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ABSTRACT Accurate identification of lane-changing intention can effectively assist intelligent driving
vehicles in terms of decision-making and trajectory planning, which plays a significant role in enhancing
driving safety by reducing traffic accidents caused by lane-changing. Based on the trajectory characteristics
and vehicle interaction information, an attention-enhanced bidirectional multi-layer residual long-short term
memory neural network (Attention Enhanced Residual-MBi-LSTM) model is proposed for lane change
intention recognition in this paper. Firstly, an EWMA filter is employed to smooth the noisy data collected
from the vehicle. Then a four-layer bidirectional residual LSTM memory (Residual-MBi-LSTM) structure
is used to extract lane-changing features from the historical driving trajectories of ego-vehicle and vehicle
interaction information. Besides, the attention mechanism is added to adjust the weight of data in different
time frames. After that, the current lane-changing probability is calculated and output by the Softmax
function. Finally, the vehicle lane-changing intention recognition model is firstly trained and then verified
in the HighD dataset. According to the HIL experiment, the proposed model has the ability to identify driver
intention on average of 2.07 seconds in advance.

INDEX TERMS Lane change, advanced driver assistance system (ADAS), driving intention recognition,
long short-term memory (LSTM), attention mechanism.

I. INTRODUCTION
According to statistics, human drivers’ operational errors are
one of the principal origins of most traffic accidents. Among
all the traffic accidents, 18% occur in the lane changing pro-
cess [1]–[3]. With the rapid development of artificial intelli-
gence, advanced driving assisted systems (ADAS) have been
widely developed, hence significantly reducing the probabil-
ity of traffic accidents. Driving intention recognition has been
reckoned as one of the core technologies of next-generation
ADAS products. By recognizing driving intention, ADAS can
give early warning to vehicle collisions and take collision
avoidance operations to avoid accidents [4].

There is a clear difference between lane change behavior
perception and intention recognition: lane-changing behavior
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perception refers to perceiving the process by sensors when
the vehicle has started to change lanes [5], while lane-
changing intention recognition refers to the process of iden-
tifying or predicting possible upcoming behaviors such as
lane-changing, cutting, overtaking or turning before starting.
But both of them are essentially the process of classifying
multidimensional time series (or vectors) constructed from
vehicle motion information, driver gaze (or head-turning)
information, or traffic context information [6].

Many scholars have carried out research on the recognition
of driver lane change intention. Focused on the relation-
ship between ego-vehicle and directly surrounding vehicles,
Schlechtriemen et al. [7] used a generative model based on an
improved naive Bayesian approach, which was trained and
validated on a test drive in the real world, to classify the
lane-changing intention. Based on Support Vector Machine
(SVM), Kumar et al. [8] proposed a recognitionmodel, which
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can predict lane change intention on average 1.3s in advance
for online recognition. However, these above methods only
classify according to the current state parameters and cannot
use the context information of the continuous dynamic driv-
ing process to mine deep driving intentions.

The Hidden Markov method (HMM) [9] overcomes the
shortcomings of the above simple classifiers and is able to
model time series of arbitrary length, but its accuracy is rela-
tively lower than current mainstream methods. Furthermore,
the above machine learning methods need a priori model,
which may cause bias due to inaccurate prior assumptions
[10]. In conclusion, for the lane-changing intention recog-
nition problem, statistical-based machine learning methods
have certain defects and limitations.

The rapid development of high-performance computing
and big data technology in recent years has made data-driven
lane change intention recognition possible. However, earlier
studies paid less attention to the correlation between time
series information [11].

With the success of LSTM in speech recognition and
machine translation, realizing the advantages of LSTM in
solving time series problems, some scholars have introduced
LSTM into the field of lane changing intention recognition.
Jian et al. [12] proposed a driving intention detection LSTM
based approach with better accuracy in driver intention recog-
nition. Xie et al [13] proposed an LSTM based lane change
implementation (LCI) model, however, the proposed LCI
model cannot recognize the lane changing intention until
the vehicle is about to cross the lane marks. In order to
improve the recognition accuracy in an early stage, classi-
cal single-layer-LSTM was extended to multi-layer-LSTM
by Tang et al. [14]. However, these methods do not take
the weight assignment of data in different time frames into
account. Due to the weighting scheme of LSTM [15], lane
changing intention can only be detected after significant
lateral movement. In order to improve the timeliness, the
attention mechanism was introduced to reallocate the weight.
Guo et al. [17] proposed an AT-LSTMBased intention recog-
nition model. In addition to vehicle motion parameters, Guo
also introduces human features such as pupil gaze point and
head pose by using the eye tracker, which is not suitable for
a real driving environment. Similar to AT-LSTM, Hao et al.
[18] also proposed Attention-based GRU for intention recog-
nition. However, the use of single-layer-GRU inhibits the
improvement in recognition accuracy.

Based on the trajectory characteristics and vehicle interac-
tion information, this paper proposes an attention-enhanced
residual MBi-LSTM model for driver lane change intention
recognition.

Our contributions in this study are twofold:
(1) A novel attention enhanced Residual-MBi-LSTM

Network is proposed for driver lane change intention recog-
nition. In this paper, A 4-layer sequential bidirectional LSTM
neural network with short cut structure is proposed to
extract lane change intention from the history trajectory of
ego-vehicle and the interaction between the ego-vehicle and

FIGURE 1. Schematic diagram of the research area of the HighD
dataset [16].

the preceding vehicle, while a soft attention mechanism is
introduced to adjust the weight of different data frames.

(2) The introduction of residual block enables our model to
become deeper, solving the optimization bottleneck problem.

The structure of this paper is organized as follows: in
part II, the data preprocessing method are introduced; in
part III, the proposed model structure, parameter determi-
nation method, and model training process is introduced;
in the last part, the performance of the model is tested
through ablation experiment together with other experiments,
a hardware-in-loop simulation is also conducted to test the
model performance in the real working condition; finally,
a conclusion is given in part VII.

II. DATASET CONSTRUCTION
A. HIGHD INTRODUCTION
The HighD dataset [16] is used to extract the trajectory
information of the ego-vehicle and surrounding vehicles in
this paper. The HighD dataset is an unmanned aerial vehi-
cle (UAV) sampled large-scale vehicle natural trajectory
database.

The dataset includes trajectory data of 110,000 vehicles
at 6 locations, as is shown in Figure 1, around Cologne,
Germany, for 16.5 hours, with a total mileage of 45,000 km,
including 5,600 complete lane change records.

The dataset includes data information such as time t ,
vehicle ID, vehicle ordinates, lateral and longitudinal speed
etc., which can fully meet the requirements of this paper.
It also provides complete surrounding vehicle information
and vehicle interaction information, for example, surrounding
vehicle IDs, TTC, THW, etc.

B. DATA PREPROCESSING
As mentioned above, the dataset is collected with a
UAV located directly above the road segment. Due to
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FIGURE 2. Schematic diagram of sliding time window sampling method.

the rotation and movement of the UAV, the data set has
some measurement noise. For the purpose of improving the
data quality, a symmetrical exponentially weighted moving
average (EWMA) filter is adopted to smooth the noisy raw
data.

The method is shown as follows [14]:

x̄α(ti) =

I+D∑
k=i−D

xα(tk )e−
|i−k|
1

I+D∑
k=i−D

e−
|i−k|
1

(1)

where x̄α(ti) denotes the filtered value at time ti, D denotes
sliding time window length and 1 denotes the average of
sliding time window.

Theweightedmoving average (WMA) refers to themethod
of assigning larger weight to recent data and less weight
to past data. In this paper, the recent observations have a
greater impact on the predicted value (PV), hence being able
to reflect the trend better. The EWMAmethod means that the
weighting coefficient of each value decreases exponentially
with time.

After smoothing, a typical vehicle (id= 1-13) trajectory is
presented in Figure 3(a), while the smoothing effect of vehicle
speed (id=1-13) and angular velocity (id= 1-13) is presented
in Figure 3(b), (c). As can be noticed fromFigure 3 (a) and (c),
both the Savitzky-Golay method and the EWMAmethod can
better reflect the natural trajectory. Therefore, considering
the filtering effect and hardware resource consumption, the
EWMA method is adopted to smooth the vehicle trajectory,
velocity, and angular velocity.

For the intention recognition module, the extracted trajec-
tory segments need to be divided into three categories: left
lane change, right lane change, and non-lane change, and then
corresponding labels are attached respectively [19].

As shown in Figure 2, the intersection of the vehicle tra-
jectory and the lane line is defined as the lane change point.

Once the lane change point has been determined, the start-
point and end-point of the lane changing process can be
determined by calculating the heading angle θ of the vehicle.

FIGURE 3. Filtering effect of (a) trajectory (b) angular velocity (c) velocity.

Among that, the heading angle θ can be defined as follows:

θ (t) = arctan(
x(t) − x(t−3)

y(t) − y(t−3)
) (2)

where (x, y) are the coordinates of the vehicle.
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FIGURE 4. LSTM cell structure.

Traverse all the heading angle θ from the lane changing
point along both sides of the timeline. If |θ | ≤ θe (where θe is
the threshold of the end heading angle for lane change) three
times continuous, the point that reaches the threshold for the
first time is defined as the end-point. If |θ | ≥ θs (where θs
is the threshold of the initial heading angle for lane change)
three times continuous, the point that reaches the threshold
for the first time is defined as the start-point.

To make full use of the data, the sliding time window
segmentation method is employed to process the vehicle
trajectory segments with equal length [20], the time window
length is TP, the sampling frequency is 25Hz, and the number
of sampling points is n = 25 · Tp.
Since the total number of lane change trajectories is

far less than that of non-lane change trajectories, random
down-sampling is used to reduce the number of non-lane
change trajectories. Finally, the number of left lane change,
non-lane change, and right lane change data segments are
32828, 26419 and 10614, respectively. The three types of data
and corresponding labels are randomly sorted as an entire
data set, which is then divided into training set, validation
set and test set according to the proportion of 70%, 15%
and 15%.

III. VEHICLE LANE CHANGE INTENTION
RECOGNITION MODEL
A. RESIDUAL MULTI-BILSTM NETWORK STRUCTURE
1) LSTM NETWORK STRUCTURE
LSTM is a special kind of recurrent neural network (RNN).
LSTM overcomes the problems of gradient vanishing and
exploding gradients in long-time sequence training [21],
hence having better performance in long-time sequence
training.

The structure of a single LSTM unit is shown in Figure 4.
The calculation process of an LSTM unit is as follows:

ft = σ (Wf · [xt , ht−1]+ bf )

it = σ (Wi · [xt , ht−1]+ bi)

ot = σ (Wo · [xt , ht−1]+ bo)

FIGURE 5. Multi-layer LSTM structure.

FIGURE 6. Multi-Bi-LSTM structure.

c̃t = tahn(Wc · [xt , ht−1]+ bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct ) (3)

where � denotes the dot product, σ (·) denotes the sigmoid
function.

Among them, ft is the forget gate, which activates the
current input state xt and the incoming hidden state ht−1 of
the previous layer unit through the sigmoid function; it is the
input gate, which activates the current input state xt and the
previous layer unit through the sigmoid function and passes
in the hidden state ht−1, but its weight Wc is different from
the forget gate weightWf . The input gate it selects the current
layer information c̃t as a new memory to add to the current
memory state ct , ot denotes the output gate, outputting the
hidden state ht of the current layer.

2) MULTI-BILSTM NETWORK STRUCTURE
As is shown in Figure 5, the Multi-LSTM refers to a network
structure formed by stacking layers of LSTM. Comparedwith
the traditional single layer LSTM, Multi-LSTM structure can
significantly increase the nonlinear components and hence
improve generalization ability and robustness [14].

The BiLSTM network consists of two sub-layers: the
forward LSTM (FW LSTM) layer and the backward
LSTM (BW LSTM) layer. Unlike the traditional LSTM
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FIGURE 7. Schematic diagram of Residual block.

FIGURE 8. Schematic diagram of BN algorithm.

neural network backward propagation method, the BiLSTM
network has bidirectional characteristics so that it can effec-
tively use the past features through BW LSTM and future
features through FW LSTM. BiLSTM can help solving
long-term dependency problems and improve prediction
accuracy by establishing two-way connections in neural
networks [22]–[24]. The BiLSTM structure is shown in
Figure 6. The final output of the forward and reverse LSTM
units is concatenated as follows:

(hfwt , c
fw
t ) = LSTM (et , ht−1, ct−1) (4)

(hbwt−th , c
bw
t−th ) = LSTM (et−th , ht−th+1, ct−th+1) (5)

ht = concat(hfwt , h
bw
t ) (6)

3) RESIDUAL BLOCK
Due to the deepening and increasing complexity of the net-
work, the learning efficiency shall be reduced, hence making
the accuracy not being effectively improved [25].

FIGURE 9. Training process with BN algorithm and residual block (a) loss
(b) accuracy.

FIGURE 10. Schematic diagram of attention mechanism.

Inspired by Resnet [26], to solve the optimization bot-
tleneck problem, this paper adds a Residual Block to the
MBi-LSTM structure. As is shown in the Figure 7, The final
output of the l-th residual block can be written as follows:

r lt = hl−1t + hlt (7)

where hlt represents the hidden state of the l-th BiLSTM layer.

B. BATCH NORMALIZATION ALGORITHM
Batch Normalization (BN) [27] is an algorithm that speeds up
the training process by fixing the distribution of layer inputs
and reducing internal covariate shifts. The BN layer has
trainable weights that normalize the layer output by setting
the mean to 0 and the variance to 1. The standardization
process is shown in Figure 8. The calculation process can be
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FIGURE 11. Schematic diagram of driver lane change Intention
recognition based on attention enhanced residual-MBi-LSTM Network.

TABLE 1. Main parameters of vehicle lane change process.

constructed as follow:

x̂ki =
xki − E(xi)
√
δ(xi)

(8)

where x̂ki denotes the i-th row (dimension of the input vector)
the k-th column (order in the mini-batch) of normalized input
value; xki denotes the i-th row and the k-th column of the origi-
nal value, E(xi) denotes the batch data mean, δ(xi) denotes the
batch data variance.

After normalization, xi is restricted to a normal dis-
tribution, which reduces the performance of the network.
Therefore, a scale transformation factor γ and an offset trans-
formation factor β are introduced as follows:

yki = γ
k
i · x̂

k
i + β

k
i (9)

The training process after introducing the residual block
and BN algorithm is shown in Figure 9. Figure 9 (a) is the loss
of the training process, while Figure 9 (b) is the accuracy of
the training process. As shown in Figure 9, after introducing
the residual block and adopting the BN algorithm, the loss
decreases more rapidly during the first several training itera-
tions, hence making the model converges faster.

C. ATTENTION MECHANISM
For a long time series, the importance of different data in
different time frames are usually unequal. In order to allocate

the weight of data in different time frames, a soft attention
mechanism [28] is introduced.

The structure of the soft attention mechanism is presented
in Figure 10.

As shown in the figure, h′ is the output of the
MBi-LSMT network with residual block, where h′ =
{h′1, h

′

2, · · · h
′

n−1, h
′
n}., st denotes the importance of the t-th

time frame. The calculation process can be constructed as
follows:

st = Us tanh(WxsEt +Wosh′t + bs)+ bus (10)

where Us,Wxs,Wos are the learned weight matrixes; bs,
bus are the bias vectors; Et denotes the spatiotemporal fea-
ture input; while h′t denotes the spatiotemporal information
extracted by the MBi-LSMT network with residual block.
The importance value of k-th frame is calculated as:

αt =
est

k∑
i=1

esi
(11)

The importance value αt is the attention weight, and the
larger αt is, the more important the frame data is.

The final output can be calculated as follow:

h
′′

t = αt � h
′
t (12)

The weights of the final output will be assigned by data
frame importance, not equal weight output.

D. DRIVER LANE CHANGE INTENTION RECOGNITION
BASED ON ATTENTION ENHANCED
RESIDUAL-MBI-LSTM NETWORK
This paper proposes an attention-enhanced bidirectional
multi-layer residual long short-term memory neural network
lane-changing intention recognition model, whose structure
is presented in the Figure 11. The model consists of data
preprocessing layer, input layer, residual-MBi-LSTM layer,
soft-attention layer, Softmax layer, and output layer.

Table 1 shows the main parameters [29], [30]. while con-
sidering the motion parameters of ego-vehicle, surrounding
vehicles, especially the vehicle in front of the ego-vehicle,
have a significant impact on the driving intention and driving
trajectory of the ego-vehicle [31], [32]. Therefore, the relative
distance Dref _cf and relative speed Vref _cf of the ego vehicle
and the preceding vehicle are considered.

Dref _cf = Dref − Dcf (13)

Vref _cf = Vref − Vcf (14)

where Dref ,Dcf are the absolute coordinates of the ego-
vehicle and the preceding vehicle, respectively; Vref ,Vcf
are the speeds of the ego-vehicle and the preceding car,
respectively.

The model input parameters are constructed as follows:

E = [et−th , · · ·, et−1, et ] (15)
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FIGURE 12. The relationship between model recognitionaccuracy and
time step.

FIGURE 13. The relationship between model recognition accuracy and
the number of Bi-LSTM layers.

where et is the characteristic parameter of vehicle lane
change, and th is the length of the selected time series.

Where:

et = (x t , yt , vtx , v
t
y, a

t
x , a

t
y, θ

t , ωt ,Dtref _cf ,V
t
ref _cf ) (16)

If there is no preceding vehicle, the corresponding virtual
vehicle shall be populated, with its relative speed set to 0 and
the relative distance set to 420-x (420 is the distance of a
sector) [16].
c = (c1, c2, c3) is the lane-changing intention vector,

c1, c2, c3 represents the three categories of driving intention:
left lane change, non-lane change and right lane change;
� = {ω1, ω2, ω3} is the probability vector of the three driving
intentions. ω1, ω2, ω3 is the probability of the three driving
intentions. The model output is:

ωi = P(ci,/E), i = (1, 2, 3) (17)

The data preprocessing layer is used to collect data and
filter the data; the first layer of Bi-LSTM is used to extract
vehicle lane change features, then the extracted lane change
features are sent to the intent recognition neural network
(Bi-LSTM layer2,3,4). The intention recognition neural net-
work analyzes the temporal connection between the lane
change features. After that, these features are sent to the
attention layer, which assigns weights to data in different
time frames. Finally, through the fully-connected (FC) layer,
a Softmax function is used to calculate the probability of three
driving intentions, namely the probability of left lane change
and non-lane change, right lane change.

FIGURE 14. Model training process.

IV. INFLUENCE OF NETWORK STRUCTURE
A. THE RELATIONSHIP BETWEEN MODEL RECOGNITION
ACCURACY AND TIME STEP
Figure 12 shows the relevance between the recognition accu-
racy and the time step. When the time step is no less than
0.4s, the proposedmodel has good accuracy for lane changing
intention. The overall accuracy of driving intent recognition
reaches the best when the time step equals to 0.4s. Therefore,
the time step of the driving intent recognition model pro-
posed in this paper equals to 0.4s. When the value of ttime
step is too small, too few features will be excavated by the
MBi-LSTM layer, hence resulting in the lane change inten-
tion easily affected by random interference. When the time
step is less than 0.3s, the accuracy drops significantly; that
is because, when the time step is too long, MBi-LSTM tends
to give higher weight to the later extracted features, hence
misidentifying the lane change intention as non-lane change
intention.

B. THE RELATIONSHIP BETWEEN MODEL RECOGNITION
ACCURACY AND THE NUMBER OF BI-LSTM LAYERS
The performances of Bi-LSTM with different layers are
compared to determine the optimal number of layers. The
relevance between the accuracy and the number of Bi-LSTM
layers is shown in Figure 13. As can be noticed from
Figure 13, when layers are greater than three, the MBi-LSTM
model has an optimization bottleneck. The recognition accu-
racy first decreases slightly, then remains unchanged; when
layers are no more than three, the prediction accuracy
of the MBi-LSTM model increases with the number of
layers.

Since Residual MBi-LSTM can solve the optimization
bottleneck and gradient disappearance problem, after intro-
ducing the residual block structure, the recognition accuracy
still keeps increasing even when layers are greater than three.
Suppose the number of layers is too small, the lane-changing
intention recognition model cannot fully extract the intention,
resulting in the lane-changing intention being easily affected
by random interference, causing a relatively lower accuracy.
Considering the recognition accuracy and prediction time-
consuming, a four-layer network structure is adopted in this
paper.
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TABLE 2. Model performance comparison table.

V. MODEL TRAINING PROCESS
The model loss function is multi-class cross-entropy:

Loss = −
1

batch_size

batch_size∑
j=1

n∑
i=1

yji log ŷji (18)

where yji denotes the true distribution, ŷji denotes the pre-
diction distribution, n denotes the total number of label
categories.

The SGD algorithm is used in order to train the model.
After 12 epochs, Loss and accuracy gradually converge. The
training process curves are shown in Figure 14.

VI. EXPERIMENTAL VERIFICATION
To verify the performance of the driver lane change intention
recognition method we proposed, ablation experiments to test
the influence of Attention mechanism, bidirectional charac-
teristics and residual block, together with other performance
tests were conducted. Finally, hardware-in-loop simulation
experiments are also carried out to test the performance of
our model.

A. TEST AND ABLATION EXPERIMENT
Because of the imbalance of the dataset, the actual perfor-
mance of the classifier cannot be accurately reflected by the
accuracy rate. Therefore, two metrics widely used for imbal-
anced multi-classification problems [35], Balanced Accuracy
and F1-score, are introduced. Moreover, recall rate is used in
this paper as another important evaluation criterion [36].

Balanced Accuracy =
TPR+ TNR

2
(19)

where:

TPR =
TP

TP+ FP
(20)

TNR =
TN

TN + FP
(21)

Recall =
TP

TP+ FN
(22)

precision =
TP

TP+ FP
(23)

F1-score =
(1+ β2)× Precison× Recall
Precison+ β2 × Recall

(24)

where, the parament β = 1.

FIGURE 15. Confusion matrix.

For the purpose of demonstrating the advantages of the
proposedmodel, in this paper, we compared it with four state-
of-the-art models. It is worth noting that all modelsmentioned
above are conducted on the HighD data set. In order to
ensure the fairness of the model comparison, AT-GRU based
model proposed by Guo et al. [17], Multi-LSTM basedmodel
proposed by Tang et al. [14] and our model were tested on
the HighD test set, the results were compared with those of
DCIE [33] and basic LSTM [13] claimed in the cited liter-
atures. The model performance comparison result is shown
in Table 2.

Liu et al. [33] proposed the driver characteristic and inten-
tion (DCIE) based on the dynamic bayesian network (DBN).
In DCIE, the driver characteristic recognition module and
lane changing intention identification module are cascaded.
In other words, the accuracy of the lane changing intention
recognition will be affected by the accuracy of the driver char-
acteristic recognition, hence resulting in lower recognition
accuracy.

Similar to our method, Tang et al. [14] also employed the
LSTM to model the lane changing behaviors. However, the
proposed method ignores the weight allocation issues of data
in different time frames. consequently, lane changing inten-
tion can only be identified after significant lateral movement.
From the basic mechanism of the LSTM, Suzuki et al. [15]
explained this limitation. The weight allocation mechanism
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FIGURE 16. Receiver operating characteristic curve of (a) left lane change
(b) non-lane change (c) right lane change.

of an LSTM network always tends to allocate higher weights
to the variables which are close to the event, while variables
far away from the event shall receive a tremendous penalty,
hence inhibiting the model from predicting long-term lane
changing intentions in advance.

The same limitation also happens in the studies of Xie et al.
Similar to the method of Tang et al., Xie et al. [13] adopt
an LSTM network to realize intention recognition, and the
accuracy of lane changing intention recognition was higher
than 99%. However, their experimental setup is tricky. In their
model, 5 seconds data before the lane changing time is used
as the model input. That is to say, their model was unable to
understand lane changing intention until the vehicle is about

FIGURE 17. Schematic of hardware-in-Loop platform.

FIGURE 18. Hardware-in-Loop platform.

to crosse the lane markings. Though the highest accuracy, it’s
obvious that their model fails to give a timely warning.

Hao et al. [34], Solves the above problems by intro-
ducing an attention mechanism. However, the single-layer
GRU is still facing optimization bottlenecks, which limits the
improvement of recognition accuracy.

In summary, the model proposed has good identifica-
tion accuracy (98.01%), which is adequate with the four
mentioned state-of-art models. The recognition accuracy is
further improved by introducing the residual mechanism.
By taking advantage of the soft attention mechanism,
the proposed model can identify lane changing inten-
tions 2.196 seconds before lane changing time on average,
indicating the timeliness of the proposed model.

To visualize the data, the recognition results are plotted
as a confusion matrix as shown in Figure 15. Combining
Table 2 and Figure 15, it can be seen that our method has
good lane-changing intention recognition accuracy.

In this paper, ablation experiments and Receiver Operating
Characteristic curve (ROC) are used to test the influence
of the attention mechanism, residual block and bidirectional
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FIGURE 19. The definition of TTCL time.

FIGURE 20. Trajectory of vehicle id 11.

FIGURE 21. The relationship between lane change intention and TTCL
time of vehicle id 11.

characteristics. The area under the ROC curve is defined as
the AUC area. The closer the AUC region is to 1, the better
the performance of the classifier.

As can be seen from Figure 16 (a) (b) (c), the performance
of theMBi-LSTM classifier has a greater increase than that of
the single-layer LSTM. In the three cases, the AUC increased
by 6.6%, 9.17%, and 6.93%, respectively. That is, both the
Multi structure and the bidirectional characteristics structure
have greatly improved the recognition accuracy of the model.
This is mainly because there are many dynamic time-varying
factors that affect the vehicle lane change process, the reces-
sive factors, such as the driver’s Driving intent or incorrect
operation, etc., are difficult to analyze [37], compared with

single-layer LSTM, MBi-LSTM has more ability to infer
driver intention from context information.

At the same time, the residual block structure, which can
solve the gradient disappearance and optimization bottle-
neck problems of deep neural networks, improved the AUC
by 1.04%, 0.03%, and 0.98%, respectively, compared with
MBi-LSTM.

B. HARDWARE-IN-LOOP SIMULATION EXPERIMENTS
AND CASE ANALYSIS
The hardware-in-the-loop (HIL) platform is shown in the
Figure 17 and 18. The system consists of a force feedback
steering wheel, brake and throttle pedals, screen, Matlab
Simulink software, Carsim software and industrial personal
computer (IPC).

In the HIL system, Carsim RT dynamic Vehicle software
generates virtual animation scenes projected onto a large
screen. The IPC collects the states of the brake, throttle pedals
and the force feedback steering wheel in real-time at a sam-
pling rate of 25 Hz and feeds it to the intention recognition
model running on the IPC.

The HIL experiment was performed on a highway with
a test road of 5 km. The test road was a two-way six-lane
road with a lane width of 3.75m, and there was an isolation
fence in the middle of the road. The minimum speed limit
and the maximum speed limit are 60km/h and 120km/h,
respectively.

Before the experiment, each participant was asked to take
a test drive to fully understand the HIL system. In the exper-
iment, participants were asked to drive freely in the middle
lane. When participants see an obstacle vehicle, they are free
to choose between changing lanes or keeping lanes. In each
experiment, the driver was required to perform at least five
lane changes at any position. The test was repeated four
times. This experiment also minimizes the learning effect by
adjusting the position of obstacle vehicles.

As shown in Figure 19, the time to change lane (TTCL)
is defined as the time interval from the current location of
the lane-changing vehicle to the vehicle center’s arrival at the
lane line. The earlier the vehicle cut-in intention is identified,
the better the vehicle’s decision-making [38].

The lane-changing process of vehicle id11 is shown in
Figure 20. In which, the ego-vehicle passes the slow-moving
truck ahead from the left lane. The lane change intention
during the overtaking process is shown in Figure 21, the left
lane-changing intention of the ego vehicle has been detected
at 1t = 2.5s, where the probability of left lane change
intention ω1 = 54.17%, slightly exceeds that of non-lane
change. The left lane change intention reaches its peak ω1 =

99.91% at 1t = 1.5s, after that the probability of left lane
change intention decreases slightly, but still remains above
the threshold.

Across all simulation experiments, our model can iden-
tify driver intention on an average of 2.07 seconds before
lane changing time, proving the practical value of our
method.
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VII. CONCLUSION
1) A driver lane change intention recognition method based
on attention enhanced residual-MBi-LSTM is proposed in
this paper. The introduction of a bidirectional, Multi-layer
structure, attention mechanism and residual block, can
help solve long-term dependence problem, optimization
bottleneck and adjust information weight distribution, hence
ameliorating the model’s recognition accuracy.

2) This model was trained and tested on the HighD dataset.
The results show that our method has a balanced accuracy
rate of higher than 98.01% for the recognition of three types
of driving intentions.

3) Based on the simulation experiments conducted in the
hardware-in-loop platform, our method can identify driver
intention on an average of 2.07 seconds in advance.
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