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ABSTRACT As the Internet of Things (IoT) technology advances, billions of multidisciplinary smart
devices act in concert, rarely requiring human intervention, posing significant challenges in supporting
trusted computing and user privacy, as well as protecting against attacks such as spoofing, denial of service
(DoS), jamming, and eavesdropping. To tackle attacks on the IoT and cyber-physical ecosystem, many
intrusion detection and security approaches have been presented in the literature. Machine learning (ML)
based intrusion and anomaly detection has lately gained traction due to its capacity to cope with encrypted
and rapidly developing threat techniques. This work investigates into machine learning (ML) and deep
learning (DL) methodologies for IoT device security and examine the benefits, drawbacks, and potential.
To protect an IoT infrastructure, various solutions look into hardware-based methods for ML-based IoT
authentication, access control, secure offloading, and malware detection schemes. This review aims to
illuminate the value of various approaches for addressing IoT security in a truly effective, flexible, and
seamless manner, as well as to provide answers to questions about tradeoffs in integrating accelerators and
customizing embedded device architectures for effective use of ML-based methods.

INDEX TERMS AI-based IoT security, hardware-based machine learning, IoT intrusion detection, trusted
embedded devices.

I. INTRODUCTION
To ensure end-to-end secure cyberphysical systems with
Internet-of-Things (IoT) infrastructures, one important
parameter ignored till recently, necessitates the integration
of a substantial level of cyber protection of IoT end devices,
namely, of the microcontroller units (MCUs) and their inter-
connection networks [1]–[5]. To tackle software and hard-
ware threats, modern embedded Systems-on-Chip (SoCs) are
designed considering compliance with the requirements of
the ARMTrusted Base System architecture [6], i.e., base SoC
isolation, cryptography trusted boot, and debug protection.
ARM TrustZone hardware organization is used to isolate
the target application from other applications at runtime by
providing a partitioning of internal and external memory into
trusted and non-trusted worlds. By leveraging this princi-
ple, numerous typical security features for IoT connected
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devices are fulfilled, such as secure boot, secure firmware
installation, cryptographic accelerators, secure data storage
and secure firmware update [7]. Additional protection of
applications and data on such devices includes several tech-
niques ranging from software to specialized circuitry, such as
emerging instruction set extensions, ARM’s Branch Target
Identification (BTI) and Memory Tagging Extension (MTE)
to mitigate memory-related security bugs [8], [9]. It is equally
of growing concern to ensure built-in active tamper detection,
by reducing the vulnerability surface of encryption of sym-
metric accelerators (e.g., AES) and asymmetric public-key
accelerators (PKA) against attacks with side-channel analysis
(SCA), secure hardware and independent keys for persistent
data storage. Additionally, security countermeasures may
also support internal monitoring of perturbation attacks to
erase secret data, according to PCI security standards coun-
cil requirements for end-point applications and data [10].
Attestation along with Hardware Security Managers (HSM)
and Physically Unclonable Functions (PUF) have also been
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proposed for integrity protection [11]–[13]. HSM units are
employed to orchestrate not only the key distribution, but
also cryptography related operations such as authentication,
cryptography-based trusted boot and debug protection.More-
over, security strategies extend beyond hardware design pro-
tection (e.g., against the insertion of hardware Trojans during
the production phase, through netlist obfuscation provided by
logic locking) through firmware and operating system layers,
such as various secure, trusted, and verified microkernel
architectures [14].

Nonetheless, IoT devices aremostly restricted devices with
inadequate tamper-resistant and tamper-detection methods,
allowing connected devices to leak personal data, for exam-
ple, by allowing modified firmware to access authentica-
tion credentials. With the rapid proliferation of Internet of
Things (IoT) devices and cloud systems, most cyber-physical
systems’ quickly increasing attack surface can scarcely keep
attacks from multiplying in quantity and sophistication,
as seen in Fig 1. IoT-enabled cyber-physical systems (CPSs)
in factories, smart grids, and automobiles now have a vari-
ety of communication interfaces, remote monitoring, and
software-over-the-air administration capabilities [2], [15].
In essence, Industrial IoT (IIoT) networks have a broad attack
surface, making a covert channel more difficult to detect.
As a result, most intrusion detection and prevention systems
(IDS/IPS) rely on signature originality or signatures that have
not been tampered with. Meanwhile, traditional IT network
isolation is no longer feasible for IIoT networks. This is due
to cautious malware design with obfuscation, or attempts
to probe or otherwise manipulate devices and network, can
easily bypass signature-based IDS which use matching pat-
terns. Smarter and more advanced boundary control and
auditing of access in needed against the trust boundaries of
IIoT networks [16]. To address such challenges, artificial
intelligence (AI) is promising effective solutions pertaining
to security.

Essentially, security becomes increasingly complex as the
attack surface of computing things increases. Because of the
restricted things resources available, key concepts and com-
mon security mechanisms may need to be shared throughout
layers of security solutions for each one [20]–[23]. Even
the integration of micro-architectural features in the lat-
est processors may extend the scope for new side-channel
attacks. Performance counters, for example, can indicate
branch misses events to aid successful attacks on asymmetric
ciphers like RSA, as demonstrated recently [24]. Meanwhile,
hostile attackers are becoming more sophisticated, frequent,
and automated, even using AI-based approaches to automate
IoT security breaches and enable more successful but also
less detectable attacks [25], [26]. For instance, recent devel-
opments reveal machine learning framework for side-channel
attacks on asymmetric cryptography, such as RSA and ECC,
that analyzes leakage in multiple side-channel traces, iden-
tifying the best trace for key retrieval on a 32-bit ARM
Cortex-M4 microcontroller [27].

A. MACHINE LEARNING FOR IoT SECURITY
Fundamentally, using machine learning methodologies
involves a threefold scope, (i) to facilitate an effective attack
against an IoT infrastructure by exploiting a hardware, soft-
ware or network vulnerability; (ii) to establish a robust and
automated detection and protection system against malware,
side-channel threats, fault attacks, and other threats; and
(iii) to create the need to implement countermeasures against
adversaries to the ML-based techniques themselves.

Machine learning and deep learning algorithms are rapidly
being used in cybersecurity applications such as intrusion
and virus detection, user authentication (e.g., biometrics),
and user privacy. These advanced learning methods may
be used to evaluate and learn from underlying IoT data in
order to enhance threat assessment and attack detection, and
thereby identify breaches in the IoT ecosystem. Deep learn-
ing approaches that adapt and evolve at the same time can
not avoid sophisticated threats like entity or object profil-
ing, as well as possible interdependent vulnerabilities and
exploits. Deep learning can significantly change the cyber-
security landscape. For example, to improve traditional tech-
niques that use pattern-matching to detect malware, such as
by using register values and states to identify original identity
of industrial embedded devices [28]. These pattern matching
solutions can barely match the increasing rate of new attacks
and variants. Sophisticated malware has been able to bypass
or infiltrate network and end-point detection strategies, thus
continously sporting significant cyber-attacks. Additionally,
a huge number of IoT devices are lacking in processing
power and storage capacity to run security solutions and
maintain databases of threat and malware signatures to pro-
tect them against threats. On top, even detection methods
based on observing anomalies present weaknesses, since
activities which users rarely perform may also be classi-
fied as an anomaly [29]. In this scope, deep learning can
be leveraged to learn and evolve new defense mechanisms
using all available data and address the growing cybersecurity
challenge [30], [31].

Essentially, pertaining to security of IoT devices and net-
works, the emerging ML and DNN techniques and branches
(e.g., reinforcement learning (RL), Long short term mem-
ory (LSTM), generative adversarial network (GAN)) bring
the following benefits.
• Machine learning methods help in automated threat
detection and prevention by addressing complexity of
modeling an indefinite space of malicious behaviours,
and by integrating analysis, detection and protection
systems.

• Machine learning methods can manage huge number of
devices, to navigate their firmware updates and security
patches; AI-driven policy and update management can
help for firmware updates and patches to apply in all
devices in a timely fashion.

• Machine learning for cybersecurity is scalable-
independent as it makes it possible for a system to
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FIGURE 1. Threat model involving a wide spectrum of attacks spreading mainly in IoT authentication, access control, secure offloading, and
malware detection, in IoT infrastructures facilitating integration between the physical world and computer communication networks, and
applications (apps) [17]–[19].

learn by its own experience as it grows and self-tune
to become increasingly efficient and effective.

These advantages, especially, are more valuable in view
of combining ML and DNN methods with the increased
difficulty to tamper hardware-based techniques. As the secu-
rity of modern embedded computing devices raises extensive
concerns, hardware-based monitors and countermeasures
offer increased guarantees when developed and deployed
to thwart various cyber attacks. Moreover, hardware-based
detection techniques require smaller overhead for resource
and latency compared to the software-based counterparts.
Several such techniques heavily utilize machine learn-
ing (ML) techniques [32]–[34], thus attempting to raise a
strong defense umbrella against the numerous threats and
attacks. However, the landscape of securing IoT environ-
ments using ML methods includes numerous challenges,
stemming from the subtle attributes of the various attacks,1

combined with software and hardware circuitry complexity
with security-weak surfaces. This marriage of ML algorithms
with secure- and trusted- conscious methods, spanning hard-
ware and software layers, is proving to grow as a two-edged
sword in IoT environments [35], as analyzed next in this
article.

B. RELATED SURVEYS
Prior works provide surveys that deliver insight into several
related topics, without delivering though a unified, compre-
hensive view on modern research efforts in ML and DNN
methods combined with microarchitectural techniques for
secure and trusted edge computing. Table 1 summarizes dis-
tinctive surveys on secure architectures for trusted computa-
tions, on advancements on machine learning practices in IoT

1for example, beyond common malware, rootkit attacks may opt for code
injection, function pointer hooking, direct kernel object manipulation.

and on the intersection between intrusion detection, between
hardware acceleration methods of machine learning and on
emerging IoT infrastructures.

To the best of my knowledge, this investigation work
is a systematic comprehensive review that analyzes differ-
ent strategies and presents the effectiveness and practical
perspectives of machine learning powered methods assisted
by hardware techniques and accelerators for the security
of IoT devices and systems. In particular, we discuss these
techniques, their merits and drawbacks, summarize strengths
and weaknesses in hardware-based ML domain for intrusion
detection research and suggest future research challenges.
The aim of this work is, first, to showcase if the the gap
between the capabilities of machine learning (ML) and deep
learning (DL) and the requirements of the IoT resource-
constrainted environment can be effectively bridged. This
analysis is balanced against today’s and emerging cutting-
edge microarchitectural advancements, with a view towards
addressing the security challenges of the IoT ecosystems.
Figure 2 shows the concepts, dimensions investigated in
this article, with particular focus on prominent hardware
solutions that leverage ML methods towards securing IoT
devices.

The rest of the paper is organized as follows. Section II
discusses anomaly detection for IoT devices and ecosys-
tem. Section III surveys the literature ML-based hardware
methods for security investigating the marriage between ML
for systems protection and especially forensics for IoT sys-
tems. Section IV reviews and analyzes research and indus-
trial techniques for enhancing IoT security at the edge while
bringing ML and DL in support as well. Then, section V
provides insight on the effectiveness of the various trends
and techniques and identify research gaps that deserve further
research efforts. Section VI presents conclusions and sug-
gests future research directions.
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TABLE 1. Background research contributions presenting surveys, analyses, taxonomies and future perspectives.

FIGURE 2. Security objectives and ML methods explored in the scope of
enabling efficient use of hardware and software techniques for secure IoT
infrastructures.

II. ANOMALY DETECTION IN IoT EMBEDDED SYSTEMS,
CHALLENGES AND OPPORTUNITIES
Anomaly detectionmethods are developed tomitigate various
threats, such as false data injection attacks, denial of ser-
vice, or compromised firmware, in different Cyber-Physical
Systems (CPSs) domains. This is increasingly important in
industrial IoT infrastructures, due to serious and wide impact
as shown in Figure 3; especially today, with modern IoT
multi-core integrated devices that provide rich functionalities
but also wide attack surface, including device, network and
cloud. Intrusion detection methods are mostly dedicated to
ensuring network communication security [39], but these
methods are undermined from IoT device heterogeneity and
the highly dynamic threat landscape against them.

FIGURE 3. Impact dimensions of threat model to IoT infrastructures.

Machine learning approaches do not rely on domain-
specific knowledge, but they usually require a large quantity
of labeled data through, for instance, classification-based
methods [50]. An inherent requirement to guarantee tamper-
resistant CPSs involves specification of accurate adversary
models, that is, (i) a complete specification of all known
attack vectors including risk assessment of identified attacks
(i.e., the likelihood of the attack and the impact of exploit-
ing each threat on the system) and, (ii) maintaining of this
attack database current. On the contrary, the key advan-
tage of behavior-based approaches based on unsupervised
techniques is that they do not focus on something specific.
Although these approaches can be susceptible to false posi-
tives, they are independent from any past knowledge of attack
methods and their impact. However, current anomaly-based
detection systems can hardly detect new types of attacks,
because they are designed either for specific applications,
or for limited environments. Thus, the defense capabil-
ity of existing security mechanisms can be mediocre, and
for instance, limited to specific distributed denial-of-service
(DDoS) attacks. As these attacks can spitefully diversify the
underlying protocol or the operationmethod, the fundamental
features of DDoS attacks should become the basis of any
detection method. Several research works focus on detecting
the attacks by using machine learning techniques [17], [40]
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and in IoT infrastructures [18]. Nonetheless, it is chal-
lenging to match the most successful detection technique
to the attributes of the attack surface of IoT infrastruc-
tures in a hollistic way, or in a specific-optimized way.
In this context, researchers have showed how to use even
twenty-three features to detect DDoS attacks using various
ML classifiers [51].

In addition to cyber-physical attacks, as it is not easy to
distinguish the cause of such an abnormal situation in a given
system, either a fault or an attack, detection and prevention
techniques should consider both interchangeably. Faults are
an abnormal state which might lead to errors or failure of
the system, including permanent, transient, or intermittent,
raising important concerns and defenses in industry [52],
automotive [53] and medical [54] domains. Physical defects
in the sensors, inside the chip, or concurrent attacks to the IoT
device can be a major cause of damage to the system.

IoT infrastructures are exploding in industry, automotive,
healthcare, while integrating different networks and differ-
ent devices which makes it a nearly unreachable target to
learn anomalous data that cause physical damage in view of
unknown attack vectors and attack techniques. Due to the
lack of anomalous data collections for training, ML-based
detectors can hardly provide high accuracy with an adverse
effect involving false alarms. Thus, there are limits to the
ability to generate anomalous data such as car accident data
and Cyber-physical System (CPS) faults in medicine.

Challenges for embedded devices in IoT infrastructures
mainly involve spatial and temporal relationships, devices
and data heterogeneity and labeled data shortage. Time-series
data generation, transmission (and even prediction [55],
or predicting of the future timestamp while avoiding a range
of anomalies such as point anomalies, contextual anomalies,
and discords in time series data [56]) are widely accepted
in several domains. In this scope, recurrent neural networks
(RNN) have been investigated and shown superior perfor-
mance for behavior modeling. Among them, the long short-
term memory (LSTM) emerged as an enhanced version
of RNN for deep anomaly detection framework for sens-
ing time-series data in Industrial IoT (IIoT) [35], while
some also using multi-dimensional sensor data fusion [57].
Several intrusion and attack recognition works [35], [58] have
demonstrated the efficiency of the RNN in terms of discov-
ering anomalies in an accurate and timely way. Even though
convolution neural networks (CNNs) are inpractical to cap-
ture sequential data representations, they have been leveraged
for intrusion detection due to their capability to extract spatial
features. By including parallelism techniques, temporal CNN
has been introduced and validated to be more efficient over
the CNN since temporal convolutional network (TCN) can
learn windowed temporal dependencies over long spans more
convincingly [59]. Additionally, TCN exhibits improved per-
formance compared to LSTM in many sequence problems,
while at the same time, RNNs design is more complex
compared to TCN. Unsupervised and supervised learning
(i.e., deep learning with random forest) can be combined in

evenmore sophisticatedways to provide the ability to adapt to
assault patterns with rapid changes. With the extremely large
trust boundaries of IIoT networks, such joined strategy can
enable automatic updating of the detection engine knowledge
base, thus, protecting trust boundaries of IIoT networks from
zero day attacks [60].

In principle, to defend the network, all of the ML-based
approaches listed above work at the host level. However,
malicious programs operating on IoT devices, as well as wire-
less attacks, necessitate edge security countermeasures that
are strengthened with machine learning approaches. Further-
more, because the trust boundary incorporates all of these ele-
ments, solutions at the edge level should be harmonized with
typical conventional protection techniques that are already in
use on cloud and SCADA servers, as well as databases. These
conventional protection schemesmay includemonitoring and
logging systems, remote access and anonymization control,
and smart configuration and changes management.

III. HARDWARE-ASSISTED ML FOR SECURITY
Essentially, an IoT device is mandatory to be secured through
a chain of trust. This chain is developed when an IoT device
boots up only if cryptographically signed code components
are first executed. These software components include boot-
loaders, kernel and kernel extensions, all the way from boot-
loader to userspace. For signing the software components, a
trusted entity is responsible to provide signatures by using
public-key cryptography. In particular, to establish secure
boot of the microcontroller, an authentic first piece of soft-
ware should be locked in a flash memory region sealed from
further programming and, should implement the digital signa-
ture check of the next piece of software. In addition, the keys
should be stored in specialized secure hardware to prevent
not only modification but also indirect or partial extraction.
The ultimate objective is to ensure a root of trust, essentially
meaning that the embedded system is unclonable. Trusted
paths, channels and secure communication connections
(e.g., via differentiated keys, two-way communication,
chained certificates) between secure signing entity, trusted
module and firmware components are built on the base of
authentication keys and their certificates. A secure embedded
system needs to satisfy all the security requirements that
involve the authenticity of the running software, the confi-
dentiality of permanently stored elements (keys and sensitive
data), and run-time state integrity.

All components of the system (i.e., components in the
hardware architecture), as well as executing software and
networking data, should be analyzed to find aberrant behav-
ior that suggests security violations in a computing sys-
tem. Without incorporating machine-learning algorithms, the
analysis and identification activities in this process pose
significant obstacles. A Network-based Intrusion Detection
System (NIDS) can monitor traffic and analyze packets,
hosts, and service flows to look for possible attacks in this
context. This procedure is divided into two parts: algo-
rithms for implementing effective inference techniques, such
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as machine learning, and model building for generating an
attack profile and classification for determining if the exam-
ined traffic is valid or vulnerable to attack.

The following sections aim to illustrate how current
research has tackled speeding up machine learning algo-
rithms to make them suitable for IoT devices, as well as
whether these specific acceleration approaches may be used
for security provisioning. Figure 4 shows the blending of
domains investigated in the remaining sections of this work.

FIGURE 4. Surveying of security and machine learning research methods
blending hardware and software techniques in IoT infrastructures.

A. ML AND DNN ACCELERATORS
Most research works in ML and DNN accelerators focus on
computer vision domain, biomedical signal processing, etc.
However, these works pave the way for integrations of such
accelerators also in securing IoT infrastructures, devices and
networks from anomalies.

Hardware accelerators typically are integrated to boost per-
formance of functions either in data centers or in embedded
edge-AI devices. These edge devices commonly are battery
powered and hence need to operate under constrained power
budgets, mostly under a five Watt roofline. Even though the
scale of work differs in edge-AI and data center paradigms,
both follow similar pathway to provide efficient solutions.
To improve computational throughput, most accelerators use
optimization strategies which involve reduced precision arith-
metic, or architectural-level enhancements, such as minimiz-
ing of data movement (through using in- or near-memory
computing) and increased parallelism.

In this context, researchers proposed architectural exten-
sions for DNN accelerators, Eyeriss v2 [61], by adding a
hierarchical mesh network-on-chip to limit the costly all-to-
all communication within local clusters. When processing
DNN sparse input, even in compressed form, this results in
a significant increase in throughput and energy efficiency.
Alternatively, to handle data sparsity in DNNs, ENVISION
proposes input guard memories and guard control units and
a dynamic-precision SIMD architecture providing energy-
precision scalability [62].

Research efforts to provide energy and intermittence-aware
DNN inference and training, developed the Neuro.ZERO
architecture, which is based on adaptive high-precision

fixed-point arithmetic to allow for accelerated run-time
embedded hardware performance [63]. Additional optimiza-
tions include tensor decomposition, pruning, and mixed-
precision data representation. These improvements are
mainly designed in hardware, based on neuro-inspired archi-
tectures, on CMOS, or with emerging memories.

Performance and energy-wise optimizations in DNN train-
ing have driven significant research towards investigating
different numerical formats. This trend is due to the fact
that microarchitectural operations on fixed-point and low-
precision floating-point logic (see Figure 5) are significantly
more efficient in terms of area and energy than full-precision
logic (e.g., 8-bit fixed-point addition is 30x more energy
efficient and 116x more area efficient than FP32 addi-
tion) [64], [65]. More recently, researchers have proposed
mixed-precision format for training by using hybrid Block
Floating-Point (HBFP) format, which uses 8-bit BFP for
tensors in the training operations (e.g., dot products, convo-
lutions), and FP32 for the remaining operations (e.g., activa-
tions, regularizations) [66].

FIGURE 5. Comparative energy and area cost for different precision for
45nm technology (adapted from [64], [65]).

The support of reduced precision has fueled the recent
trend in integrating DNNs also to platforms that are resource
and energy-constrained such as IoT devices. Different works
have shown various methods that scaled down arithmetic
precision to 16-bits and even to 1-bit to optimize computation
performance with minimal energy consumption [62], [67].
Contrary to early models (e.g., AlexNet, VGG) which use
large number of parameters and parameters proportion of
the full connection layers, modern techniques have since
become popular for building compact DNNs. The key idea
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of these techniques is mostly based on filter decomposi-
tion for images, as shown in Figure 6, and decomposition
and CNNs for time-series data [68]. These DNNs, such as
SqueezeNet [69] and MobileNet [70], make a perfect fit for
mobile devices and for anomaly detection in IoT monitor-
ing [68]. DNNs today have diversified in terms of shapes and
sizes that vary extensively.

FIGURE 6. Different filter decomposition solutions.

Machine learning accelerators with small footprint have
shown their benefits by achieving the combination of effi-
ciency (due to the small number of target algorithms) and
broad application scope [71]. In particular, an optimized neu-
ral functional unit (mostly in terms of memory management)
can achieve a speedup of 117.87× and an energy reduction of
21.08× over a 128-bit 2GHz SIMD core with a normal cache
hierarchy [71]. To optimize energy efficiency for mobile
devices use, Deep Neural Processing Units (DNPU) have
been proposed based on optimizing heterogeneous multi-core
architecture for both CNNs and RNNs [72]. Depending on
the attributes of each network, the memory architecture,
data paths, and processing elements are optimized for each
core. Additionally, custom separation of workload can give
reduced off-chip memory bandwidth needed in a CNN.
Regarding an RNN, extra multiplications are reduced via
quantization table-based techniques. Developers also adopt
a holistic design approach to provide low-power accelerators
for accurate DNN prediction for power-constrained IoT and
mobile devices, using a highly automated co-design method-
ology that incorporates insights and methodologies across
the algorithm, architecture, and circuit levels [73]. More-
over, researchers have advocated balancing the architecture in
terms of cost and returns for in-DRAM calculations to speed
up DNN in mobile contexts [74]. By optimizing the sys-
tolic array on a DRAM die returns include 1.7 times TOPS,
3.7 times TOPS/W, and 8.6 times TOPS/mm2 improvement
over a state-of-the–art mobile GPU accelerator, while the
power consumption reaches at most 4.4W.With the objective
of energy-efficiency and accuracy, researchers have devel-
oped both software and equivalent hardware implementation
for feature extraction engine and the Decision Tree classi-
fier [75]. As a result, they’ve proved that a hardware version

of the hash-based feature extraction engine uses just 5.7 per-
cent of the energy that the software version does. Lightweight
classification algorithms have been tested in IoT contexts
with time-series data, promising accuracy and scalability,
and outperforming the commonly used 1-nearest neighbor
with dynamic temporal warping [76]. Through use of fewer
parameters results in lower calculation costs, which is ideal
for real-time, hardware-assisted malware detection [32], [77].

In summary, a wide spectrum of prevailing techniques
have rapidly enabled a new landscape for edge computing
integrating ML and DNN-assisted processing.

B. ML-BASED METHODS FOR SYSTEM-ON-CHIP
PROTECTION
Broadly, to detect patterns of abnormal behavior, various
methods use memory image probing and analysis at the
OS level, due to flexibility and easy access. OS-level tech-
niques can be subject to software attacks (e.g., kernel rootk-
its may compromise the OS-level logging system), or even
hypervisor-level forensics solutions can be the attack tar-
get itself [78]. Hence, modern methods, which establish a
machine learning (ML)-based offline or runtime analysis,
have shifted the initial OS-level approach so that to rely
exclusively on data collected directly through the hardware.
The goal is to refrain from using a hypervisor or an OS, due
to credibility of the provided information, tampered by an
adversary.

1) ML-BASED METHODS FOR SYSTEM-ON-CHIP
PROTECTION FROM HARDWARE TROJANS
Hardware producers frequently outsource multiple elements
of their design and/or fabrication processes to keep up with
the rising interest for IoT devices and the globalization of
hardware fabrication. These methodologies allow harmful
circuits, such as Technology Trojans (HTs), to be inserted into
current Systems-on-Chip(SoCs) hardware, which is becom-
ing an increasingly serious concern [79], [80]. HTs may leak
encrypted information, degrade device performance or lead to
total destruction. HTs are usually divided into four categories:
(i) denial-of-service, (ii) function change, (iii) performance-
degradation, and (iv) information leakage. For instance, DNN
inference behavior can be successfully tampered at run-time
with deliberately degradation of the victim inference accu-
racy through memory-efficient rowhammering and precise
flipping of targeted bits [81].

Researchers primarily employ two fundamental detection
and defense techniques, (i) tackling side-channel attacks
via leaking of power/thermal/delay/optical/electromagnetic
information, and (ii) logic testing-based, by using key-
to-signature mechanisms and assuming the existence of a
‘‘golden model’’.

Early works used side-channel information for Trojan
identification such as analysis of the path delay to generate
a unique fingerprint that can be used to distinguish tampered
chips [82]. Based on ARMv7 microprocessor’s operating
frequency deviations, by integrating analog Trojan circuit it is
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shown to detect an extremely rare HT, triggered by successive
toggling events [83]. Additionally, the measurement of pro-
cess control monitors (PCMs) was combined with a machine
learning technique, a one-class Support Vector Machine
(SVM), to obtain a more precise categorization boundary in
identifying abusive behavior of circuits, which considerably
increased the efficiency and accuracy [84]. By reverse engi-
neering (RE), it is shown that recovered images can repre-
sent the physical structures and layout of the ICs, which are
classified based on support vector machines, particularly one-
class ν-SVM, to distinguish between random differences and
the systematic differences caused by Trojan insertion [85],
as shown in Figure 7. This means that the aim is to identify
Trojans while allowing for manufacturing and reverse engi-
neering process variances. These approaches can be paired
with the usage of Deep Convolutional Neural Networks with
intrinsic extraction of invariant and non-linear features to
overcome manual or domain-specific feature extraction [86].

FIGURE 7. Block diagram of one-class ν-SVM trojan detection approach.

Moreover, hardware Trojan activation is proved to be
successfully detected by comparison of power use between
Trojan clear and Trojan embedded benchmarks via using
machine learning techniques [87]. Also, by using random
forest classifier, recent works demonstrate how to extract
effective Trojan features from hardware-Trojan infected nets
in ICs [88]. Following a hybrid approach, researchers propose
to combine the signature extraction mechanism with machine
learning algorithms to develop a self–learning framework,
as depicted in Figure 8, that can detect the intruded inte-
grated circuits [89]. As this researh work shows, the decision
tree (DT) algorithm is the best among selected prediction
algorithms (i.e., decision tree from eager learning algo-
rithms, bayesian classifiers from probabilistic learning and
k-nearest neighbors from lazy learning) in term of accuracy
and precision.

Additionally, to tackle complex and expensive on-chip
learning-based approaches, a deep invasive methodology
with a lightweight, low-power ML-based monitor for HT
detection can give competitive benefits, given of a proper
training dataset is utilized [90]. Alternatively, by using
on-chip sensors and classification on the basis of statisti-
cal distribution of grid-partitioned power consumption, run-
time Trojan detection approach gives promising results [91].
In particular, in the design phase, the ML training process
uses power profiles by measuring the combined power con-
sumption of each component involved in a particular pipeline
stage along with the Trust-Hub benchmarks [92], which are
then used for HT detection at runtime.

With an actually realized hardware architecture for Support
Vector Machine kernel, a proposed security framework gives

FIGURE 8. ML-based trojan detection methodology by using process and
mismatch variations as timing signatures (adapted from [89]).

a detection accuracy of up to 97% for three expected Trojan
attacks for a NoC-based many-core architecture [93]. The
detection efficiency, in terms of accuracy (without ignoring
the complexity and integration convenience), depends both
on the type of the Trojan attack and the type of the machine
learning model used. Given a supervised learning model,
such as SVM, DT or LR, traffic diversion attacks can be
detected with an accuracy that exceeds 95%. For example,
by using decision trees, core address spoofing, route looping
and traffic diversion can be detected with an accuracy reach-
ing 94%, 95% and 99%, respectively [93]. In contrast, in this
category of attacks, the unsupervised learning models prove
to be more deficient in terms of prediction accuracy. Figure 9
summarizes key points regarding classification of discussed
strategies.

It must be noted though, that there is still lack of machine
learning-based algorithms for identifying the HTs com-
pared to detecting HTs. However, the usage of classification
methodology which involves machine learning for HT detec-
tion is complex and depend on the detection techniques used
(e.g., shallow ML algorithms for detection are mostly target-
specific and prone to underfitting or overfitting).

2) DETECTION AND PROTECTION AGAINST
ATTACKS TO ML COMPUTING
An additional direction of research involves detection, at run-
time, of the correctness of a neural network’s computa-
tions, such as Safe-TPU [94]. This is essentially a verifiable
Trojan resilient hardware accelerator for DNNs that detects
arbitrary Trojan misbehaviour, regardless of how the Trojan
is designed or triggered (time-based or cheat-code based
Trojans). Essentially, besides the software attacks, hardware
trojans might be carefully designed to compromise the neural
network’s integrity, in terms of the trigger, or of the payload
(i.e., the input, computational block, intermediate data and
output) [38]. Modern object detection platforms, such as
YOLO [95] and Mini-YOLOv3 [96] for embedded devices,
expose a hardware attack surface, as shown in Figure 10, with
a number of options, including:

• Model Corruption: compromise the model parameters
stored in memory so that the model results deviate in
all tasks

• Backdoor Insertion: alter the model itself which is stored
in memory so that it provides near random results par-
tially or fully
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FIGURE 9. Taxonomy of HT attack detection by ML-based methods.

FIGURE 10. Attack surface of a YOLO object detection framework,
composed of 24 convolutional layers, followed by two fully connected
layers.

• Model Extraction: extract the model from the device
during run-time or via proving non-volatile memory

• Spoofing: interfere and manipulate the model input data
through tampering with the input sensors or with the
environment

• Information Extraction: infer model information by cap-
turing and analyzing the physical side-channels

To enable accurate NN Trojan detection on resource-
constrained embedded devices, recent research efforts tar-
get algorithm/hardware co-design for an end-to-end method
through using a pair of input (based on Discrete Cosine
Transform, DCT, extraction) and latent feature analyz-
ers [97]. To provide strong integrity and privacy guaran-
tees for a NN execution, authors used secure enclaves, i.e.,
a Trusted Execution Environment (TEE) and at the same
time outsource non-critical functions from a TEE to a faster
co-processor [98]. Neuron obfuscation can effectively

combat increasing risks to IoT edge devices and enable secu-
rity of critical data and DL model parameters, while relying
on a secure key storage facility supplied by a hardware root-
of-trust such as Trusted Platform Module (TPM) [99]. In IoT
environment, it is important to determine adversarial attacks
in real-time, attempting to compromise Network Intrusion
Detection Systems (NIDS) that employ DNNs and CNNs
for identifying benign from malicious network traffic [100].
In this scope, designing accelerating circuitry is an emerging
topic in the deep neural networks area for security, by for
example, using memristor crossbar arrays to significantly
improve the throughput of the visual adversarial perturbation
system [101].

C. ML-BASED METHODS FOR EMBEDDED SoC
PROTECTION FROM MALICIOUS SOFTWARE
Most techniques that involve ML in device level are mainly
custom specific, in the scope of the type of attack surface and
of the device attributes. For instance, an ML-based approach
is proposed in wireless networks-on-chip (NoCs), to identify
jamming-based DoS attacks and evesdropping originating
from either an internal or an external attacker [102]. They use
burst error correction codes to estimate the number of burst
errors in packets captured at the receive transciever. With
the aid of ML classifiers (artificial neural network, support
vector machine, k-nearest neighbors, and decision tree), DoS
attacks are then distinguished from random transient burst
errors (due to power fluctuations, ground bounce or crosstalk)
and a defense unit is notified.

To protect embedded devices from malicious software
components that can perform hijacking attacks in the con-
trol flow, such as code-reuse2 attacks (e.g., like buffer over-
flows, return- or jump-oriented attacks) [103], designers’
trend involves control flow integrity (CFI) checking. CFI
examines the code execution flow graph in traces of var-
ious granularities and attests to the validity of these valid
execution traces in general. However, in real-time embedded
systems, especially those with restricted resources, hardware-
based techniques are being developed for efficiency and
resilience to software assaults, allowing for a novel way to
resisting malicious software. By using the ARM CoreSight
module in an ARM-based IoT environment, recent work
proposes a hardware-based workload forensics framework
for IoT systems [104]. By recording the spatial and temporal
architecture of the address space they create a workload iden-
tification scheme that combines numerous machine learning
algorithms (such as the Long Short-Term Memory (LSTM)-
Recurrent Neural Network (RNN)) to assess and comprehend
the workload being executed at the granularity of a process in
real time. To realize anomaly detection pre-learned thresholds
form the basis of comparison with the classifier outcome and
thus potentially illegal program behavior is filtered out.

2Software anomaly caused by illegal or unintended redirection of the
logical program flow, to instructions already present in memory.
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In general, common techniques for detecting malware or
side-channel assaults rely on the use of hardware performance
counters (HPC) and machine learning algorithms to build a
model of the program’s behavior. HPCs in multi-threaded
processors are monitored in real-time to detect abnormal
activity. A classifier is used to detect out-of-profile behav-
ior by comparing retrieved characteristics to features from
a previously set baseline [105]. To characterize application
behavior, alternative techniques collect low-level architec-
tural information such as profiling data frommemory address
references, instruction opcodes, and Translation Lookaside
Buffer (TLB). However, because they rely significantly on the
determinism, authenticity, accuracy, and availability of the
information leveraged by hardware and software performance
counters, even ML-based generated models may increase the
already broad attack vector surface. Performance counters
may unintentionally degrade the performance of machine
learning classifiers because of data polution. All techniques
presume the application’s training phase is reliable, which
is a prerequisite of most behavior-based intrusion detection
systems. The runtime monitoring entity is therefore expected
to be trustworthy and untampered with.

Another approach uses the inspection and analysis of
electro-magnetic (EM) side channels to classify the kind of
operations performed on a processor and so identify soft-
ware execution sequences with no need to instrument the
program; this information may be utilized for anomaly iden-
tification [106]. Aternative methods aim to decompose the
time series to small and interpretable components, or to char-
acterize the EM leakage of electronic devices via Fast Fourier
Transform (FFT) and identify the frequencies that represent
critical part of the executing program [107]. However, these
techniques have drawbacks largely due to sensor noise and
measurements sensitivity. Such methods for analyzing and
evaluating a device’s side-channel security via leakage detec-
tion, as well as standards (such as ISO/IEC 17825:2016)
that provide a systematic set of leakage detection tests, have
been observed to produce false positives [108]. Furthermore,
finding accurate and suitable features and selecting effective
parameters among many features is a difficult topic for ML
to use for a high detection rate. Prior to implementing any
security mechanism, one essential necessity is to eliminate
any link that may transport trustworthy information from a
secure region to the outside world, as this poses a risk [109].

IV. ML-BASED SECURITY IN EDGE IoT DEVICES
Modern embedded systems inside IoT infrastructures neces-
sitate a higher degree of dependability, accessibility, and
robustness, for industrial, automotive and healthcare appli-
cations. Because traditional machine-learning approaches
that run in the cloud cause reaction time delays, current
innovations suggest that ML techniques and smaller-scale
models will increasingly shift to edge devices, in the prox-
imity of data sources. Big data transfers to cloud-hosted
machine learning processing may cause networking flooding
and large round-trip latency as compared to edge processing.

Meanwhile, millions of low-cost tiny computational devices
in the real world represent a significant amount of under-
utilized processing power. Some learning algorithms, such
as instance-based learning, may, however, be too costly for
edge devices. As a result, the accuracy of outcomes in IoT
end-nodes may not be as great as in cloud-based systems in
some circumstances.

A. ML-BASED INTRUSION DETECTION AND PROTECTION
IN IoT DECENTRALIZED ENVIRONMENTS
To tackle security and privacy issues, several approaches
use ML-based techniques integrated in schemes spanning
end user-fog-cloud environments. Whilst conventional cloud
computing solutions might be adapted to handle some secu-
rity and privacy concerns with fog computing, the latter’s
unique features, such as decentralized infrastructure, mobility
support, location awareness, and low latency, provide unique
security and privacy challenges. Because of the decentralized
architecture of fog computing, it is difficult to collect and
manage evidence and behavior information about fog nodes
to evaluate their trustworthiness and build a trust evaluation
model for all fog nodes in the network, behavior-based ML
methods for increasing security and privacy in fog environ-
ments are difficult to achieve.

Fog nodes that are semi-trusted are responsible to realize
a trustworthy framework to aggregate multiple sensors that
is based on machine learning [57]. To alleviate cloud-based
overheads, the proposed technique uses a trained model to
forecast the contribution of sensor readings to the aggregate
sum. Additionally, to protect the training dataset against dif-
ferential assaults, this technology uses differential privacy
(e.g., via introducing noise).

In a different perspective, contrary to intrusion-detection
schemes defending a single domain in traditional networks
(e.g., enterprise, cloud, business domain), recent strategies
employ learning from various domains to identify various
attacks [110]. The edge data collector is responsible for col-
lecting the IoT data, while the edge analyzer is responsible
for analyzing collected data and IoT device behavior and, the
edge controller, which is based on software defined network-
ing (SDN), is responsible for gateway configuration.

Therefore, to both optimize response time and resilience
of fog layer (see Figure 11), researchers propose various
orchestration techniques [111], [112], or employ machine
learning-based methods in a secure-conscious manner, such
as the MAPE-K model [113]. This model contains four main
components: management, analysis, planning and execution.
Aggregated data are partitioned and packetized depending on
the data type generated from sensors, and communicated via
using 128-bit AES-CCM encryption. On the basis of the type
of these produced and collected data, training is performed at
the cloud server and the outcome model is then executed at
the edge device. However, the ML algorithm that is used to
generate the model must respect the edge-device constraints.

Anomaly detection schemes tailored for IoT cybersecurity
have also been presented through using IoT gateways to host
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FIGURE 11. Improving response time in hierarchical fog-assisted
computing architecture through mapping and moving functions and data
to the fog layer.

an artificial neural network [114]. Such techniques can effec-
tively determine correct and incorrect delay and sensor values
via three-input neurons. As identified, the main challenges
for anomaly detection in IoT data are quantity and hetero-
geneity. In the same scope, a deep recurrent neural network-
based malware detection methodology for the ARM-based
IoT applications has provided promising results [115] via
analyzing IoT devices application opcodes. By implement-
ing three different long short-term memory configurations,
this research approach showed 98.18% accuracy to detect
malware with respect to the tested data set. Additionally,
to improve the trustworthiness of services in a decentral-
ized IoT environment, researchers proposed a reinforcement
learning (RL), RL-based approach to determine the service
resource allocation scheme in different time periods [116].
In all aspects of cybersecurity, by adopting a data-driven
approach, anomaly detection algorithms prove to provide a
valuable effective toolset. Most machine learning-based IoT
approaches for malware hunting focus on energy consump-
tion patterns [117] and application’s opcodes [118].

B. HARDWARE-ASSISTED ML IN IoT DEVICES
Devices that incorparate ML for detecting and subverting
attacks commonly adopt software-based solutions, such as
anti-virus applications. These solutions, though, are suscepti-
ble to high risk; sophisticated malware may be equipped with
smart deviation capabilities such as obfuscation, which may
be successful since traditional protection schemesmostly rely
on matching patterns and signatures. The tamper-immune
hardware metrics prove to be an improved security feature
compared to the high-level software metrics, since soft-
ware features can be jeopardized via obfuscation. Hardware-
assisted ML semantically involves different methods and
architectures categorized as follows.

• Hardware assistance for making ML detection more
accurate, i.e., minimize false positives

• Hardware accelerators to build faster ML models and
inference engines

• Machine-learning-aware and deep-learning-aware opti-
mizations of processors (i.e., vector width improve-
ments, SIMD instructions parallelism, low-precision FP
computations) to boost the performance of a range of
deep-learning applications

To optimize ML-based malware detection accuracy, recent
research works propose real-time collection and analysis of
hardware traces [119]. These hardware-supported instrumen-
tation traces include (i) embedded trace buffers to collect
functional values of a number of trace signals over a timewin-
dow in clock cycles granularity, (ii) hardware performance
counters to determine statistical behavior in terms of spe-
cific architectural features such as bus or memory accesses,
cache misses, branch prediction, and (iii) Network-on-Chip
(NoC) traffic to provide insight in communication patterns.
Experimental results show that machine learning can be
effective in malware detection by utilizing such hardware
traces. In a different perspective, through using architecture-
agnostic methods for forensics analysis, researchers propose
to reconstruct executed workload at the granularity of a sin-
gle process by using the extracted features, through min-
imal information obtained from the processor’s translation
lookaside buffer [120]. Alternatively, by exploiting hardware
performance counters to collect fine-grained data for each
system call of unknown programs, these unknown programs
can be categorized into benign or malicious [121], [122].
The programs behavior can vary, with a significant trace
comprising of thousands of system calls, while some have
a short trace limited to less than a hundred system calls.
To tackle such variations, captured performance counter data
are reduced to a uniform dimension and then classified via
decision trees, random forest, neural networks, adaboost,
k-nearest neighbors with promising results in a range of
fidelity [121], [123]. Even more aggresively, others intro-
duce the use of dedicated on-chip learning controllers to
perform the analysis directly in hardware, possibly even
in real-time, for instance by embedding neural network or
logistic regression prediction co-processor to decide based
on instructions and memory access extracted features [124].
Such approaches require specialized hardware designs, but
offer a low power consumption footprint with zero software
interference. Since most recent processors for IoT devices
are equipped with hardware performance counters that can
be used for malware detection, inexpensive methods can be
employed (via using low-level hardware events) to detect
threatful alterations in the firmware of embedded control
systems [34]. By exploiting an augmented number of hard-
ware performance counters with reduced accuracy, limited
added value is shown for different hardware classifiers to
achieve better performance, accuracy against area overhead,
while the combination of classification algorithms has a
good performance outcome [125]. In summary, a growing
interest involves the usage of low-level microarchitectural
features collected from processor’s performance counter reg-
isters to implement hardware classifiers for malware discov-
ery, with little concern of combining higher level behavior
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(i.e., such as operating system or network activity). This strat-
egy offers isolation from software threats at the risk to miss
new, sophisticated threats. ML-based detection models that
use HPC-based approaches need to become robust against
algorithm subversion attacks, especially when securing Post
Quantum Cryptography (PQC) implementation on resource-
constrained devices, a key requirement to maintain their
integrity [126].

Today, researchers suggest relocating a classifier algo-
rithm (such as DT) in hardware to enhance both the energy
efficiency of anomaly-based intrusion detection systems for
probing assaults and the restricted throughput of software in
resource-constrained edge devices [127], [128]. The isolation
from the software environment and intrinsic robustness of
circuitry against tampering are two further advantages of
mapping anML algorithm in hardware. After contrasting sev-
eral approaches (e.g., naive bayes, support vector machine,
k-nearest neighbor, random forest, and artificial neural net-
works) for real-time performance, hardware-based classifiers
demonstrate excellent performance [129], with random forest
outperforming other algorithms with a maximum accuracy
of 98.5 percent [130]. A full framework for deploying CNN
on embedded systems has also been described, which uses a
mixed pruning strategy to compress CNNmodels and thereby
alleviate memory and performance issues [131]. However,
most FPGA implementations exhibit high cost in power con-
sumption, with some exceptions [127], which does not allow
integration with microcontrollers and resource-constrainted
IoT devices. Earlier, solutions presented also developing fea-
ture extraction module in hardware and the use of principal
component analysis as an outlier detection method for NIDSs
with detection rates exceeding 99% [132].

Towards dedicated, specialized AI-workload processors,
BrainChips’s Akida neuromorphic processor is a revolution-
ary advanced neural networking processor that brings arti-
ficial intelligence to the edge [133]. The Akida NSoC is
designed for use as a stand-alone embedded accelerator or
as a co-processor, while also including interfaces for ADAS
sensors, audio sensors, and other IoT sensors. Moreover,
NeuroEdges are devices that support the implementation of
edge computing systems using neuromorphic chips, named
NM500 [134], and common commercial embedded boards,
however mostly targetted to face recognition [135]. Research
results demonstrate considerable advantage for real-time
computations, thus savings in terms of the burden of requiring
many datasets for effective training.

In the scope of bringing AI at the edge, IoT devices are also
emerging with hardware support. Recently, ARM introduced
enhancements towards boosting ML processing on top of the
ARMCortex-M55 processor, that can be up to 15 times faster
than the previous version, and ARM Ethos-U55 NPU, the
first micro- Neural Processing Unit, micro-NPU, for Cortex-
M architecture, which can speed up ML performance by up
to 480 times [136]. By integrating Deep Learning Acceler-
ator (DLA), NVIDIA DRIVE AGX Xavier can deliver an
incredible 30 TOPS for automated driving [137]. To enable

real-time sensing with limited energy generated by energy
harvesting, Renesas embedded AI (e-AI) [138] demonstrated
power efficiency of 8.8 TOPS/W [139]. The Renesas accel-
erator developed a processing-in-memory (PIM) architec-
ture, an increasingly popular approach for AI technology,
in which multiply-and-accumulate operations are performed
in the memory circuit as data is read out from that memory.

In addition to emerging devices with AI-oriented hardware
extensions, modern ML tools oriented to help in running AI
algorithms on microcontrollers, facilitate inferencing based
on models trained with TensorFlow, Keras, PyTorch, Caffe
and others [140], [141]. The application code can directly
use these kernels to realize neural network models on ARM
Cortex-M CPUs. Moreover, developers deliver microcon-
troller optimized libraries, such that neural network inference
can achieve 4.6X improvement in runtime/throughput and
4.9X improvement in energy efficiency [142]. First, these
optimized functions accelerate key neural network layers,
such as convolution, pooling and activations. Second, the
optimizations aim to reduce the memory footprint, which is
key for memory-constrained microcontrollers. Alternatively,
these kernels can be used as primitives by machine learning
frameworks to deploy trained models.

STM32Cube also helps with the easy integration of stan-
dard AI algorithms in microcontrollers. Automatic conver-
sion of pre-trained neural networks and integration of the
resultant optimized library into the user’s project are made
possible by the particular AI ecosystem. Cube.AI tool offers
not only mappping a neural network on an STM32 MCU
but also optimizations. For instance, the code generator opts
for folding some of its layers and reducing its memory foot-
print. In particular, to optimize for condition monitoring and
anomaly detection, and hence reducing anomaly detection
time, STM’s FP-AI-NANOEDG1 manages sensor input data
collection, on-device learning sessions and inference models
in real-time [143], [144]. These tools claim tomake it easier to
create machine learning libraries that include both inference
and edge training. The purpose is twofold. First, predic-
tive maintenance is seamlessly enabled. Second, for assault
detection, sensor patterns are used in a self-learning, sim-
plified method. The requirement for extensive knowledge in
machine learning, data science, or developing neural network
models is becoming obsolete as a result of tool automation.
At the same time, FP-AI-NANOEDG1 offers coverage of
the entire development of the machine learning cycle. This
means, it helps from the data set acquisition up to generating
libraries by the NanoEdge AI and integrating the application
on the physical node, as well as the security and detection
with sensor patterns self-learning and self-understanding.
Essentially, an STM32L4R9ZI ultra-low-power microcon-
troller supports all tasks, data collection, learning session and
real time inference, while processing physical sensor data as
input.

Advancing both signal processing and neural network
applications to edge-devices are also emerging for new
embedded platforms that integrate multiple cores in parallel,
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such as GreenWaves Technologies GAP-8 and GAP-9
(i.e., nine RISC-V cores) [145], to enable embedded machine
learning in battery-operated IoT sensors, mainly focusing
image processing domain. Such systems-on-chip (SoCs) are
among the most advanced low-power edge nodes available
in the market, embodying the PULP architectural paradigm
with DSP-enhanced RISC-V cores, while frameworks have
been developed exploiting SoCs features, such as hardware
loops, post-modified access LD/ST, and SIMD instructions
down to 8-bit vector operands [146], [147]. Additionally,
to provide agility for a variety of different neural network
techniques, a novel domain-specific Instruction Set Archi-
tecture (ISA) for NN accelerators, called Cambricon, has
been proposed [148]. This is a load-store architecture that
integrates scalar, vector, matrix, logical, data transfer, and
control instructions, based on a comprehensive analysis of
existing NN techniques. In summary, Figure 12 gives an
overview of different directions in bringing ML processing
at the edge for efficient data processing in secure manner.

In conclusion, hardware specialization is a popular
approach to accelerate the computation of neural network-
based applications. Besides neural network and deep learn-
ing (DL) accelerators, specific microarchitectural techniques
and even software methods succesfully present high per-
formance and attempt to save energy. Microcontrollers can
also provide hardware and software support for low-precision
computing [149]. Research results via lower precision
fixed-point arithmetic are promising in terms of memory
footprint, inference time and power efficiency (by using
TensorFlow Lite for microcontrollers, STM32Cube.AI and
a custom tool MicroAI) [150]. DNNs also perform com-
putations with other patterns, such as sparse lookups, vec-
tor operations and deconvolution [151]. Future CPUs will
also host dedicated DL accelerators to accelerate not only
such operations but also crypto- and analysis functions, thus,
bringing all worlds together to resource limited devices.
Vendor-optimized libraries will remain essential to leverage
all the performance capacity from a processor.

However, most of these machine learning solutions mostly
focus on sensor data fusion and help ecosystem to advance
the future of automotives, smart buildings and wearable com-
puting, but rarely consider anomalous components behav-
ior in an IoT infrastructure as a prime goal. On the other
hand, embedded hardware security in IoT infrastructures is
a necessity to protect the identity of devices, to secure the
trusted execution of their applications against tampering, and
to protect the privacy and security of data they generate.
Nevertheless, protection techniques such as HSM and TPM
enhancing hardware security are scarcely linked to ML and
DNN methods in this scope.

In addition, while a variety of useful mechanisms to
protecting against memory vulnerabilities at run time
have been presented, such as fine-grained tagged memory
systems [152], support of pointer authenticity [153], and
hardware-assisted scope enforcement [154], they are seldom
integrated with ML-based solutions.

FIGURE 12. Classification and comparison of hardware-assisted
ML-methods towards IoT embedded processing and security.

C. SECURE ML AND DL INFERENCING USING TRUSTED
EXECUTION ENVIRONMENTS
Different methods guarantee the secrecy of the assets engaged
in ML computations in untrusted computing environments
to ensure resilience of ML models and derived services
against malicious actors. The protected assets can comprise
data, machine learning models, and computation results that
can compromise the confidentiality of the protected assets
indirectly. In this context, researchers suggested employing
trusted enclaves to offer data integrity inference, or apply-
ing privacy-preserving algorithms with the help of ARM
TrustZone to safeguard peripheral access for ML data pri-
vacy [155]. Thus, even if the adversary has complete control
over the software running in the user’s device’s normal world,
including privileged software like the commodity OS, the
enclave with the ML model is attested by a SANCTUARY
core [156], which creates and securely stores a cryptographic
hash of the enclave’s initial memory content.

Designs for DL model calculations employing tiny TCB
size and limited secure memory are demonstrated for mobile
and IoT devices by using the benefits of TEEs and appropriate
device accelerators [157]. The supplier is required to present
the genuine DL model’s cryptographic hash to authenticate
the DL model’s integrity. Sensor data is also safely fed
into the TEE using secured drivers, while encrypted data is
decrypted inside TEE and sent to a protected accelerator at
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each stage of the inference process (e.g., a GPU), which is
splitted to minimize the code base inside the trusted enclave
[157], [158]. Similarly, only the most vulnerable layers of
a DNN are concealed inside the TEE to prevent inference
attacks [159].

TEEs have memory constraints, and the move from the
untrusted domain to the TEE adds overhead, as shown
in research that assessed TEE performance characteristics
proving TEE-based functionality to be expensive to both
invoke and execute [160], [161]. However, various promis-
ing appoaches offer significant benefits for ensuring trusted
ML model execution, such as cancelling inherent memory
limitations thus allowing to securely run complex mod-
els [155], or, providing better performance for protecting ML
services [98], or, removing the software layer to enable a
secure OS and enabling more trusted applications to run at
once [162].

V. DISCUSSION
This section presents key points and challenges regarding
cross-cutting directions as surveyed in prior sections.

A. CHALLENGES FOR REALIZING ML WITH
HARDWARE SUPPORT AT THE EDGE
From the perspective of the hardware architecture for DNN
and machine learning, modern realizations are emerging
but are mostly application-oriented. In terms of inferencing,
no one architecture appears to stand out in terms of deliv-
ering critical machine learning hardware primitives to serve
a wide range of applications, particularly at the edge. The
field of machine learning is still in its early stages, while
promisingly inferencing is shown to perform on the micro-
controller by a variety of embedded systems. Provided light
ML is satisfactory, such as in keyword spotting, or use-cases
where response time is not critical, such as analyzing offline
photos, then the microcontroller is capable of performing at
such scale. A promising solution involves the realization of
ML-based malware classifiers in microprocessor hardware
with significantly reduced overhead as compared to the tradi-
tional software-based methods [32].

Despite the fact that early innovations utilised GPUs,
which enabled a big leap forward in AI capabilities, power
consumption is an important consideration in IoT devices.
Inferencing via using Tensorflow models on mobile devices
consumes more than the half of the consumed energy (57%)
for data movement [163]. Hence, researchers propose new
architectures, mostly based on processing-in-memory orga-
nizations (PIM) and small fixed-function accelerators (PIM
accelerators), such as data packing and quantization to make
machine learning inferencing more energy-efficient [164].

With regard to ML for secure IoT infrastructures, most
hardware-oriented works mostly use Snort rules [165] rather
than ML-based anomaly detection; advancements though
recently demonstrated feature extraction algorithms which
are suitable for hardware implementation and promising
results of feature selection methods with two simultaneous

objectives, accuracy and energy consumption [75]. Addition-
ally, for different cyberphysical systems, different compatible
neural network architectures should be adopted [17]. Further,
ML could play a significant role in enabling asymmetric
elastic cryptography in IoT but there are challenges that need
to be addressed [166], such as IoT-based anomaly datasets,
probability and exact threat identification, authentication of
the training data sets, zero-day attacks and real-time firmware
updating of millions of devices.

B. ML-BASED SECURE PROCESSING IN HIERARCHICAL
IoT ENVIRONMENT
If workloads become heavier (e.g., big data in industrial
applications, biomedical imaging, genomic systems), and
where performance is critical or power efficiency is a
concern, then different solutions appear for IoT resource-
constrained devices, ranging from microarchitectural support
for AI (i.e., at instruction level [140] and accelerators [143]),
to fog-oriented solutions for ML-based applications and
anomally detection systems. Fog computing, as a rising com-
puting paradigm along with SDN and NFV technologies, can
become a powerful solution in securing a variety of con-
nected industrial environments [167]. Despite the abundance
of huge data in the vicinity of loT, creating and deploying
strong attack detection systems for loT devices is difficult
due to resource limits, latency sensitivity, and distribution
concerns [168]. As fog computing provides a distributed
environment with multiple fog nodes near to IoT devices in
the edge layer, recent methodologies have demonstrated the
usefulness of LSTM-based DL models in cybersecurity to
identify a variety of threats with high detection and accuracy
rates [169]. However, implementing a heavy DL detection
solution directly on low-capacity IoT devices (to detect even
morphing attacks), detecting multiple threats with high detec-
tion rates and accuracy rates, andmonitoring and updating the
detection system to identify new attacks remain difficult.

In the scope of improving ML-based IDS at IoT system
level, in particular to address the strict latency requirements
that challenge the detection of cyber-attacks, alternative pro-
posals include a fog architecture to benefit from the low
latency provided by fog nodes [31]. Further, hardware sup-
port for ML inferencing is deemed important for real-time
IDS methods. However, as researchers show [170], program
behaviors tend to deviate at an early stage of their execution
and may therefore be benefited to perform the real-time mon-
itoring and identification analysis using hardware techniques
as well [170], [171].

C. METHODS AND TOOLS SUPPORT FOR REALIZING
AUTOMATED AND TRUSTED ML-BASED SECURITY
FOR IoT DEVICES
As the EDA tools and methods keep evolving, the imple-
mentation of hardware IDS methods in IoT devices on the
basis of machine-learning algorithms and even with Trojan
security aware methods [172], are increasingly boosted. This
is facilitated by the wider acceptance of continuously more
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efficient high-level synthesis tools, based on widely known
and used languages, such as OpenCL, C/C++, or MATLAB,
thus enabling software designers to take advantage of FPGA
technology [129], [173]–[175]. On top, with the goal to
provide complete end-to-end toolchain to empower domain
scientists to design machine learning algorithms for low-
power devices, new developments are presented for a range
of devices [176].

Additionally, in adversarial environments which are inher-
ently non-stationary, such as the cyber security domain,
ML/AI-based IDS methods and security critical applications
require further advancements in terms of reliability to address
adversarial machine learning (e.g., machine learning poison-
ing of training data-sets and attack models) with degrading
sub-optimal decisions, thus resulting in endless cyber-war
gaming between defense and attack strategies [26], [49],
[177], [178]. Finally, an orthogonal line of research should
pursue protection of both IoT device and system secrets, even
in the presence of compromised system software layers and
malware.

IDS and defences developed to protect from adversarial
examples, have shown great accuracy through employing
DNN methods, but also a wide space for parameters tuning
and reduced robustness due to adversaries capacity to evade
even if an adversary is oblivious to a specific defense [179].
Essentially, an important challenge today involves not only
designing accurate DNN-based defense schemes, but addi-
tionally producing interpretable results in terms of under-
standing how the ML algorithms reach into the conclusion
for detecting attacks. Complementary to efforts towards mit-
igating false classification by augmenting training data for
compensating undertraining, new schemes propose increas-
ing quality of explanations for individual classification out-
comes for security applications [180], thus raising the trust
of users.

Furthermore, the defense strategy should advance its
understanding of the pathway and parameters to generate
a non-binary detect decision, jointly with how an attacker
might react to any defense. The protection scheme needs to
ensure that the defense remains secure against an attacker
who discovers how the defense works.

VI. CONCLUSION
Machine learning and edge computing solutions promise to
efficiently distribute the processing needs across devices,
servers, and gateways so they can act on sensors data
from heterogenous devices in real time and predict out-
comes locally. It is also widely recognized that employing
machine learning and neural network-based methodology is
able to overcome quantity and heterogeneity challenges of
IoT devices and data in detecting anomalies in the data sent
from edge devices (through for example focusing on behavior
and protocols). However, machine learning and deep learn-
ing algorithms are generally computationally and memory
intensive, making them unsuitable for resource-constrained

environments such as IoT, mobile, devices and gateways.
To efficiently implement these compute and memory-
intensive algorithms within the IoT computing space, espe-
cially in terms of energy requirements [75], innovative
optimization techniques are required at the algorithm and
hardware levels.

Tradeoffs between specialized processors and general-
purpose processors will continue to confound the industry for
the foreseeable future. This may provide an opening for new
technologies, memories, eFPGAs or other programmable
logic or software, but there is still a long way for a solid
ground in confident industry adoption. Security countermea-
sures should elevate as a first class constraint, moving from a
subsequent concern in IC design, contrary to traditional goals
involving cost, performance, and reliability [181]. Addition-
ally, the tradeoff for opting for the best solution through a
purpose-built processor for efficiency, or through an off-the-
shelf component will vary widely by application and ulti-
mately by how these solutions perform over time and under
load. Regardless, the inferencing market has opened the door
to much different architectures and approaches than in the
past, and there is no indication that will change anytime soon.

The rise of Internet of Things and edge systems and their
use in large-scale, commercially sensitive applications makes
attacks a growing concern for developers in all applica-
tion domains. Many mitigation techniques come with major
overheads in power performance and silicon die area that
are impractical for IoT devices. On top, a growing concern
involves how machine learning assists in securing IoT infras-
tructures, or if deep learning reverses the effects of coun-
termeasures. Nevertheless, as machine learning based IDS
obtained using hardware acceleration, compared to software,
reaches high levels of accuracy, more that 95%, and boosts the
classification speed significantly, open the way for integra-
tion at the IoT edge devices, which is especially challenging
in real-time applications. Additionally, anomaly detection in
IoT systems with transient behavior and, in domains that
rapidly evolve becoming smarter (e.g., vehicles becoming
more intelligent), is highly important and challenging, ulti-
mately needing designs of effective and proactive secure IoT
infrastructures. Moreover, it is also important to focus on
developing IoT protection mechanisms that detect known
and unknown attacks while being protocol-independent and
non-cryptography related. Concentrating on the challenge of
exploding unlabelled data in IoT and developing labelled IoT
datasets for anomaly detection purposes, are also important
research areas.

Hopefully, this article will be useful for academia and
industry research, to identify the advantages and security
drawbacks of different machine learning methods for an IoT
infrastructure. Additionally, this survey will enable security
and privacy designers enhance IoT devices countermeasures
from traditional ones, while unleashing the development
of efficient, low-latency, and reliable, ML-based intelligent
services.
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