data
process as a forward diffusion process which gradually con-
verts any complex data distribution into a simple and tractable
noise distribution [25]. Then, they learn the backward process
(i.e., to pass from noise distribution to data distribution)
which allows to generate new synthetic data. In the last few
years, DDPMs have proved to generate data with high fidelity
and diversity, often being comparable or outperforming state-
of-the-art GANs.

B. ORIGINAL IMAGES
We collected almost 300 original RGB images of different
resolutions depicting multiple western blots. Every western
blot image may contain different bands, which can have mul-
tiple shapes. The final shape depends on the operations done
by the biologist who processed the protein, on the protein
itself and on the properties of the processing apparatus [11].
The images usually present irregularities like spots, scratches
and bubbles. All these ingredients make every western blot
image almost unique, and also the single bands contained
inside can have small variations among them [11].

Our dataset includes 284 original images downloaded from
the web or selected from scientific publications. Since all
images present small size (i.e., usually less than 256 pixels on
the smallest dimension), we resize them, keeping the aspect
ratio of the initial image, such that the minimum dimension
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is always equal to 256 pixels. A few examples of the original
western blot images are depicted in Figure 1.

FIGURE 1. Examples of original western blot images selected from the
collected dataset.

C. SYNTHETIC IMAGES
We start showing how to generate synthetic images with
GANs, then we present probabilistic generative models.
Eventually, we illustrate the final generated dataset that is
used in our experiments.

1) IMAGE-TO-IMAGE TRANSLATION MODELS
We propose to generate synthetic western blots by feeding
image-to-image translational GANs with images selected
from the following two categories:
• original western blot images;
• images containing information on the position of west-
ern blot bands inside the original images.

In particular, samples belonging to this last category have
the same resolution of the original images they refer to, but
consist of binary values being 0 in pixels corresponding to a
detected blot band and 1 elsewhere. We refer to these images
as blot-masks. Given an original western blot image I, it is
related in one-to-one correspondence to its blot-mask M.
For example, Figure 2 depicts the blot-masks correspond-
ing to the original images shown in Figure 1. We build the
blot-masks through a semi-automatic segmentation process.
For each image, we exploit Otsu’s image thresholding [26]
andWatershed segmentation [27] algorithms to automatically
obtain possible blot-masks associatedwith the image, thenwe
pick the best mask by visual inspection.

FIGURE 2. Examples of blot-masks corresponding to the original western
blot images shown in Figure 1.

a: Pix2pix
We generate synthetic western blots by training Pix2pix with
images belonging to the previously reported two classes.
Pix2pix requires these images to be aligned one with respect

to the other. In other words, each original image and the
related blot-mask should be included within the same input
pair. The network is trained to learn the mapping between the
position of western blots (i.e., information carried by blot-
masks) and their related representation (i.e., information car-
ried by original images). As Pix2pix requires squared input
images, we randomly extract 50 squared patches with size
256× 256 from each original image and an equal amount of
squared patches from the related blot-mask. For illustration’s
sake, Figure 3 draws a sketch of the training setup required
by Pix2pix.

In the generation phase, we provide as input only binary
masks according to the desired western blot location. Pix2pix
generates new synthetic images containing western blot
bands in these positions.

FIGURE 3. Sketch of the training setup required by Pix2pix model.
To train the network, we need paired input images of squared size, i.e.,
one original image and the related blot-mask.

b: CycleGAN
To generate synthetic western blots with CycleGAN, we pro-
pose to feed it with the same images exploited for training
the Pix2pix model. However, we can remove the alignment
constraint and train with unpaired images. As Pix2pix, Cycle-
GAN also requires squared input images, therefore we use the
same squared patches extracted for training Pix2pix. Figure 4
depicts a sketch of the training setup required by CycleGAN.
Notice the relaxation of alignment constraint with respect to
the Pix2pix model reported in Figure 3.

FIGURE 4. Sketch of the training setup required by CycleGAN model.
To train the network, we need unpaired input images of squared size, i.e.,
one original image and one blot-mask.

2) STYLE-BASED GENERATION MODELS
Among the style-based generative models, we exploit
StyleGAN2-ADA, which has proved to generate highly real-
istic images and needs less samples to be trained with respect
to StyleGAN2 and StyleGAN3. Differently from image-to-
image translation models, we can feed the network with
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FIGURE 5. Sketch of the training setup required by StyleGAN2-ADA and
DDPM models. To train the networks, we need input original images of
squared size.

single input squared patches. During training, the network
learns to generate new images with the same style of the
training dataset. Figure 5 depicts a sketch of the training setup
required by StyleGAN2-ADA.

In the generation phase, we can provide different seeds
to the synthesis network, each one corresponding to a new
synthetic western blot image.

In the generation phase, we provide as input only binary
masks according to the desired western blot location. Pix2pix
generates new synthetic images containing western blot
bands in these positions.

3) PROBABILISTIC GENERATIVE MODELS
We select the DDPM proposed in [23], which recently
improved the generation performance of diffusion models
both in terms of data fidelity and diversity. As performed for
StyleGAN2-ADA,we directly feed the generativemodel with
squared input patches from the training data (see Figure 5).
We use these images to implement a diffusion-based noising
process and then learn how to reverse it. In generation phase,
samples from the noisy distribution can be randomly selected.
Starting from them, DDPM is able to gradually remove the
noise and return new synthetic western blots.

4) FINAL DATASET
The final dataset that we use to evaluate our experimental
setup consists of original and synthetic squared images with
a common size of 256× 256 pixels.
The original samples are derived from the data described

in SectionII-B. Specifically, we randomly extract 50 squared
patches per original western blot image. We end up with
14, 200 real images with size 256× 256 pixels.

The synthetic samples include:

• 6, 000 squared images with size 256×256 generated by
the Pix2pix model, providing as input to the generator
the same blot-masks seen in training phase;

• 6, 000 squared images with size 256×256 generated by
the CycleGAN model, providing as input to the genera-
tor the same blot-masks seen in training phase;

• 6, 000 squared images with size 256 × 256 generated
by the StyleGAN2-ADA model, providing as input to
the generator different seeds for each new image to be
synthesized.

• 6, 000 squared images with size 256 × 256 generated
by DDPM, providing as input to the generator different
noisy samples, corresponding to an equal number of new
images to be synthesized.

Figures 6-9 depict a few examples of synthetic western
blot images generated by the four proposed models. If we
provide the same blot-mask to Pix2pix and CycleGAN, the
generated western blot varies according to the generation
model. Nonetheless, in both situations, the synthetic images
are plausible and realistic. In case of StyleGAN2-ADA
and DDPM, the generated samples present high qual-
ity and photo-realism. The complete dataset is available
at https://www.dropbox.com/sh/nl3txxfovy97b1k/AABqb-
gkGBEfjS6pjke3a-d7a?dl=0.

III. SYNTHETIC WESTERN BLOT DETECTION
In this section, we present the investigated methods for syn-
thetic western blot detection. Given a query image, we inves-
tigate two kinds of classification setups: (i) a binary setup,
in which we train a binary classifier on both original and
synthetic natural images; (ii) a one-class setup, in which
we train a one-class classifier only on the original western
blot dataset. We always consider the challenging scenario in
which the synthetic dataset of western blots is never seen
during the detectors’ training phase. In the binary classifi-
cation framework, the training dataset does not even include
the original western blot images, but only natural images.
In the one-class detector configuration, we only see a reduced
subset of the original western blot images during training.

A. BINARY DETECTION
We investigate the challenging scenario in which we never
see western blots, pristine nor synthetic, during the training
phase. We consider the realistic situation in which we have
available some binary classifiers trained to distinguish orig-
inal from synthetic images, which however do not belong
to the western blot image category. For instance, we may
have available binary classifiers trained to detect original and
synthetic versions of human faces, animals or objects.

To this purpose, we borrow some of the GAN-image detec-
tors recently proposed in [16], which performs a critical
state-of-the-art analysis of the GAN-image detection task.
The backbone architecture is a ResNet50, modified to avoid
the down-sampling in the first network layer as suggested
by [28]. In [16], this architecture modification proves to be
robust to compression and resizing operations performed on
the testing image dataset.

At deployment stage, each classification is associated with
a positive score for the images belonging to the synthetic
category and a negative score for the original category.

B. ONE-CLASS DETECTION
In this scenario, we remove the possibility to train the detector
over synthetic images of any category, i.e., we consider train-
ing only on original images. We propose to train a one-class
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FIGURE 6. Sketch of the synthesis setup required by Pix2pix model. To generate new synthetic western blots, we provide the
desired blot-masks to the generator.

FIGURE 7. Sketch of the synthesis setup required by CycleGAN model. To generate new synthetic western blots, we provide the
desired blot-masks to the generator.

FIGURE 8. Sketch of the synthesis setup required by StyleGAN2-ADA
model. To generate new synthetic western blots, we provide different
seeds to the generator.

FIGURE 9. Sketch of the synthesis setup required by DDPM. To generate
new synthetic western blots, we can randomly select noisy samples and
gradually remove the noise from them to return new synthetic western
blots.

classifier over a reduced set of the original western blot
images.

To describe the texture characteristics of the training
images, we propose to extract some features that will be fed
to the classifier. Following a common state-of-the-art proce-
dure [29], [30], we convert each color image in grayscale and
apply high-pass filtering by subtracting a low-pass version
of the grayscale image to itself. The low-pass filter is a
3× 3 spatial kernel defined as

H =
1
4

0 1 0
1 0 1
0 1 0

 . (1)

We report some examples of high-pass filtered images in
Figure 10. At visual inspection, there are not significant traces
to tell real (top row) and synthetic images (bottom row) apart.

Then, we convert the pixels’ values to 8-bit unsigned inte-
gers and we compute the gray level co-occurrence matrix,
a 2D matrix which reports a histogram of co-occurring
grayscale values at a given offset over the input image.
Indeed, the co-occurrence matrix has been widely exploited
in the forensics literature both for binary and one-class detec-
tion tasks. For instance, co-occurrences have been used for
spotting subtle differences (usually not visible at human
inspection) in the textural features of real versus manipulated
natural images (through splicing) [30] and of real versus
synthetic natural images [31], [32].

We can define the co-occurrence matrix as C, with size
256 × 256. Every element [C]ij, with i, j ∈ [0, . . . , 255],
corresponds to the number of times the gray-level j occurs at
a certain distance from the gray-level i, along a certain direc-
tion. To compute the co-occurrence matrix C, we investigate
four different distances d for the gray-levels’ comparison,
testing d = {4, 8, 16, 32}, along both the horizontal and
vertical directions. We normalize each co-occurrence matrix
C by the sum of its elements, defining C̄ as

C̄ =
C∑255

i,j=0Cij
. (2)

To motivate our choice, we randomly select 25 origi-
nal western blots and 25 synthetic ones and investigate the
behavior of co-occurrences on this reduced dataset. We apply
gray-scale conversion and high-pass filtering for each image
and compute the co-occurrence matrix corresponding to any
possible gray-level distance and direction. Then, we aggre-
gate the results through pixel-wise arithmetic mean, ending
with an average co-occurrence matrix per image, with a size
256×256. To focus on the main differences between original

59924 VOLUME 10, 2022



S. Mandelli et al.: Forensic Analysis of Synthetically Generated Western Blot Images

FIGURE 10. High pass filtered versions of the original western blot images (top row) and the synthetic western blot images
(bottom row).

and synthetic samples, we propose to compute the Principal
Component Analysis (PCA) of their average co-occurrences.
We can extract compact descriptors of original and synthetic
samples to evaluate their differences visually.

In more details, we extract the PCA of the co-occurrence
matrices of the original images. Then, we compute the projec-
tion on the extracted principal components for both original
and synthetic samples. Figure 11 reports the PCA projections
by considering 15, 10, 5, 3, 2 and 1 principal components.
The 25 top rows correspond to the original samples, while the
last 25 rows correspond to the synthetic samples. The syn-
thetic images exhibit quite different projections concerning
original images, whichmotivates the use of co-occurrences as
good descriptors to separate the two classes. Considering that
we are extracting a high-pass filtered version of the western
blots, Figure 11 confirms the findings reported in [33], [34],
i.e., that original natural images show a more homogeneous
behavior in the high-frequency components concerning syn-
thetically generated ones.

FIGURE 11. PCA projections of the co-occurrences extracted from
25 original and 25 synthetic western blot images. The number of
extracted components equals to: (a) 15; (b) 10; (c) 5; (d) 3; (e) 2; (f) 1.

Given these premises, we process the co-occurrence matri-
ces to extract several texture properties that enable to distin-
guish real from synthetic samples. In particular, we explore
5 different processing methods that extract one scalar feature
from every image:

• Contrast-weighted feature: given C̄, we weight each
element by the squared difference of its coordinates,
and we sum over all the matrix elements. We define the
contrast-weighted feature as

fc =
255∑
i,j=0

C̄ij · (i− j)2. (3)

• Homogeneity-weighted feature: given C̄, we divide each
element by the squared difference of its coordinates
shifted by 1, and we sum over all the matrix elements.
We define the homogeneity-weighted feature as

fh =
255∑
i,j=0

C̄ij

1+ (i− j)2
. (4)

• Dissimilarity-weighted feature: given C̄, we weight each
element by the absolute difference of its coordinates,
and we sum over all the matrix elements. We define the
dissimilarity-weighted feature as

fd =
255∑
i,j=0

C̄ij · |i− j|. (5)

• Energy feature: given C̄, we compute the square root of
its energy, defining the energy-related processing feature
as

fe =

√√√√√ 255∑
i,j=0

C̄2
ij. (6)

• Correlation-weighted feature: given C̄, we weight each
element by a cross-correlation measure of its coordi-
nates, and we sum over all the matrix elements. Pre-
cisely, we compute the correlation-weighted feature as

fρ =
255∑
i,j=0

C̄ij · Rij, (7)

where R is a square matrix with the same size of C̄,
which emulates a normalized cross-correlation between
row and column coordinates, weighted by the matrix C̄.
For the sake of clarity, we define R as

[R]ij =
(i− µi)(j− µj)

σi · σj
, (8)

VOLUME 10, 2022 59925



S. Mandelli et al.: Forensic Analysis of Synthetically Generated Western Blot Images

where

µi =

255∑
i,j=0

C̄ij · i, µj =

255∑
i,j=0

C̄ij · j (9)

and

σ 2
i =

255∑
i,j=0

C̄ij · (i− µi)2, σ 2
j =

255∑
i,j=0

C̄ij · (j− µj)2.

(10)

Considering that we extract 5 textural features
(i.e., fc, fh, fd , fe and fρ) for each co-occurrence matrix ver-
sion, we finally end up with 40 different features per query
image.

We propose to feed every single feature to a one-class clas-
sifier, investigating both the well-known andwidely exploited
One Class Support Vector Machine (OCSVM) [35] that we
consider as a baseline reference and the more recent Isolation
Forest (IF) [36], which has been proposed as efficient strategy
for anomaly detection. Both algorithms are trained for detect-
ing outlier samples which are not distributed as the original
training data.

At deployment stage, each classification is associated with
a positive score for the images belonging to the training
category (i.e., original images) and a negative score for outlier
images (i.e., synthetically generated images).

IV. RESULTS
In this section, we report the experimental setup and the
achieved results in the detection of synthetically generated
western blot images. First, we report the performance of
binary detection methods, then we show the results achieved
by the one-class detector approach.

A. EXPERIMENTAL SETUP
1) BINARY DETECTION
We train three binary detectors by following the findings
reported in [16]. In the first detector, the modified ResNet50
is trained over the training image dataset provided in [37],
comprising 362K real images extracted from the LSUN
dataset [38] and 362K generated images obtained by 20 Pro-
GAN [24] models, each trained on a different LSUN object
category. In the second detector, the modified ResNet50 is
trained using 720K StyleGAN2 images and 552K real images
selected from different public datasets, i.e., the LSUN [38],
the AFHQ [39], the AnimalWeb [40], the BreCaHAD [41],
the FFHQ [42] and the MetFaces [43]. The synthetic images
were generated by training StyleGAN2 with real images
selected from these datasets. In the third detector, we explore
the situation in which the modified ResNet50 is trained to
distinguish all the considered real images versus both Pro-
GAN and StyleGAN2 synthetic images. It is worth noticing
that none of the considered detectors exploits western blot
images, real nor synthetic, during training.

2) ONE-CLASS DETECTION
The IF detector is trained by setting the number of samples
to train each IF embedded estimator equal to the maximum
possible one, i.e., the total number of training images. The
remaining detectors’ parameters are those suggested in [44].

We train the two proposed one-class detectors over the
features extracted from half of the available real images
depicting western blots. To avoid possible bias in evaluating
the results, we split the pristine dataset of patches according
to the original western blot images they have been extracted
from, as described in Section II-B. In doing so, all the
patches extracted from the same original image belong to
the same dataset split. We end up with 142 training western
blot images, corresponding to 7100 original patches with
resolution 256× 256 pixels.
Since the one-class approach is trained over original west-

ern blots, this inevitably reduces the number of original
images to include in the test set. Therefore, to have a fair
comparison with the binary detection results, evaluated over
the final dataset and thus including all the original western
blot patches, we apply a 2-fold cross-validation approach: we
exploit each of the two dataset splits once as training set and
once as testing set. Then, we average the achieved results.

B. BINARY DETECTION RESULTS
Binary classification results are shown in Tables 1 and 2.
We always report results by keeping separated the images
synthesized through the four investigated generation meth-
ods, thus the real images are compared four times against
a different synthetic dataset. Table 1 depicts the achieved
AUC of the Receiver Operating Characteristic (ROC) curve
built for the binary classification task, while Table 2 reports
the achieved balanced accuracy in correctly classifying real
and synthetic images. Notice that we are including also the

TABLE 1. Area Under the Curve (AUC) achieved by different binary
classifiers. The synthetic dataset used to train each detector is shown in
between square brackets. Best results in bold.

TABLE 2. Balanced accuracy achieved by different binary classifiers. The
synthetic dataset used to train each detector is shown in between square
brackets. Best results in bold.
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FIGURE 12. Distribution of the logit scores produced by the binary
detector proposed in [16] when trained on ProGAN and StyleGAN2
images. In particular, (a) corresponds to real versus Pix2pix synthetic
western blot images; (b) to real versus CycleGAN synthetic western blot
images; (c) to real versus StyleGAN2-ADA western blot synthetic images;
(d) to real versus DDPM western blot synthetic images.

classification results achieved by the state-of-the-art GAN
detector proposed in [37].

The best detector almost always consists in the one pro-
posed by [16] in the last configuration, i.e., trained on both
ProGAN and StyleGAN2 synthetic images. This result con-
firms the experiments performed in the original paper [16]:
the bigger the training dataset, the better the generalization
capability of the detector. Overall, Pix2pix and DDPM syn-
thetic images are the most detectable ones. For Pix2pix, this
might be expected, being the Pix2pix generation method the
oldest of the four and reasonably introducing generation arti-
facts that might be easier to be spot. DDPM images, despite
their recentness and their high-quality realism, still present
more generation artifacts than current state-of-the-art GANs.
Evaluations on the CycleGan and StyleGAN2-ADA datasets
achieve similar AUCs, however the results on CycleGAN
samples report an accuracy of more than 4 percentage points
below the one reached on StyleGAN2-ADA western blot
images.

TABLE 3. Best AUC achieved by OCSVM classifier when trained on the
5 proposed features extracted from the real images. Best results in bold.

TABLE 4. Best AUC achieved by IF classifier when trained on the
5 proposed features extracted from the real images. Best results in bold.

We investigate this behaviour in Figure 12, which depicts
the distribution of the logit scores achieved by the best
detector in case of synthetic images generated through
Pix2pix, CycleGAN, StyleGAN2-ADA and DDPM, respec-
tively. A significant amount of CycleGAN images is asso-
ciated with a negative logit score, especially for the scores
≈ −1.8. This phenomenon is much more reduced for
Pix2pix, StyleGAN2-ADA and DDPM synthetic images.
When computing the AUC, the negative CycleGAN scores
do not cause a strong impact on the performances, as the
ROC curve is built by considering all the possible thresholds
related to the binary decision problem. The balanced accu-
racy, instead, is computed by thresholding the logit scores
with a fixed threshold equal to 0. This fixed thresholding
inevitably assigns the wrong label to a great amount of syn-
thetic images, thus lowering the detection performances.

C. ONE-CLASS DETECTION RESULTS
1) SINGLE FEATURE ANALYSIS
As reported in Section IV-A, we investigate 40 different
features per query image, which correspond to an equal
number of classification scores per image for each detec-
tor. For brevity’s sake, we report only the best classifica-
tion results for each of the 5 proposed processing features,
i.e., fc, fh, fd , fe, fρ . In reporting results, we follow the same
approach employed for binary classification, that is, we sep-
arately evaluate our performances on the four datasets of
synthetic western blot images. Tables 3 and 4 show the
best achieved AUC on each selected feature by exploiting
OCSVM and IF, respectively.

The features related to the contrast and dissimilarity never
report the best results. For image-to-image translational mod-
els, the energy and correlation features are often the most dis-
criminative ones, while on the StyleGAN2-ADA generated
samples the AUCs approaches 0.9 only for the correlation
feature. Over DDPM images, we achieve excellent results
with fh and fe.
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FIGURE 13. Histogram of the achieved AUCs associated with the
extracted 40 feature. In particular, (a) real images versus Pix2pix; (b) real
images versus CycleGAN; (c) real images versus StyleGAN2-ADA; (d) real
images versus DDPM.

FIGURE 14. Parameters related to the 8 best features for each one-class
detector. On the left, the parameters related to OCSVM, on the right those
related to IF. In particular, (a) corresponds to real versus Pix2pix synthetic
western blot images; (b) to real versus CycleGAN synthetic western blot
images; (c) to real versus StyleGAN2-ADA synthetic western blot images;
(d) to real versus DDPM synthetic western blot images. The blue
corresponds to the feature fc , the orange to fh, the green to fd , the
red to fe, the purple to fρ .

We further investigate how performances vary according
to the exploited features in Figure 13, where we report the
histogram of the achieved AUCs considering all the 40 inves-
tigated features. It is noticeable that, for any GAN-based
generation method, there are few features which allow to

TABLE 5. Best AUC achieved by OCSVM classifier when trained on one
single feature, on combinations of the 8 best features and on the features
proposed in [29]. Best results in bold.

TABLE 6. Best AUC achieved by IF classifier when trained on one single
feature, on combinations of the 8 best features and on the features
proposed in [29]. Best results in bold.

achieve high AUCs. For Pix2pix and CycleGAN images,
only 8 features achieve AUCs greater than 0.85, while for
StyleGAN2-ADA samples only 4 features exceed 0.8 of
AUC. DDPM images seem the easiest to be detected, and
count 16 features that allow to reach AUCs values above 0.9.

To provide insight on the nature of these features, Figure 14
investigates which are the parameters characterizing the best
8 features for each detector, i.e., which are the selected
gray-level distance (i.e., 4, 8, 16 or 32), the direction of
computation (horizontal (H) or vertical (V)) and the kind
of textural metrics used (i.e., fc, fh, fd , fe or fρ) providing
the best performances. The best features characterizing the
OCSVM detector are the same of IF, except for the images
generated through StyleGAN2-ADA, in which OCSVM and
IF differ for only one feature. From Figure 14(a)-(b)-(d) we
can notice that Pix2pix, CycleGANandDDPM images can be
differentiated by one single metric, fe, fh and fρ , respectively,
and any combination of gray-level distance and direction
achieves acceptable results. StyleGAN2-ADA images (see
Figure 14(c)) present stronger artifacts along the vertical
direction: none of the 8 best AUCs is found over the hori-
zontal direction. Moreover, both fd and fρ report acceptable
results, even though fρ demonstrates to be more accurate,
as reported in Tables 3 and 4.

2) COMBINED FEATURE ANALYSIS
We also explore the scenario in which the proposed one-class
detectors are trained not over a single feature per image but
over a combination of multiple features. At deployment stage,
we extract the feature combination from the query image, and
we feed them to the detectors. For the sake of brevity, for
each detector and for each generative method, we investigate
only the combinations among the features returning the best
8 AUC values, i.e., the features described in Figure 14. Thus,
we explore 3 different scenarios: (i) training on the combina-
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TABLE 7. Best balanced accuracy achieved by OCSVM classifier when
trained on one single feature, on combinations of the 8 best features and
on the features proposed in [29]. Best results in bold.

TABLE 8. Best balanced accuracy achieved by IF classifier when trained
on one single feature, on combinations of the 8 best features and on the
features proposed in [29]. Best results in bold.

tion of two features; (ii) training on the combination of three
features; (iii) training on the combination of four features.
We investigate all the 28 possible combinations for the first
scenario; all the 56 combinations for the second one and all
the 70 for the third one. We depict the best achieved AUC
by OCSVM and IF in Tables 5 and 6, respectively. In this
scenario, we also show the best achieved balanced accuracy
by OCSVM and IF in Tables 7 and 8, respectively.
It is worth noticing that selecting combinations of mul-

tiple features may improve the results, but does not bring
a significant boost to the performances. Indeed, combining
more features may lead to worse results. In more details, the
performance change in exploiting more than one feature does
not always represent an improvement and, whenever results
are improved, the gain is reduced to a maximum of +2.22%
in the AUC (see Table 6, first row) and to a maximum of
+4.34% in the balanced accuracy (see Table 7, third row).
Moreover, in the worst scenarios, exploiting four features
can lead to −0.51% of performance loss in the AUC (see
Table 5, last row) and to −5.24% in the balanced accuracy
(see Table 8, third row). On average, exploitingmore than one
feature returns an AUC gain of 0.5% and a balanced accuracy
gain of 1.2%. Thus, the choice to train the classifiers on more
than one features might not be the preferred option because it
is computationally and temporarily more expensive than the
single feature scenario.

For a further comparison with a standard feature extraction
procedure followed in the literature [30]–[32], we also extract
the co-occurrence based local features proposed in [29].
We train the one-class detectors on these features extracted
from the training images; in testing phase, for each query
image, we feed these features to the detectors. In order to
provide a clear comparison with the proposed methodology,
we report the achievedAUC in Tables 5 and 6, while we report
the achieved balanced accuracy in Tables 7 and 8. In none of

TABLE 9. Best results achieved by the binary and one-class classifiers,
in terms of AUC and balanced accuracy. Best detector in bold.

the considered scenarios the features of [29] outperform the
proposed methodology.

3) ONE-CLASS DETECTOR COMPARISON
In general, we achieve the best results by means of the IF
classifier. When comparing AUCs of the two detectors (see
Tables 5 and 6), OCSVM reports accurate and comparable
performances with respect to IF. On the contrary, the achieved
accuracy by OCSVM is significantly lower than IF’s (see
Tables 7 and 8). This discrepancy in the reported AUC and
accuracy can be explained with the same considerations done
in Section IV-B. The IF detector demonstrates to be more
stable and less prone to errors when exploiting a fixed thresh-
olding strategy, i.e., selecting a threshold equal to 0 to dis-
criminate images when solving the binary decision problem.

D. BINARY VS ONE-CLASS RESULTS
For clarity’s sake, we summarize the best results of the binary
and the one-class classification approaches in Table 9. Inter-
estingly, the one-class approach outperforms the binary one
on the CycleGAN and DDPM datasets, even if on DDPM
only in terms of achieved AUC. In this scenario, learning
textural properties of real western blot images brings a signif-
icant improvement with respect to a binary classifier trained
on real and synthetic natural images not depicting western
blots. As a matter of fact, in all the considered situations,
the one-class classifier reports valid and comparable results
to those achieved by the binary one, considering that it is
trained only on original western blot images, never looking
at synthetic data.

E. ROBUSTNESS TO POST-PROCESSING OPERATIONS
As last experiment, we investigate scenarios where western
blots underwent some post-processing operations. In doing
so, we simulate realistic situations in which images to
be included in a scientific publication might be resized
and/or compressed due to limited resources dedicated to the
manuscript in terms of maximum number of pages, Byte
count, etc. The applied post-processing also simulates oper-
ations that might be done by malicious users who tampered
with or generated completely synthetic versions of scientific
images. Indeed, to create realistic forgeries, it is common
to apply various post-processing on the modified images to
conceal the tampering traces.
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TABLE 10. Best AUC achieved by the binary classifier on post-processed and non post-processed images. The classifier training is performed on non
post-processed images.

TABLE 11. Best AUC achieved by the one-class classifiers when trained on one single feature. The classifier training is performed on post-processed
images. For clarity’s sake, we also report the best AUC achieved on non post-processed images.

TABLE 12. Best AUC achieved by the one-class classifiers when trained on one single feature. The classifier training is performed on original non
post-processed images. For clarity’s sake, we also report the best AUC achieved on non post-processed images.

In this vein, we investigate three kinds of post-processing
that might undermine the performance of our synthetic image
detectors:
• an upscaling post-processing, in which the images are
enlarged by factors 1.25 and 1.5, and then randomly
cropped to fit the 256× 256 pixel resolution;

• a down-upscaling post-processing, in which images are
downscaled by factors 0.5, 0.75 and 0.9, and then
upscaled back to fit their original resolution of 256 ×
256 pixels;

• a JPEG compression with different quality factors (i.e.,
80, 90 and 100) corresponding to increasing image
visual quality.

We resort to Albumentation [45] as data augmentation library.
Table 10 reports the achieved AUCs in classifying the

post-processed images with the binary detector proposed
in [16] trained on ProGAN and StyleGAN2 images. We pick
this binary detector as it reports the best results in the exper-
imental analysis on non post-processed images. In training
phase, we do not apply any post-processing to the images.
Unfortunately, the binary detector reports a consistent perfor-
mance loss in almost all scenarios, especially on Pix2pix and
DDPM images.

For the one-class detection, we investigate two possible
training scenarios corresponding to realistic situations that
forensics analysts commonly deal with:
• training on the post-processed images. In this scenario,
all data underwent some known editing operation and

we have available a portion of them for the training
phase;

• training on the original non post-processed images.
In this scenario, we miss information about the potential
editing operations applied on testing data.

In both scenarios, we follow the same 2-fold cross-validation
approach reported in Section IV-A to have fair comparisons
with the binary detection approach.

Tables 11 and 12 report the achieved AUCs in the first and
second training scenarios, respectively. Notice that the aver-
age performances of the two scenarios are similar. By training
on the original non post-processed images, i.e., simulating
an agnostic scenario from the post-processing view point,
we achieve almost the same results of the perfect knowledge
situation.

Contrarily to the binary detection approach, the one
class classifier is significantly more robust against the
JPEG-based post-processing. As long as the compres-
sion quality factor does not excessively reduce the image
quality, the performance loss can be contained around
12%, with the only exception of the Pix2pix synthetic
images.

It is also worth noticing that DDPM synthetic images
can be spotted with high accuracy level independently of
the kind of post-processing applied, almost approaching the
results achieved in the experiments executed on the non post-
processed dataset.
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V. CONCLUSION
In this paper, we performed a forensics analysis of syn-
thetically generated western blot images. Previous works
have already shown that western blots can be tampered with
or totally synthesized in a relatively easy way, with expert
inspectors having a hard time in spotting forgeries.

We were not able to find in the literature a sufficiently
vast dataset of original and synthetic western blot images
to perform scientific experiments. Therefore, we created a
new dataset containing more than 14K original and 24K fully
synthetic western blots, generated through four state-of-the-
art generation methods based on GANs and DDPMs.

Regarding the detection, we investigated the realistic sce-
nario in which the analyst does not have available any syn-
thetic versions of western blot images. To do so, we explored
how forensics detectors purposely developed for binary clas-
sification of real versus synthetic natural images perform in
distinguishing original and synthetic western blots. We also
explored one-class classification approaches, in which we
learned textural feature properties of original western blots
and looked for any anomalies occurring in the synthetic data.

We extensively evaluated the proposed detectors on the
collected dataset. Our results showed that synthetic western
blots can be distinguished from real ones with a high accuracy
in all the considered experimental scenarios. This is notewor-
thy, considering that we never exploited synthetic western
blot images to optimize the detectors. Up to now, forensics
detectors trained only on natural images or on original west-
ern blots represent valid solutions to identify fully synthetic
versions of them.

Our experiments also highlighted that the one-class
approach is robust to JPEG compression applied to the images
to be analyzed, even if the training is performed on original
non compressed images. Robustness to resizing operations is
still a challenging issue for spotting the majority of synthetic
images. Nonetheless, the one-class approach can easily detect
the synthetic images generated through DDPMs, no matter
the resizing applied.

Future work will include additional generative models,
particularly adapting the binary detection approach for the
attribution of the model used to create synthetic samples
and investigating open-set recognition techniques to identify
images generated with methods never seen during training.
Furthermore, we will focus on improving detectors’ robust-
ness to common post-processing operations to make them
more suitable for in-the-wild scenarios where an unknown
processing chain might hinder traces of the synthetic genera-
tion process.
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