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ABSTRACT Overkill and leakage are common problems in automated optical inspection (AOI) systems
that have harmed firms to devote in intensive manual reinspection and seek the best CCD setting, resulting
in more costly and less effective AOI operations. This study proposed a two-stage AOI based inspection
system deployment model of multi-charge coupled device (CCD) for cost reduction; that is, the strictness
decision model of a single CCD in the operational stage and switch on/off decision model of a set of CCDs
in the strategic stage. The strictness decision model identifies the best strictness level of individual CCD by
analyzing a confusion matrix according to the true defect rate of products. The multi-CCD switch decision
model suggests the best switch on/off decision of multiple CCDs. Experiments in an electrical connector
manufacturing plant revealed that the total inspection cost was the lowest when the strictness level was set
close to the true defect rate. The best multi-CCD on/off strategy was more cost-effective than was the all
CCDs-on mode under various strictness settings, by cost reduction up to 23.49%. In general, the proposed
two-stage model achieves flexible multi-CCD settings of AOI systems and operations at a low cost. The
proposed model can be extended to different applications of overkill and leakage problems. In this study, the
proposed VGG-like convent five-layer convolution model learns from the experience of quality re-inspection
personnel, which can be applied to the re-inspection line to identifyAOI as defective images for re-inspection.
The best accuracy reaches 99.21%.

INDEX TERMS Automated optical inspection, charge coupled device, confusion matrix, cost-effective
analysis, inspection system deployment, Type I & II errors, CNN.

I. INTRODUCTION
The information technology (IT) industry has prompted to
microminimizing electronic component [1], [2] that fabri-
cates components with dimensions less than 10 mm and
precisions of 5-20 µm, such as integrated circuits (ICs),
printed circuit boards (PCBs), liquid-crystal displays, ball
grid arrays, electronic communication components, and elec-
trical connectors. These components must undergo detailed
inspections [3] requiring the use of automated optical
inspection (AOI) instead of conventional human inspec-
tion techniques that suffer several disadvantages, such as
being time-consuming, inaccurate, and highly reliant on
subjectivity [4], [5].
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AOI is known for its high recognition rate, noncontact
inspection, and impressive mechanical flexibility [6], [7].
However, efficient AOI systems should be flexible and lean
to adapt to changing quality status [2], [8], [9].

An AOI systemwith multi-charge coupled devices (CCDs)
is preferable for inspecting electronic products due to the
need for multi-defect inspections [10]. However, such a
system, usually empowered by deep learning technologies,
is costly and time-consuming when all CCDs are turned
on simultaneously [11]. Moreover, AOI is limited by the
need to make constant adjustments according to changing
quality status. These adjustments are necessary to maintain
a low false call rate when performing quality checks; if not
appropriately adjusted, the inspection effectiveness may be
deteriorated and the process delayed [12], [13]. The exist-
ing AOI process depends on quality engineers to calibrate
inspection procedures and classify defective goods, which
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FIGURE 1. Image recognition process of an AOI system.

may lead to severe errors [12]. For example, when the AOI
threshold is improperly set or if product quality varies con-
siderably, the AOI system is more likely to make false calls,
resulting in overkills (i.e., Type I error) or defect leakage
(i.e., Type II error). Overkills may require additional inspec-
tions [14] that increase labor and rework costs [15], whereas
leakage may cause defective goods to be sold to customers,
resulting in an increased customer complaint cost [16].
Therefore, solutions must be developed for the optimiza-
tion of multi-CCD AOI systems to reduce inspection
costs [17], [18].

The present study developed a multi-CCD AOI deploy-
ment model; at the operational level of the product line,
the model provides suggestions for AOI engineers to first,
properly adjust CCD- threshold parameters according to the
product defect rate in question and second, reduce overkills
and leakage caused by AOI false calls. At the strategic level,
the model can recommend the best multi-CCD switch con-
figurations according to various yields, thereby lowering the
total inspection cost.

II. LITERATURE SURVEY
A. TYPES OF AOI
AOI involves the use of image processing and machine vision
technologies to compare the device under test (DUT) with a
standard image and then verify whether the DUT meets the
standard and has any defects (refer to Figure 1). The AOI
system guides samples to the inspection platform, on which
a CCD captures the image of each sample. The system then
acquires eigenvalues through noise filtering and performs an
image matching analysis to determine whether the sample is
defective [1], [19].

AOI systems can be divided into rule-based and learning-
based systems according to their defect classification meth-
ods [3], [5], [20]. A rule-based system classifies defects
based on specific rules and thresholds [21], [22], yet the
classification accuracy of such system is low. To solve this

problem, machine learning techniques (e.g., convolutional
neural networks) are adopted to improve its inspection rate
and accuracy [23], [24].

B. AOI FALSE CALLS
AOI false calls can be divided into overkills and leakage.
An overkill occurs when the system mistakenly determines
a product as being defective because of excessively high
inspection standards [14], [25]. Conversely, leakage occurs
when the AOI standards are excessively low, causing the
system to wrongly identify a defective unit as a non-defective
one. Therefore, a balanced AOI parameter design is an essen-
tial factor affecting inspection costs.

III. METHOD
A. MODEL FRAMEWORK
In this study, a multi-CCD AOI deployment decision system
was proposed. The system comprises two decision-making
levels that facilitate inspection cost reduction (Table 1). In this
system, (i) the operational level optimizes settings related to
CCD strictness for various defect rate requirements using a
confusion matrix, and (ii) the strategic level, with the best
multi-CCD switch model, facilitates switch decision-making
that identifies the best multi-CCD configuration.

This model can be applied to a set of CCDs. The proposed
AOI system is depicted in Figure 2. The model is plugged
into the AOI system, and apply in the quality inspection
process. The CCDs strictness algorithm adjusts the strictness
parameter and the AOI pixel limit range. In Stage-II, the
web plug-in function assists quality personnel to set the AOI
CCDs switch on/off.

The factory manufacturing execution system (MES) con-
nects the output of the proposed system to improve the defect
detection efficiency. In this study, the CNN model learns
from the experience of quality re-inspection personnel, which
can be applied to the re-inspection line to identify AOI as
defective images of re-inspection.
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TABLE 1. Proposed two-stage multi-CCD deployment decision model.

FIGURE 2. AOI system technology application framework.

B. THE STRICTNESS DECISION MODEL FOR
INDIVIDUAL CCD
Figure 3 presents the schematic model of the two-stage
model. Goods from the manufacturing process are examined
by AOI and classified into four categories, as indicated in the
confusion table. Those ‘inspect positive’ goods are delivered
to the sequent packing process, while those ‘inspect negative’
goods are reexamined by human inspectors to screen scraps.
When the CCD strictness level was high, overkills were
likely, causing the Type I reinspection cost to exceed Type II
defect leakage cost.

The AOI system under investigation consists of 7 CCDs.
The two-stage model is applied to CCD1-CCD7, and the
output results are fed back to the AOI system. In this study,
the decision-making process is depicted in Figure3. Stage-I
is the CCD strictness model. According to the result of ana-
lyzing the defect image, the CCD strictness model identifies
the best strictness level of individual CCD by analyzing a
confusion matrix according to true defect rate of products.
Stage-II is the multi-CCD switch model. The multi-CCD
switch decision model suggests the best switch on/off deci-
sion of multiple CCDs. The CNN neural network was used to

FIGURE 3. The two-stage model process structure.

analyze the defect image and establish a CNN classification
model. Deep learning can be used to assist the existing AOI
architecture and provide a new option for back-end quality
re-inspection to replace the human inspection and identify
defects, improve production efficiency.

Figure 4(a) presents the computational procedure of the
CCD strictness decision model at different CCD strictness
levels by permutation search, and Figure 4(b) depicts the
7 steps of the confusion table computation of the total cost
of AOI. The terms used in the present model are defined
as follows. Type I error occurs when a non-defective unit is
mistakenly regarded as a defective one, also known as a false
positive. Type II error occurs when the system fails to identify
a defective good and considers it a non-defective one, also
known as a false negative. CCD false call rate (%) is the ratio
of the number of single-CCD false calls to that of defective
goods captured by a single CCD. True defect rate (%) is
the quotient that is the number of identified defective goods
divided by the sum indicating the target delivery quantity.
True defect rate due to this CCD (%) is the ratio of the
number of defective goods captured by a single CCD to that
of system-captured defective goods. CCD strictness is the
inspection thresholds defined by the AOI equipment.

Input
(1) System parameters:

• True defect rate (%) //DUT true defect rate in steady-
state of the production line

• Input quantity (pcs per hour) //production batch
• True defect rate due to this CCD (%) // True defect rate
detected by this CCD in steady-state of the production
line

• CCD false call rate (%) //CCD optical quality level of
this CCD

(2) Inspection unit cost:

• Inspection cost per unit: number of final products
inspected by the AOI system

• Whole-plant prevention cost: Cost of preventing the
occurrence of defective goods
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• AOI equipment cost: Cost of purchasing AOI equipment
• Average identification cost: Cost of defining products as
defective goods

• Human inspection cost: Labor cost of inspection staff
• Internal failure cost: Cost incurred from poor quality
prior to the products being delivered to customers

• Reinspection equipment cost: Cost of reinspection
equipment

• Reinspection labor cost: Cost of reinspection staff
• External failure cost: External cost incurred due to prod-
ucts failing to meet customer requirements

Procedure
For strictness level from 0% to 100%
DO
Step 1: Establish a confusion matrix of inspection costs of

a CCD.
(1) Defect = Input × true defect rate
(2) Reject = Input × CCD strictness × CCD-captured

defect rate
(3) FP (Type I) = Reject × CCD inaccuracy level
(4) TN = Reject − FP
(5) FN (Type II) = Defect − TN
(6) Accept = Input − Reject
(7) TP = Accept − FN
Step 2: Calculate the total cost.
(1) Total initial inspection cost = (AOI equipment inspec-

tion cost per unit + prevention cost per unit) × quantity of
products manufactured per hour + (human inspection cost
per unit + identification cost per unit) × (TN + FP)
(2) Total reinspection cost (i.e., cost of Type I error) =

(reinspection labor cost per unit + reinspection equipment
cost per unit) × FP

(3) Cost of defect leakage (i.e., cost of Type II error) =
external failure cost per unit (i.e., compensation due to dam-
aged goods, reworking labor cost, implicit cost of reputational
damage) × FN

(4) Total cost of defective goods (rework and scrapping
costs) = internal failure cost per unit × (TN + FP)

(5) Total cost = (1) total initial inspection cost + (2) total
reinspection cost (i.e., cost of Type I error)+ (3) total cost of
defect leakage (i.e., cost of Type II error) + (4) total cost of
defective goods

ENDDO
Output
The best CCD strictness setting to minimize the total cost

of this CCD

C. THE SWITCH DECISION MODEL FOR THE MULTI-CCD
AOI SYSTEM
To minimize total inspection cost, the proposed multi-CCD
switch model identifies the best multi-CCD switch deci-
sion at various requirements defined by true defect rate and
strictness. Figure 5 presents the computation procedure. The
process begins with the computation of the strictness decision
model for each CCD to determine the best strict level of

FIGURE 4. Computational procedure of proposed CCD strictness decision
model.

FIGURE 5. Computational procedure of the proposed multi-CCD switch
model.

single CCDs. The cost of a CCD to turn on or off is then
iteratively calculated by permutation search to decide the
multi-CDD switch decision.

D. CNN CLASSIFICATION MODEL ALGORITHM
The VGG-like convent five-layer convolution model, 32 con-
volution filters of size 3 × 3 each, 100 × 100 images with
3 channels for input data, is adopted as the CNN model.
The batch size is 32. Epoche = 20. SGD (stochastic gradient
decent) is the optimization method for this experiment. The
learning rate is set to 0.1, and the attenuation value (decay)
is 1e-6. The above parameter settings are all VGG official
settings. The photo type is set to grayscale because the images
in this case is black and white. Figure 6 is the Pseudo code of
the first three stages of the CNN algorithm.
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FIGURE 6. Algorithm of CNN classification model.

The products are classified as Good and No_Good by an
CNN classificationmodel. The number of input data (images)
is 2,000. The original images are the jpg format of Height:
2050 pixels and Width: 2432 pixels. The examples of good
and defective products are displayed in Figure 7. For example,
the lens angle of CCD4 is vertical of the back side. Class_A
shows excess glue in the metal HD, and class_I shows excess
metal at the pins. Before feeding the images into the CNN
model, the black border of the image is cropped to detect
defects easily. The cropped images are jpg format of Height:
728 pixels and Width: 1052 pixels. The shot angle of CCD5
is vertical of the front side with backlighting. Class_L is the
extra metal scrap on the plastic body, and class_N is the
extra plastic material on the edge of the product. The original
images are the jpg format of Height: 2050 pixels and Width:
2432 pixels. The cropped images are jpg format of Height:
1972 pixels and Width: 1059 pixels.

IV. EXPERIMENT AND DISCUSSION
The experiment was conducted in an electrical connector
manufacturing plant equipped with a multi-CCD AOI sys-
tem using deep learning algorithms. The algorithm is imple-
mented by Python and the tensorflow program set was applied
to support a variety of applications in the present study,
with a focus on training and inference on deep neural net-
works [26]. The program is run on Intel R© CoreTM i7 Pro-
cessor 2.5GHz (8 cores), NVIDIA R© GeForce R© 6GB, and
1TB SATAHDD, under Windows 10 operating systems. As a
DUT was regarded as defective by the system, the good was
subjected to quality reinspection performed by reinspection
staff, who returned the sample to the production line if its
quality was acceptable. The adopted AOI system, comprising
seven CCDs, inspected 112,385 pieces of components per
day.

FIGURE 7. The examples of CCD4 and CCD5.

TABLE 2. CCD-captured defect rate and false call rate.

The K-fold cross validation is applied in the experiment.
K = 10 means that the data is divided into 10 equal parts.
80% of the data is used as the training set, 10% is used as the
validate data set, and 10% is used as the testing set. Each part
of data will be used as the testing set three times, so a total of
30 experiments were performed.

The defect rate and false call rate are listed in Table 2.
Among all CCDs, CCD3 had the highest defect rate
(22.55%), whereas CCD2 had the highest falste call
rate (21.64%); the AOI system yielded an average false case
rate of 11.31%. The results help quality operators adjust
threshold parameters at the operational level, thereby reduc-
ing the probability of overkills and leakage.

The description of CCD1-7 detection items examined by
the proposed AOI system with deep learning algorithm is
shown in Figure 8. The sample results of the CCD4 and
CCD5, which are classified into good and no good classes,
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FIGURE 8. The detect patterns of components.

TABLE 3. Sample result of CNN classification model.

are listed in Table 3. The data was divided into 10 parts
and applied to 30 times cross-validation to obtain the results.
The average accuracy of CCD 4 and CCD5 are 97.83% and
90.15% respectively. The result show that the proposed CNN
classification is highly stable.

A. RESULT OF THE STRICTNESS DECISION MODEL
Taking CCD1 as an example, Table 4(c) details the calcu-
lation of cost per unit given a true defect rate of 7%, and
Table 4(a) presents the confusion matrix for cost calcula-
tion. When all CCDs were turned on with a true defect rate
of 7%, the total inspection cost on CCD1 was $ 61.36; the
individual costs are detailed in Table 4(b). The CCD strict-
ness model calculated total inspection costs under various
true defect rates and strictness rates when all CCDs were
turned on (Table 5). The cost information is obtained through
the cost accounting system. The quality inspection data is
obtained through the AOI supervisory control and data acqui-
sition (SCADA) system. Related data is used tomeasure yield
rate changes in real-time.

Table 5 presents the best strictness given a true defect
rate, denoting as a marked number. It reveals that, when the

TABLE 4. Illustration of the CCD strictness model for CCD1.
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TABLE 5. Total cost of turning on all CCDs given true defect rate and strictness level.

CCD strictness was close to the true defect rate, the total
inspection cost is reduced. When the strictness was higher
than the true defect rate, the frequency of overkills increased
even though the system could reject more defective goods
with reduced Type II error cost. Consequently, the costs
of human reinspection due to Type I error, scrapping, and
reworking increase. By contrast, when the strictness was
lower than the best setting value, the leakage problem was
aggravated and more defective goods were being sold to
customers, thus increasing Type II error cost (i.e., customer
complaints).

Figure 9 compares the total AOI costs of different strictness
levels in the all-CCD-on mode with the defect rate fixed
at 7%. The dotted line indicates the total cost of AOI in the
all-CCD-off mode. Despite the different true defect rates, the
initial AOI cost remained unchanged when the best strictness
setting and lowest total inspection cost were identified. How-
ever, the probability of overkills and leakage varied when
the strictness level changed, causing changes in the total
inspection cost.

Compared with a rule-based AOI system (the CCD strict-
ness is fixed at a constant), the AOI system is installed with
an operationally best CCD strictness model (i.e., the model
automatically recommends the best CCD strictness levels)
exhibited greater cost-effectiveness. For example, when true
defect rate is 7%, the proposed strictness model suggests
to set strictness at 8% instead of 10%, the total inspection
cost reduces from $815.15 to $660.07, which was $ 155.08
(or 23.49%). By applying the strictness model, quality opera-
tors can adjust the AOI strictness setting based on production
sampling yield and quality status.

The experiment results indicated that the closer the strict-
ness level to the true defect rate is, the lower the total AOI cost
is. For example, when the true defect rate was fixed at 7%,
(i) the lowest inspection cost was identified when the strict-
ness was set as 8%. (ii) Type II errors were less frequent
than Type I errors when the strictness ranged from 8% to
10% under the all-CCD-on mode. (iii) When the strictness
was <7%, Type II errors became costlier than the internal
failure cost of Type I errors and increased when the strictness
level decreased. The proposed AOI system with this study’s

FIGURE 9. AOI cost changes with CCD strictness level when the true
defect rate was set at 7%.

operational-level strictness model outperformed a rule-based
AOI system in terms of cost-effectiveness. (iv) When the
CCD strictness was set as 8% (true defect rate = 7%), the
lowest total inspection cost was achieved. Conversely, when
the strictness was inappropriately set such as 10%, the total
cost per hour increased by 23.49%.

B. RESULT OF THE MULTI-CCD SWITCH MODEL
This section analyzes the cost-effectiveness of the proposed
multi-CCD switch model. When the model detects that the
total inspection cost in the CCD-onmode is higher than that in
the CCD-off mode, the model suggests to the user to turn off
certain CCDs. The best switch decisions in the CCD-onmode
suggested by the proposed model in different strictness levels
are described in Table 6. The result of multi-CCD switch
model revealed that:

(i) When the strictness level was loose (1%–3%) with
the true defect rate ranging 1%–10%, the multi-CCD switch
model recommended turning off more than half the CCDs
on most occasions because a CCD with excessively low
strictness will not solve the problem of defect leakage and
may cause an increase in costs related to Type II error, initial
inspection, and defective goods.

(ii) When the strictness level ranged from 7% to 10% (with
the true defect rate ranging from 1% to 10%), the switch
model recommended turning off half the CCDs (Table 6a)
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TABLE 6. The best multi-CCD switch decisions.

most of time because overkills were likely at a high strictness
level, which may in turn enhance the costs associated with

defective scrapping, reworking, and Type I errors in human
inspection.
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(iii) Conversely, when the strictness was equal or close to
the true defect rate, the model suggested turning on more than
half the CCDs. As indicated in Table 6a, when the strictness
level was close to true defect rate (i.e., when the two variables
were both 6%, 7%, 8%, 9%, or 10%), the multi-CCD switch
model recommended leaving all the seven CCDs open. When
the strictness level and true defect rate were both 5%, 4%,
or 3%, the model recommended turning on 6, 5, and 5 CCDs,
respectively, because turning on more than half the CCDs
helped reduce Type II error and maintain a lower Type I
reinspection cost relative to Type II defect leakage cost; the
model suggested turning off one or two CCDs because these
CCDs did not help reduce Type II cost when they were on.

(iv)When the strictness level and true defect rate were both
1% or 2%, the multi-CCD switch model suggested opening
only 1 or 3 CCDs, respectively, because a low true defect
rate indicated improved process capability. When most of
the CCDs were closed, the Type II cost remained lower
than the AOI initial inspection cost and Type I error cost
in most circumstances. Additionally, the remaining turned-
on CCDs demonstrated favorable performance in defect
detection, which in turn lowered the Type II cost and could
compensate for costs for initial inspection and Type I error
resolution. The aforementioned scenario indicated that the
defect detection efficiency in CCDs was crucial in making
switch decisions. For example, when the strictness level and
true defect rate were both 1%, the switch model recom-
mended turning on CCD3, rather than other cameras, because
the efficiency of CCD3 in capturing defects (22.55%) was
greater than that of its counterparts. In other words, turning
on CCD3 was more cost-effective with reduced Type II error
cost.Moreover, if the other CCDswere turned on, the reduced
Type II cost could not compensate for the combined cost
of initial inspection and Type I error reinspection. There-
fore, the model recommended turning off all cameras except
for CCD3.

(v) The analysis also confirmed the influence of CCD false
call rate on multi-CCD switch decisions. When the strictness
level and true defect rate were both 2%, the switch model
recommended turning on CCD3, CCD4, and CCD5 because
of their efficiency in defect detection (22.55%, 20.17%, and
13.44%, respectively). The model did not suggest turning
on CCD6 and CCD7 (with similar efficiency [13.24% and
21.52%, respectively] to that of CCD5) because these two
devices had higher false call rates (13.24% and 21.52% for
CCD6 and CCD7, respectively) compared with other cam-
eras. Further analysis demonstrated that although turning on
CCD6 or CCD7 helped reduce Type II cost, the costs of initial
inspection, Type I error reinspection, and defective goods
collectively increased.

The cost-effectiveness of an AOI system installed with a
strategic-level multi-CCD switch model was compared with
that of an AOI system without such a model, at different
true defect rates. As suggested in Table 5, (i) when the
strictness level and true defect rate were set as 8% and 7%,
respectively, the inspection cost of AOI in the all-CCD-on

mode was the lowest, costing $660.07/h. At the same true
defect rate, the total cost increased to $815.15/h at the
strictness level of 10%. After the optimized multi-CCD
switch model was installed, the total inspection cost could be
reduced by 19.02%. Applications of the proposed strictness
model can help flexibly adjust the AOI inspection strategy
according to current quality conditions. (ii) In this 10%-
strictness scenario (true defect rate = 7%), the multi-CCD
switch model recommended turning off all the CCDs, result-
ing in a total AOI cost of $774.23/h, which was 5.02%
($40.92) less than the cost in the all-CCD-onmode (Table 6b).
(iii) Furthermore, when the strictness level and true defect rate
were set as 1% and 7%, respectively, when all CCDs were
switched on, the total inspection cost was $792.87/h, higher
than the cost of $660.07/h after themodel-provided optimized
switch decision was made (referring to Table 6d). When the
strictness level was 8% under the all-CCD-on mode,
the total inspection cost could be reduced by 20.12% after
the best switch arrangement were implemented, with a rate
of $132.8/h. The total inspection Cost is 660.07 (Table 6c)
(iv) When the strictness level was set as 1% (true defect
rate = 7%), the multi-CCD switch model recommended
turning off five CCDs (CCD1, CCD2, CCD5, CCD6, and
CCD7); the suggestion helped reduce the total AOI cost from
$792.87 (all-CCD-on mode) to $680.80, which was 14.13%
less (i.e., saving $112.07), creating the most favorable cost-
effectiveness among the 1%–10% strictness levels. Under
different strictness settings, a corresponding best lens switch
combination can minimize total inspection cost.

V. CONCLUSION
This study proposed a two-stage decision model for the
multi-CCD AOI system deployment. The proposed model
is successfully implemented in an electrical connector man-
ufacturing plant. The first stage of the model comprises
an operational-level decision model that decides the single
CCD strictness level. The second stage of the proposed AOI
deployment model comprises a strategic-level CCD-switch
decisions. The multi-CCD switch decision model suggests
the best switch on/off decision of multiple CCDs. Defective
products Reinspection procedure using deep learning CNN
model. CNN classification model can be used to assist the
existing AOI architecture. Providing a new option for back-
end quality re-inspection.

As smart manufacturing becomes increasingly necessary
and the electronics manufacturing industry become more
competitive, AOI is expected to face greater challenges, such
as more varied defects and inspection items and a shorter
inspection time before the delivery date. The performance
and accuracy of AOI systems are key to overcoming these
challenges. Under these circumstances, the proposed multi-
CCD AOI system deployment model for providing rec-
ommendations on multi-CCD switching is promising. The
proposed two-stage model achieves flexible inspection set-
tings and operations at low cost, and can be widely
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implemented in different application scenarios of overkill and
leakage problems.

Some future studies are recommended to focus on
clarifying the interactive effects among defective types,
CCD strictness, and multi-CCD switch decisions to overall
AOI performances and applications of the proposed model
long with manufacturing execution system.
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