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ABSTRACT For long-term electrocardiogram (ECG) signalmonitoring, a portable and small size acquisition
device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson
Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are
converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system.
Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data
for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode
motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder
(LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the
signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNRin = 12 dB, compared with convolu-
tional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test,
an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-
to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted
summer, it can be applied to verify the reproducibility of measurement for the proposed method. The
measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR
and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising
Autoencoder (FCN-DAE).

INDEX TERMS Electrocardiogram (ECG), ECG signal enhancement, embedded system, deep learning,
denoising autoencoder (DAE).

I. INTRODUCTION
Electrocardiogram (ECG) is a common tool used to
diagnosis, which records the electrical activity of the heart.
By analysis, the ECG can help us check some important
characterization, such as heart rhythm, heart rate variability,
and sleeping stage. To enable the recording of ECG out-
of-hospital, a wireless body area network (WBAN) device,
Holter, has been developed in recent years. The Holter can be
worn by a patient to record the ECG for a long-term period
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[1]. Also, these recorded data can be based on the diagnosis
when the doctor examines the patient [2], [3]. The experiment
in [4] reports a diagnostic accuracy could be improved if
extended themonitoring period to 14 days, which revealed the
demand for long-term monitoring [4]. However, some noise
signals, such as baseline-wander (BW) noise, muscle artifacts
(MA), and electrode motion (EM), are also recorded when
the ECG signal is received, which may cause a doctor or an
instrument to make an inaccurate diagnosis [5], [6].

Therefore, many ECG denoising algorithms have been
implemented and can be classified into four categories:
adaptive filter, empirical mode decomposition (EMD),
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discrete wavelet transform (DWT), and denoising autoen-
coder (DAE). An adaptive filter is an algorithm that uses
a filter whose coefficients change to an optimal state. The
primary and reference signals are the inputs, and the reference
signal is fed into a finite impulse response (FIR) filter or
an infinite impulse response (IIR) filter. The filter output is
used to approximately match the primary signal. Moreover,
the adaptive filter adjusts its coefficients based on the dif-
ference between the primary and filtered reference signals
using the stochastic gradient descent algorithm. In [7]–[9],
a noisy ECG and reference signal were fed into an adaptive
filter, and there was a high correlation between the reference
and the noise in the noisy ECG. When the adaptive filter
becomes stable, the filtered result is similar to the noise in
the noisy ECG [10]. Consequently, the clean ECG signal can
be estimated by calculating the difference between the noisy
ECG and filtered reference signal. Nevertheless, a reference
signal similar to a noisy ECG is not accessible in practice.

Using the empirical mode (EMD), the data can be decom-
posed into finite numbers of intrinsic mode functions (IMFs).
The noise and IMFs of the ECG are segregated; accord-
ingly, the clean ECG can be reconstructed by removing noise
from the IMFs. In [11], a noisy ECG was decomposed into
15 IMFs. The last three IMFs can be regarded as BW noise,
and the reconstructed signal is obtained after removing the
BW noise. In [12], as corrupting noise possesses components
primarily at high frequencies, a noisy ECG is decomposed
into 11 IMFs. Soft thresholding is applied to retain the
extrema of the time intervals between adjacent zero crossings.
Consequently, noise is eliminated in the initial IMFs, and
the signal content is mainly retained at higher levels of the
IMFs, where the residual signal is the clean ECG.Hence, soft-
thresholding is deployed to retain the larger values in the time
interval between two adjacent zero crossings within an IMF;
thus, high-frequency noise can be removed.

In another technique, the discrete wavelet trans-
form (DWT) is a transform that is widely used in signal
enhancement. In contrast to short-time Fourier transform
(STFT), which divides the time-frequency space into an
equally sized grid, DWT yields high-frequency resolution at
low frequencies and high time resolution at high frequencies.
In addition, a proper mother wavelet function is utilized to
discretize the signal energy of the noise. Thereafter, either
hard thresholding is applied to preserve the sharpness of
the original ECG signal, or soft threshold is exploited to
smoothen the reconstructed signal. In [13] and [14], the noisy
ECG is transformed to the wavelet domain, and the denoising
result is obtained using soft thresholding to remove the MA
noise energy at a high frequency. In [15] and [16], both soft
thresholding and hard thresholding were employed to remove
MA and EM noises. In [17], various mother wavelets were
utilized, whereas the effective mother wavelet was selected
by cross-correlation to retain better ECG features.

Recently, deep-learning architectures have been exten-
sively applied in various fields. Moreover, some denoising
algorithms based on denoising autoencoder (DAE, [18]) have

FIGURE 1. Block diagram of the proposed ECG signal acquisition and
testing system with edge AI computation of EMAR.

been proposed to reconstruct clean ECG signals. The DAE is
extended from the autoencoder [19], which can be separated
into encoder and decoder. The encoder was used to retain
the features of the clean ECG signal, and the decoder was
utilized to reconstruct the clean ECG signal using the features
obtained from the encoder.

In [20], the DAE architecture was applied to denoising
ECG signals, and the result indicated that noises, includ-
ing BW, MA, and EM, can be removed efficiently. In [21],
the proposed work based on a fully convolutional denois-
ing autoencoder (FCN-DAE) shows that a fully convolu-
tional network can decrease the computation complexity and
achieve superior denoising effects compared to the convolu-
tional denoising autoencoder (CNN-DAE). In [22], a long
short-term memory (LSTM) cell was added to the convo-
lutional denoising autoencoder. The LSTM cell learns the
sequential orders of ECG waves, which enhances the recon-
struction quality. However, the high computational complex-
ity restricts the implementation of the algorithm on an embed-
ded system. Therefore, many denoising algorithms that attain
better denoising effects than conventional algorithms have
been proposed. However, an algorithm for removing the real
measured noisy ECGs has not been developed in previous
work, instead of simulated noisy ECGs.

In this study, a low-memory shortcut connection (LMSC)-
based DAE was implemented on an embedded system. The
DAE can extract the features more efficiently through the
LMSC layer; thus, a smaller number of parameters and
computational complexity are acquired to achieve denoising
effects. Moreover, a test platform that can mix noise and
ENG signals was designed to evaluate the denoising effects
of various algorithms. Therefore, denoising results can be
judged objectively. The results indicate that the proposed
LMSC-DAE can remove noisy ECGs more effectively, and
clean ECG signals can be recovered.

II. ARCHITECTURAL DESIGN OF PROPOSED SYSTEM AND
NOISE SUPPRESSION TESTING PLATFORM
In this study, there are two main blocks in terms of the ECG
signal acquisition system and the electrode motion artifact
removal (EMAR) testing platform, as shown in Fig. 1. Con-
tinuous ECG signals in a static position (ECGclean) can be
acquired using a data collector (Atmega328p). After the zero-
padding scheme, each 10-bit digitalized ECG code can be
separated into two bytes for Bluetooth low energy (BLE)
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FIGURE 2. Flowchart of ECG signal sensing.

FIGURE 3. Proposed ECG signal acquisition device: (a) electrodes, (b) PCB
top side, and (c) PCB bottom side.

(HM-10) wireless transmission. Moreover, the transmitted
data are received by the Xavier Edge AI platform, which
is applied to remove motion artifact noise in real time.
To test the performance of the EMAR algorithm, an Arduino
DUE platform was used to control DAC (LTC2607) for EM
noise generation (EMnoise). A non-inverting weighted sum-
mer was designed to generate the desired noisy ECG signals
(ECGnoisy). Finally, the two-byte data were transmitted to an
edge AI platform (Nvidia Jetson Xavier NX) via Universal
Asynchronous Receiver/Transmitter (UART).

A. ECG SIGNAL SENSING
ECG signal sensing is primarily composed of an analog
front-end circuit (AFEC) and a data collector with a BLE
module, as shown in Fig. 2. The AFEC includes an instru-
mentation amplifier (INA333) with a driven right-leg circuit
that provides a higher common-mode rejection ratio, which
suppresses the common-mode signal interference from the
power source. Following the suggestion of the American
Heart Association [23], the frequency band of the proposed
band-pass filter ranges from 0.05 to 150 Hz, and a notch
filter is designed for the suppression of 60 Hz power-line
interference. Finally, a gain stage amplifies the signal in the

FIGURE 4. Edge AI embedded system: (a) workflow; (b) Jetson Xavier NX
platform.

FIGURE 5. Block diagram of data control.

range of 0–3.3 V, which can be further sampled using an
analog-to-digital converter (ADC).

The MCU is responsible for continuously processing the
10-bit digitalized ECG data at a sampling rate of 360 Hz, and
it converts each code into two bytes for BLE data transmis-
sion. The data were transmitted to an embedded system of
edge AI to execute the proposed EMAR algorithm in real
time. For the proposed ECG signal acquisition device, all
discrete components are weld on a 5 cm × 5 cm PCB, the
system clock rate is set to 8MHz, and the power consumption
in measurement is approximately 81.4 mW, which is able to
continuously monitor approximately 45.5 hours if a lithium
battery with 3.7 V and 1Ah is used. Fig. 3 shows the proposed
ECG signal acquisition device.

B. SIGNAL PROCESSING AND TESTING ON AN
EMBEDDED SYSTEM
For the data collection, an embedded system is employed to
display the acquired signals on a screen and store them. Addi-
tionally, the noisy ECG was fed into the proposed EMAR
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FIGURE 6. Overall neural architecture of the proposed LMCS-DAE.

algorithm every time while 1024 2-byte data from BLE were
received. After completing EMAR, it yields the reconstructed
denoised ECG data. Fig. 4 shows the workflow of the edge AI
embedded system. For data control, an embedded systemwas
applied to evaluate the performance of the proposed EMAR
algorithm in real and practical cases. The noise generator,
as shown in Fig. 5, is controlled by the Arduino DUE plat-
form, and a 16-bit DAC generates EM noise according to
the MIT-BIH noise stress test (NSTDB) [24], which is stored
in an SD card. Thereafter, a non-inverting weighted summer
was designed to mix both the human ECG signal and the
desired EM noise into a noisy ECG signal. At this moment,
the subjects remained in a static position as much as possible.
Finally, the noisy ECG and EM noises are converted into
digitalized codes and transmitted to the edge AI platform
using the UART protocol.

III. PROPOSED LMSC-DAE DESIGN
The relationship between the noisy ECG, clean ECG, andMA
noise is defined as (1). In this study, a lite EMAR algorithm,
LMSC-DAE, was developed and can be easily implemented
on an edge AI platform.

ECGnoisy= ECGclean+ MAnoise (1)

The proposed novel LMSC-DAE, shown in Fig. 6, comprises
two convolution, eight encoder, eight decoder, and seven
shortcut connection layers. To expand the feature maps to
16 × 1024, 1024 noisy ECG samples per frame were fed
into one-dimension convolution layer (1D Conv.). Here, the
channel size was fixed to 16 for all layers, and the feature size
was 1024. The eight encoder layers extract the noise features
(a1– a8), as shown in Fig. 7(a), and the feature size decreases
per layer by a factor of two. In each encoder layer, a one-
dimension residual block (1D Res.) is adopted to extract the
noise feature and eliminate the vanishing gradient problem
caused by layers of deep neural networks [25]. Additionally,
it uses a one-dimensional convolution with stride = 2 to
decrease the output features. Finally, the last encoder layer
yields 16 × 4 compressed data, z.

FIGURE 7. Workflow of the proposed LMSC-DAE: (a) encoder layer
design, (b) decoder layer design, and (c) proposed LMSC layer design.

Conversely, the eight decoder layers reconstruct the noise,
as shown in Fig. 7(b), and the feature size increases per
layer by a factor of two. In each decoder layer, a one-
dimension residual block (1D Res.) was adopted to recon-
struct the noise, and one-dimensional transposed convolution
(1D Trans. Conv.) with a stride of 2 was used to expand the
output information. To enhance the learning effectiveness,
each connection between the encoder and decoder layers
inserts an extra layer, LMSC, to provide partial key informa-
tion. The LMSC is used to improve the large amount of mem-
ory storage in use on the shortcut connection. Here, we used
1D. Conv. to compress the 16 channels feature information
into one channel, and only 1 × 210−n of data are reserved
in memory. Thereafter, one channel feature is reproduced to
obtain the original size of the feature data without including a
non-linear function to avoid the problem of missing features
[26]. After eight decoder layers, the size of the feature maps
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recovers to 16 × 1024, and the signal is further fed into the
last convolution layer, as shown in Fig. 7(c), to generate MA
noise. Finally, the clean ECG signal can be computed by noisy
ECG minus the reconstructed MA noise from the noisy ECG
signal. Notably, kernel sizes of 1D Conv. and 1D Trans. Conv.
were set to 5, and the activation function adopted LeakyReLU
(slope = 0.1) to solve the dying ReLU problem [27].

IV. EXPERIMENTAL AND MEASUREMENT RESULTS
A. EVALUATION CRITERIA
To evaluate the noise cancellation performance, two criteria,
the improvement of signal-to-noise ratio (SNRimp) and per-
centage root-mean square (PRD), were used in this exper-
iment. SNRimp indicates the improvement in SNR from the
reconstructed ECG (SNRout ) to the clean ECG (SNRin).
A greater SNRimp indicates a better denoising capability, and
it can be formulated as (2)–(4), where xi, x̂i, and x̃i, represent
the value of clean ECG, noisy ECG, and reconstructed ECG
with the sampled index i, respectively, and M represents the
length of the input signal, which is 1024 in this study.

SNRimp = SNRout − SNRin (2)

SNRin = 10× log10

( ∑M−1
i=0 x2i∑M−1

i=0 (xi − x̂i)2

)
(3)

SNRout = 10× log10

( ∑M−1
i=0 x2i∑M−1

i=0 (xi − x̃i)2

)
(4)

Here, PRD indicates the reconstructed quality of the out-
put signal of the algorithm model by calculating the error
between the clean and reconstructed ECGs. A smaller value
of PRD corresponds to a smaller difference and is defined
according to (5). To ensure fair evaluation, it is necessary to
remove the bias in a clean ECG before evaluating the PRD
value [28].

PRD(%) =

√√√√∑M−1
i=0 (xi − x̃i)2∑M−1

i=0 x2i
× 100% (5)

B. DATASET FOR MODEL TRAINING AND
PRE-PROCESSING
The MIT-BIH noise stress test (NSTDB) [24] was utilized
to train various DAE models. The dataset includes 12 noisy
ECG recordings and 3 raw recordings of the noise types (i.e.,
EM, BW, and MA) in a noisy ECG. All the records were
sampled at 360 Hz and quantized using an 11-bit ADC. Noisy
ECG recordings were generated by mixing two MIT-BIH
arrhythmia database (MITDB) [29] ECG recordings (i.e.,
118 and 119) with six different SNR values of EM (i.e., −6,
0, 6, 12, 18, and 24 dB). In this study, 12 noisy ECGs were
separated into 6888 fragments with a length of 1024 samples.
Thereafter, 80% of the fragments were split into a training set
to train various DAE models, and the remaining 20% were
used to evaluate SNRimp and PRD. In the pre-processing, all
fragments were first subtracted from the DC offset, and then

TABLE 1. Number of MACs and trainable parameters for various DAEs.

they were divided by 2048 to normalize the fragment between
-1 and 1.

C. COMPARISONS OF COMPUTATIONAL COMPLEXITY
AND TRAINABLE PARAMETERS FOR VARIOUS DAEs
To evaluate denoising performance, two well-known DAEs,
namely, DNN-DAE and CNN-DAE, and two state-of-the-art
approaches, namely, FCN-DAE [21] and CNN-LSTM-DAE
[22], were compared with the proposed LMSC-DAE. The
DNN-DAE consists of 10 fully connected layers, each with
512, 256, 128, 64, 32, 64, 128, 256, 512, and 1024 nodes.
Meanwhile, the non-linear function, ReLU, was inserted in
each fully connected layer. In CNN-DAE, six 1D Conv. lay-
ers were extracted, and the ECG features were compressed.
Thereafter, six 1D Trans. Conv. and two fully connect lay-
ers accorded the extracted features to reconstruct a clean
ECG. In FCN-DAE [21], there were seven 1D Conv. layers
in the encoder to extract the features of the clean ECG.
Subsequently, there were eight 1D Trans. Conv. layers in
the decoder to reconstruct a clean ECG signal. The results
demonstrated that the 1D Conv. and 1D Trans. Conv. used for
all layers can effectively avoid magnitude distortion in the
QRS complex wave. The CNN-LSTM-DAE [22] consists of
eight 1D Conv. layers and one LSTM layer in the encoder.
In the decoder, eight 1D Conv. layers, eight up-sampling
layers, and one fully connected layer were used to obtain
the reconstructed ECG. Thus, the CNN-LSTM-DAE [22]
requires many multiply accumulate operations (MACs) and
trainable parameters (TPs).

Table 1 compares the number of TPs andMACs in the three
DAE models. The number of TPs of the CNN-LSTM-DAE
is 158 times higher than that of the proposed LMSC-DAE,
and it is not suitable for the implementation of an embed-
ded system. In contrast to the FCN-DAE [21], the LMSC
layer in the proposed model can pass the noise features from
the encoder to the decoder more effectively. Therefore, the
LMSC-DAE can use fewer MACs and trainable parameters
to eliminate noise in noisy ECG, compared to the FCN-based
DAE. The detailed information for each layer is summarized
in Table 2. The proposed LMSC-DAE has 12.36M MACs
and 1.45MB forward memory, and it is suitable for imple-
mentation in an embedded system for real-time operation.
Moreover, 3888 trainable parameters are used in each encoder
and decoder layer. The detailed layers of the residual block,
encoder, decoder, and LMSC layers are listed in Table 3, and
the kernel size and paddings are set to 5 and 2, respectively,
in the entire LMSC-DAE.
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TABLE 2. Layer information of the proposed LMSC-DAE.

TABLE 3. Layer information of the submodule of the proposed LMSC-DAE.

D. EXPERIMENTAL RESULTS OF NSTDB
In this study, the number of epochs for various DAEs was
chosen to be 1000 to ensure that each model has suitable
trainable parameters to remove the noise from noisy ECG.
Fig. 8 presents the box plot of SNRimp comparisons for var-
ious DAEs under the six SNRin values for the testing set
from NSTDB [24]. When the SNRin is set to 6 dB, the noise
signal is significantly greater than the clean ECG signal;
thus, various DAEs have a significant improvement (average

SNRimp values approaching 20 dB) on the EMAR issue.
However, the range of SNRimp for variousDAEs becomes lim-
ited when the noise becomes smaller with increasing SNRin
values. The results presented in Figs. 8 and 9 clearly show
that the proposed LMSC-DAE with lower MACs and fewer
TPs has the best SNRimp and PRD values compared to other
approaches. The CNN-LSTM-DAE [22] reported better per-
formance, whereas the clean signal was corrupted by additive
Gaussian white noise at specified SNR levels of −1, 3, and
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FIGURE 8. Box plots for SNRimp comparison of various DAEs with six
different SNRin values under the testing set of NSTDB; the box plots
include outliers (dot), minimum, interquartile range, median, maximum,
and average (dotted line).

FIGURE 9. Box plots for PRD comparison of various DAEs with six
different SNRin values under the testing set of NSTDB; the box plots
include outliers (dot), minimum, interquartile range, median, maximum,
and average (dotted line).

TABLE 4. SNRimp comparison of various DAEs in NSTD.

TABLE 5. PRD comparison of various DAEs in NSTDB.

7 dB for the training and testing sets. However, it showed
nonsignificant improvement in this work under different SNR
levels of MA noise. Therefore, the results indicate that the
CNN-LSTM-DAE [22] may not be effective in eliminating
MA noise.

The average criteria for SNRimp and PRD are listed in
Tables 4 and 5, respectively. The results demonstrate that the
SNRimp achieved a significant improvement for all models
when the SNRin is -6, 0, and 6 dB. However, when the level of

FIGURE 10. Comparison of the reconstructed results for NSTDB: (a) noisy
ECG (Input); (b) clean ECG (Ground truth); (c) DNN-DAE; (d) CNN-DAE;
(e) FCN- DAE; (f) CNN-LSTM-DAE; (g) LMSC-DAE.

noise was quite low (SNRin = 24 dB and 18 dB), only LMSC-
DAE had positive SNRimpvalues. In the performance of PRD,
the proposed LMSC-DAE has a 2.3% improvement over the
other approaches when SNRin = −6 dB. Additionally, the
reconstructed ECG is much closer than the clean ECG when
the level of noise is smaller. In contrast, CNN-LSTM-DAE
exhibited [22] the worst PRD for any SNRin.

Fig. 10 shows the noise-removal experiment for one frag-
ment in the testing set. As shown in Fig. 10(a), it is difficult
to recognize the ECG features in the noisy ECG because of
the noise covering the clean ECG in Fig. 10(b). The results in
Figs. 10(c) and 10(d) demonstrate that the waves of the QRS
complex are distorted in both DNN-DAE and CNN-DAE.
Fig. 10(e) reveals that the FCN-DAE [21] output can remove
most of the noise, but it is not perfect owing to the incorrect
detection in the marked location. Fig. 10(f) shows that most
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FIGURE 11. Box plots of the denoising criteria of three DAEs under six
SNRin for the 8 volunteer’s 5-min ECG recordings: (a) comparison of
SNRimp; (b) comparison of PRD.

of the ECG features are distorted in CNN-LSTM-DAE [22],
and Fig. 10(g) shows that the proposed method can retain the
ECG features and eliminate the noise more effectively than
other approaches.

V. MEASUREMENT RESULTS OF THE VOLUNTEER’s ECG
SIGNALS
In this study, the proposed testing platform is utilized to
record the desired real-time noisy ECG, which is mixed with
the given MA noises and human ECG signals. Thereafter,
noisy ECG signals were further applied to evaluate the perfor-
mance of noise removal for various DAEs. Ideally, it would be
better to collect noisy ECG signals from volunteers. However,
it is impossible to evaluate SNRimp and PRD because we can-
not obtain the clean ECG and the corresponding noisy ECG
simultaneously. To perform an objective evaluation [30],
clean ECG recordings were obtained from the volunteers,
which were kept in a static position. Meanwhile, a 16-bit
DAC (LT2607) controlled by the Arduino DUE platform
directly generated EM noise. Fig. 11 shows the box plots of
SNRimp and PRD for various DAEs under the condition of
real-time recordings of the volunteer’s ECG. Therewere eight
ECG recordings, each of which took 5 minutes. Because the
volunteer’s ECG belonged to unseen and untrained patterns,
the testing results would be more suitable for practical appli-
cations. Table 6 summarizes the detailed average SNRimp and
PRD of various DAEs under 8 the 5-min ECG recordings of
volunteer. The results indicate that all DAEs have an different
performance between the NSTDB experiment and the volun-
teer’s ECG recordings. Considering the NSTDB experiment,
the DAEs have sufficient data to learn the features of EM
noise in the training phase; thus, FCN-DAE [21] and the
proposed algorithm can reconstruct the clean ECG effectively
in the testing phase. In contrast, none of the volunteer’s ECG
recordings were observed in the training phase. Therefore, the
testing sets using the experiment of NSTDB can obtain better
improvement. Overall, the proposed LMSC-DAE with lower
computational complexity can achieve an SNRimp of 5.41 dB
and PRD of 42.31% on average. Therefore, it is a much better
solution for an embedded system in implementation.

FIGURE 12. Comparison of the reconstructed results for volunteer’s ECG
recordings: (a) Noisy ECG (Input); (b) clean ECG (Ground truth); (c)
DNN-DAE; (d) CNN-DAE; (e) FCN- DAE; (f) CNN-LSTM-DAE; (g) LMSC-DAE.

TABLE 6. Comparison of SNRimp and PRD for volunteer’s ECG recordings.

Fig. 12 shows the noise-removal experiment for one frag-
ment in the volunteer’s ECG recordings. Figs. 12(c) and
12(f) reveal that DNN-DAE and CNN-LSTM-DAE [22] were
unable to extract the effective features to reconstruct the
ECG when the ECG was never observed before. Fig. 12(d)
demonstrates that the CNN-DAE was able to reconstruct the
T wave only. FCN-DAE [21], as shown in Fig. 12(e), and
LMSC-DAE, as shown in Fig. 12(g), clearly show better
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denoising results in this experiment, although FCN-DAE [21]
reconstructs an incorrect wave in the marked location.

VI. DISCUSSION
Based on the experiments and measurement results, DNN-
DAE, CNN-DAE, and CNN-LSTM-DAE [22], which used
a fully connected layer, were unable to reconstruct an
ECG from the volunteer’s ECG. In the NSTDB experiment,
because the ECG features of the testing and training sets
were similar, three DAEs could maintain the ECG features
by fully connected layer. However, the large number of train-
ing parameters causes the neural network to not efficiently
exclude unnecessary features. Thus, it is easy to lose robust-
ness when the neural network faces the outlier data, such as
the experiment of the volunteer’s ECG. Conversely, the FCN-
DAE [21] and proposed LMSC-DAE consist only of convolu-
tional layers and activation functions. It is efficient to extract
features using a convolution layer in a time series. More-
over, the LMSC layer passes partial key features between the
encoder and decoder, and the experimental results demon-
strate a better noise suppression ability in practical applica-
tions of ECG signal processing.

A. CONCLUSION
In this paper, a signal acquisition system with a deep-
learning-based LMSC-DAE was proposed for human ECG
records, as well as EM noise suppression. The EM noise was
randomly generated from the NSTDB with specified SNR
levels of −6, 0, 6, 12, 18, and 24 dB. The proposed LMSC-
DAE can achieve a higher SNRimp and lower PRD than other
related approaches, whether the input ECG signal is given
from the MITDB or acquired from a volunteer. Considering
the applications of edge AI computing, the proposed design
is very useful for the restricted computation capability to
execute the deep-learning-based noise-suppression algorithm
and to obtain better denoised ECG signals in the future.
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