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ABSTRACT As the operational domain of autonomous vehicles expands, encountering occlusions during
navigation becomes unavoidable. Most of the existing research on occlusion-aware motion planning focuses
only on the longitudinal motion of the ego vehicle and neglects its lateral motion, resulting in output motion
that can be overly conservative. This paper proposes a motion planner capable of actively adjusting the ego
vehicle’s lateral position to minimize occlusions. The proposed planner is applicable in various scenarios
and can function under perception uncertainty. This work also extends our previously proposed 3D visibility
estimation approach for addressing occlusions caused by objects which are not present in HD maps. The
proposed planner first generates candidate trajectories. The current and future visibility of each trajectory is
then estimated using live LiDAR data and HDmaps. These estimated visibilities are converted into visibility
costs, which are then used to determine the optimal output trajectory in conjunction with other planning
costs. The proposed planner is tested in three scenarios using the CARLA simulator: an occluded T-junction
crossing, turning at a low-visibility corner and preparing to pass a parked vehicle, using live localization and
object detection results. The experimental results reveal that the proposed planner allows the ego vehicle
to minimize occlusions by diverging from the center of the lane and, consequently, to discover occluded
vehicles earlier than a baseline planner in most situations. Moreover, occlusions caused by a parked vehicle
not present in the HD maps were estimated correctly using our extended visibility estimation method.

INDEX TERMS 3D LiDAR, active perception, autonomous driving, autonomous vehicles, high-definition
map, intelligent vehicles, motion planning, occlusion, trajectory generation, visibility.

I. INTRODUCTION
As a result of intensive research and development, the
operational scope of autonomous vehicles has been con-
tinuously expanding. Autonomous vehicles are no longer
restricted to navigating only in simple and controlled envi-
ronments and can now operate in increasingly compli-
cated landscapes. In complex driving scenarios, ranging
from urban streets full of obstacles and low-visibility inter-
sections to hilly and winding roads in rural areas, it is
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almost impossible for autonomous vehicles to obtain com-
plete information about the driving environment at all
times due to occlusions, i.e., sensor blind spots caused by
obstructions.

Although the ego vehicle’s imperfect perception of the
driving environment could potentially be alleviated through
the use of external aids, such as permanent roadway sensor
infrastructure or communications between vehicles, these
services may not be available at all locations. Dependence
on additional information from external sources to operate
safely could limit the wide-scale deployment of autonomous
vehicles since it raises the expense and limits the speed of
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autonomous vehicle adoption. Therefore, it is essential that
autonomous vehicles are aware of the limitations of their
sensing systems and are thus able to operate safely in complex
environments where occlusions are present, even without
external support.

In order to navigate safely in areas with occlusions, the
visibility conditions of the driving environment must be
considered during the motion planning stage. The topic of
visibility-aware (or occlusion-aware) motion planning has
gained increasing attention in recent years. However, despite
the steadily growing body of research on motion planning in
areas with limited visibility, the majority of the existing stud-
ies have focused almost exclusively on longitudinal motion
planning, i.e., the autonomous vehicle is either assumed to be
driving in the center of a lane or along a pre-generated trajec-
tory. In many situations, strategically making the autonomous
vehicle deviate from the lane’s center can significantly reduce
occlusion and increase the chance of discovering hidden traf-
fic participants. Therefore, ignoring possible lateral motion
by the autonomous vehicle can result in inefficient output
motion.

A few studies have considered optimizing the ego vehicle’s
lateral position in order to proactively improve visibility.
However, these approaches tend to be scenario-specific, i.e.,
they are designed for a particular scenario such as intersec-
tion crossing or passing parked vehicles. Another compo-
nent missing from existing studies on motion planning in
occluded areas is the use of highly accurate visibility estima-
tion. In most of these approaches, visible region estimation
is typically done by representing surrounding obstacles with
simple 2D geometric shapes and then performing ray-casting.
While using 2D representation yields efficient computations,
it also results in inaccurate estimation of visibility in areas
with complexly-shaped obstacles or undulated terrain. Lastly,
uncertainty within the perception modules, e.g., those used
for localization and object detection, is rarely taken into
consideration.

This paper proposes a motion planner capable of actively
adjusting the ego vehicle’s lateral position to minimize occlu-
sions by estimating current and future visibility. The plan-
ner proposed in this work is applicable in various scenarios
and tolerates realistic uncertainty from perception modules.
Additionally, this paper extends an approach for 3D visibility
estimation proposed in our previous work [1], which allows
the proposed system to handle occlusions caused by objects
that are not present in high-definition (HD) maps by incorpo-
rating live sensing data from the onboard LiDAR unit during
the estimation process.

The proposed planner first generates several physically
feasible trajectories for the ego vehicle from its current posi-
tion, with different lateral offsets from the reference path. The
visibility conditions along each candidate trajectory are then
estimated in 3D using HDmaps and live sensing data in order
to achieve accurate estimation in complex environments.
Subsequently, the visibility conditions of each trajectory are
quantified and converted into a visibility cost. Finally, the

optimal trajectory is selected from the generated candidates
based on visibility and other planning costs.

The proposed planner was tested in the CARLA sim-
ulator [2] in three different scenarios where occlusions
were present. These test scenarios consisted of crossing a
T-junction, making a right turn, and preparing to pass a parked
vehicle not present in the HDmaps. In order to verify that the
proposed planner is practical under conditions of perception
uncertainty, actual localization and object detection results
obtained in real-time were used. Our experimental results
showed that the proposed planner could generate a trajectory
that allowed the ego vehicle to minimize occlusions and con-
sequently detect occluded traffic participants earlier than the
baseline planner in most cases. Furthermore, our improved
visibility estimation approach was able to accurately estimate
occlusions caused by the parked vehicle, even though it was
not present in the HD maps.

The main contributions of this paper are as follows:

• A motion planner capable of actively adjusting the ego
vehicle’s lateral position to minimize occlusions, which
is applicable in various scenarios and under conditions
where perception uncertainty is present.

• Extension of our previously proposed visibility estima-
tion approach for handling occlusions caused by objects
which do not appear in HD maps.

The remainder of this paper is organized as follows:
In Section II, previous research regarding occlusion-aware
motion planning for autonomous vehicles is reviewed.
In Section III, details of our proposed motion planner are
provided, including conversion of visibility conditions into
trajectory costs, as well as optimal trajectory selection.
In Section IV, details of our approach for estimation of
visibility at specified locations using 3D HD maps and live
sensing data are provided. In Section V, the details of the
experimental procedure used to assess the proposed planner
are provided. Our experimental results when using the pro-
posed and baseline planners in multiple variations of the three
scenarios described earlier, i.e., T-junction crossing, turning
right, and preparing to pass, are presented along with discus-
sions in Sections V-A, V-B, and V-C, respectively. Finally, the
conclusions of this paper are given in Section VI.

II. RELATED WORK
As the operational design domain (ODD) of autonomous
vehicles continues to broaden and encounters with occlusions
become inevitable, the number of studies on occlusion-aware
motion planning has increased. Several of these studies
have proposed utilizing additional information from exter-
nal sources to ensure the safe navigation of autonomous
vehicles. For example, in [3] additional sensing data from
road junction infrastructure, transmitted via a low-latency
mobile network, is used in parallel with the onboard per-
ception module to plan longitudinal motion that is safe
and comfortable for the passenger. Zhao et al. [4] proposed
an algorithm for safely scheduling connected automated
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vehicles (CAVs) traveling through an uncontrolled inter-
section by sharing information among the vehicles. In [5],
an approach for increasing the situational awareness of an
automated bus by fusing information from other connected
vehicles as well as from infrastructure with local sensors
was introduced. While leveraging additional information
from other sources can improve overall sensing coverage
of surrounding environments, a high-quality network with
low latency is typically required to transmit the necessary
information in real-time reliably. Moreover, in the case of
infrastructure, multiple sensors are often required to provide
adequate coverage of an area, as demonstrated in [6] and [7].
These infrastructure requirements translate into extra time
and investment needed for autonomous vehicles to operate
safely. As a result, the wide-scale adoption of approaches that
depend on information from external sources will likely be
slow.

Instead of relying on additional data from external sources
to reduce occlusion, many researchers have focused on
ensuring that autonomous vehicles can navigate safely even
without complete observation of the environment by identi-
fying occluded regions and considering them during motion
planning. Several different approaches for occlusion-aware
planning have been proposed in recent years. One common
approach used in various systems [8]–[15] to reduce the risk
of collision with unobserved traffic participants is to assume
that there are always virtual obstacles, moving at a constant
speed from the boundaries of the visible region, that will
intercept the autonomous vehicle’s trajectory. By treating
these approaching virtual traffic participants as real moving
obstacles, time-to-collision (TTC) can be calculated. Thus,
it is possible to regulate the speed of the ego vehicle so that
collision with these potential occluded objects can generally
be avoided. Since TTC is very inexpensive to calculate, the
main advantage of these approaches is their efficiency. How-
ever, these methods are sometimes criticized for their lack
of a safety guarantee, as virtual traffic participants are often
treated as particles that lack dimensionality [8], [9]. Nonethe-
less, improvements in several aspects of this approach have
been proposed to reduce the severity of this drawback. For
instance, in [12] and [13], a reaction time or a delay before
the autonomous vehicle starts braking is taken into account.
In [13]–[15], potential collision zones are used instead of
collision points to cover more possible collision scenarios.

In order to ensure the safety guarantee while navigating in
occluded areas, Orzechowski et al. [16] proposed extending a
set-based approach used for predicting the future occupancy
of detected traffic participants, introduced in [17], to handle
road users that are potentially occluded. The future states of
virtual objects traveling from the edges of the visible area are
over-approximated and represented as reachable sets. These
reachable sets cover all possible future states of the virtual
objects under a set of assumptions regarding their initial
speed, position, orientation, and local traffic rules. Since the
reachable sets include the worst-case scenario, the output
motion of the ego vehicle is deemed safe if its future trajec-

tory does not intersect with any of the reachable sets within
the planning horizon. The reachable set prediction has been
utilized in several studies, e.g., [18]–[25] The main benefits
of using reachable sets to represent the possible future states
of occluded traffic participants are the guarantee of safety
and low computational cost. However, since reachable sets
include the worst-case scenario, they often result in overly
conservative control outputs for the ego vehicle. Neverthe-
less, several techniques have been proposed to address the
problem of excessive caution when using reachable set pre-
diction. For example, in [22] and [23] the reachable sets are
repeatedly updated as new observations become available.
As a result, more accurate estimates of the states of hidden
traffic participants can be obtained and utilized to improve
driving efficiency. In [24] and [25], overly cautious motion
is alleviated by considering estimated future visibility and by
encouraging the ego vehicle to actively improve its visibility
of the driving environment.

In [26]–[32], motion planning in occluded areas is formu-
lated as a Partially Observable Markov DecisionMaking Pro-
cess (POMDP). By framing motion planning as a POMDP,
sensing limitations and noise are directly reflected by the
observationmodel. The state of hidden traffic participants can
be estimated by utilizing both current and past observations
via belief state updates. As a result, approaches based on
a POMDP are less likely to generate overly conservative
output motion than those that assume the worst-case sce-
nario. Additionally, future developments of the surrounding
situation over the planning horizon are considered during
the decision-making process in a POMDP framework. For
instance, Hubmann et al. [30] takes into account a predicted
future field of view (FOV) while planning the output action
of the autonomous vehicle. As a result, the vehicle actively
positions itself to minimize occlusion. While a POMDP is
very versatile and can be applied in various scenarios, solv-
ing for its optimal policy, which maps the current belief
state to an output action, is often computationally expensive.
Some prior studies have relied on pre-computing the policy
offline [26]–[28] Nevertheless, as a result of continuous
improvement in POMDP solvers and hardware performance
over the years, several recent studies have successfully
planned the output motion of an autonomous vehicle during
execution time, although a coarsely discretized action space
was used [29]–[32].

Apart from the more common techniques mentioned
above, some alternative approaches have also been proposed.
In [33]–[36], a driving policy at an occluded, urban intersec-
tion is obtained using Reinforcement Learning (RL). In [37]
and [38], efficient driving behaviors are learned directly
from the driving data of expert drivers at low-visibility inter-
sections using feature extraction. Similarly, driving data of
experts is utilized in [39] to determine the parameters of
a risk potential function for an uncontrolled intersection,
which is ultimately used to decide the safe speed of the ego
vehicle. In [40], contextual information is used to determine
a probability distribution for the emergence of pedestrians
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from occluded sidewalks in order to regulate the longitudinal
motion of the autonomous vehicle on a straight segment of
road. Andersen et al. [41] proposed a framework for passing
a parked vehicle that takes into account the size of the blind
spot during trajectory optimization viaModel Predictive Con-
trol (MPC). While these alternative approaches have been
shown to generate efficient driving behavior when encoun-
tering occlusions, their main limitation is generalization, i.e.,
their ability to be applied in scenarios other than the ones they
are specifically designed for.

The majority of the previously mentioned studies have
focused exclusively on regulating the longitudinal motion of
the autonomous vehicle, which is generally assumed to be
traveling down the center of its lane or along a pre-generated
trajectory.While planning complexity is reduced when lateral
motion is ignored, this can lead to an overly conservative and
suboptimal output motion. In many situations, adjusting the
ego vehicle’s lateral position can minimize occlusions and
thus increase the chance of detecting hidden traffic partic-
ipants earlier. Only a handful of existing studies have con-
sidered making the vehicle actively deviate from the current
lane’s center or its reference trajectory to improve visibil-
ity. The most notable works are [24], [25], [30], and [41].
Unfortunately, the methods proposed in [30] and [41] target
specific scenarios, i.e., intersection crossing and passing a
parked vehicle, respectively. As a result, their applicationmay
be limited. Moreover, in these studies, visibility estimation
is performed in 2D, and surrounding objects are assumed
to have simplistic shapes, such as rectangles. Although the
approach proposed in [24] was shown to be applicable in var-
ious situations, it lacks highly accurate 3D visibility estima-
tion. Zhang et al. [25] addressed these problems by utilizing
Octomap [42] to estimate both current and future visibility.
The importance of performing visibility estimation in 3Dwas
shown in one of their experiments, in which an autonomous
vehicle has to drive uphill and is faced with an occlusion
caused by the hill’s summit. Since the future visibility was
estimated using a pre-constructed Octomap and predicted
occupancy of other obstacles in [25], estimations of future
occlusions resulting from objects that were not present during
the offline generation of the Octomap may not be accurate.
Additionally, ground truth information regarding the state of
objects was obtained directly from the simulator. Therefore,
performance with a realistic level of perception uncertainty
was not tested.

As a result, there remains a need for a motion planning
approach that is capable of minimizing occlusion by strategi-
cally adjusting the vehicle’s lateral position based on highly
accurate estimates of current and future visibility conditions,
which is also applicable in various traffic scenarios, as well
as being able to operate with a realistic level of perception
uncertainty.

III. PROPOSED MOTION PLANNER
This section provides the operational details of our proposed
motion planner. The planner proposed in this study is based

FIGURE 1. Architecture of the proposed planner.

on OpenPlanner, which is an open-source, integrated planner
for mobile robot navigation in highly dynamic environments.
OpenPlanner includes various components such as a global
planner, a trajectory generator, and a behavior state gen-
erator.1 The difference between our proposed planner and
OpenPlanner is mainly in the local planning stage, where
our planner generates a set of candidate trajectories and then
selects the best trajectory. Additionally, the proposed planner
includes a visibility estimator that can quantify the visibility
condition of a specified location. Unlike the local planner in
OpenPlanner, the proposed planner also considers the visibil-
ity condition of the candidate trajectories in addition to other
standard planning criteria such as the risk of collision with
detected obstacles, lane center deviation, and stability.

The overall architecture of our proposed planner is
described in Section III-A. In Section III-B, integration of
the visibility cost of the candidate trajectories, which is the
primary improvement over the original OpenPlanner, is pre-
sented in detail.

A. PLANNER ARCHITECTURE
Fig. 1 shows the overall architecture of our proposed planner,
which consists of three main components: a global planner,
a local planner, and a visibility estimator. Since the proposed
planner shares a similar design with OpenPlanner, some of
its components, namely the global planner and the behavior
state generator inside the local planner, are adopted into the
planner proposed in this work. These components are shown
with dashed boundaries in Fig. 1.
The objective of the global planner is to find the optimal

route from the vehicle’s starting position to its destination.
A road network map, which contains information on lanes,
intersections, traffic directions, speed limits, and traffic signs,
is used by the global planner to construct a routing graph.
Consequently, dynamic programming is applied to calculate
the best route from the starting vertex to the goal vertex in the
routing graph.

After the global route is determined, it is utilized by the
local planner as a reference for creating candidate trajectories

1The latest source code of OpenPlanner can be found at https://
github.com/hatem-darweesh/autoware.ai.openplanner
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FIGURE 2. Generation of candidate trajectories.

(i.e., rollout generation). The local planner generates a total
of Nrollout rollouts along the global reference path. The gen-
erated rollouts are denoted by {Rr }

Nrollout
r=1 . All rollouts are

parallel to the global path and are spaced evenly to each side
of the global path, with each rollout beingWrollout apart from
the global path and the adjacent candidate trajectories. The
rollouts originate from the ego vehicle’s current position and
extend forward longitudinally to the end of the planning hori-
zon (Hplanning). Fig. 2 shows an example of rollouts generated
by the local planner.

Each rollout has associated costs, including center cost
(ccenter), transition cost (ctransition), longitudinal collision cost
(cloncollision), lateral collision cost (clatcollision), and visibility cost
(cvisibility). Each cost indicates how good or bad a candidate
trajectory is relative to other candidate trajectories regarding
that particular aspect of the trajectory. A summation of the
costs for all of the generated rollouts in a particular cost
category is equal to one. The calculation of common planning
costs, i.e., ccenter, ctransition, cloncollision, c

lat
collision, is the same as

described in [43]. Cost cvisibility is calculated from visibility
ratio V , which is a numerical value that represents the visibil-
ity condition at a specified location from the perspective of
the ego vehicle, as previously proposed in [1] and improved
in this paper. As shown in Fig. 1, the local planner utilizes V
from the visibility estimator, which takes a road networkmap,
a point cloud map, the ego vehicle’s current pose, and live
LiDAR data as inputs. More information about the visibility
estimator is provided in Section IV. A weighted sum of all
of the costs associated with each rollout (C) is calculated as
follows:

C = wcenterccenter + wtransitionctransition + wlon
collisionc

lon
collision

+wlat
collisionc

lat
collision + wvisibilitycvisibility (1)

where wcenter, wstability, wlon
collision, w

lat
collision, and, wvisibility are

normalized weights. Finally, the rollout with the lowest C is
selected as the output trajectory.

After the output trajectory is selected, the behavior state
generator, which is adopted from [43], determines the output
action, i.e., going forward along the same trajectory, stopping,
or changing the trajectory, based on information about sur-
rounding obstacles and traffic light status.

B. VISIBILITY COST CALCULATION
The visibility cost of each rollout (cvisibility) is calculated
from visibility ratio V of positions sampled evenly along the
rollout. Let a total of Nsampling sampled locations along a

rolloutRr be {lr,s}
Nsampling
s=1 where lr,1 represents the sampled

location closest to the current position. The visibility ratio
of lr,s is denoted by Vr,s and can be calculated using the
approach detailed in Section IV. This visibility ratio is posi-
tively correlated with the visibility condition, i.e., the higher
the value, the better the ego vehicle’s visibility at location lr,s.
However, visibility cost cvisibility has an inverse relationship
with the visibility condition. Therefore, visibility ratio Vr,s
is first converted to occlusion ratio O′r,s using the following
equation:

O′r,s = 1− Vr,s. (2)

The value ofO′r,s also ranges from zero to one, similar toVr,s.
However, higher values of O′r,s are associated with a higher
degree of occlusion.

Theoretically, if lr,s is located on a straight road segment
without any obstacles, the value of O′r,s should be zero.
However, O′r,s is estimated using live sensing data and point
cloud maps, which can be noisy. As a result, O′r,s sometimes
ends up being a very small number close to zero instead of
exactly zero. Similarly, there are also cases whereO′r,s is very
close to one, despite lr,s being completely occluded. In order
to mitigate the noise issue in practice, extreme values ofO′r,s
are squashed to zero or one using the following equation:

Or,s =


0, O′r,s < Tlower
O′r,s, Tlower ≤ O′r,s ≤ Tupper
1, O′r,s > Tupper

(3)

where Tlower and Tupper are the lower and upper thresholds of
O′r,s, respectively. The squashed O′r,s is denoted by Or,s.

In order to calculate the visibility cost of an entire rollout
Rr , a discounted sum of Or,s of all sampled locations along
the rollout (c′visibilityr ) is first calculated as follows:

c′visibilityr =
Nsampling∑
s=1

γ s−1Or,s (4)

where γ ∈ (0, 1) is a discount factor used to account for
an increasing level of uncertainty in the calculated value of
Or,s along rollout Rr . The further the sampled position is
from the current position, i.e., the higher the s index, the more
delay there is before the ego vehicle will actually reach that
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position. During the delay, the surrounding circumstances
may change, e.g., occluding obstacles may move, or new
obstacles may be detected. Therefore, the significance ofOr,s
is discounted by γ . The closer to zero the value of γ , the
lower the impact of Or,s at distant positions on the overall
rollout visibility cost c′visibilityr . This cost c

′

visibilityr
is further

normalized to obtain the final visibility cost of a rollout
(cvisibilityr ) such that the sum of cvisibilityr over all generated
rollouts is equal to one. The normalization process begins by
identifying a set of rollouts with the least c′visibilityr . The set
of rollouts is denoted byM and formally defined as follows:

M = {c′visibilityr | c
′

visibilityr
= c∗visibility} (5)

where

c∗visibility = min{c′visibilityr }
Nrollout
r=1 . (6)

The value of visibility cost cvisibilityr can then be calculated
using the following equation:

cvisibilityr =

{
0, c′visibilityr ∈M
(Nrollout − |M|)−1, c′visibilityr /∈M

. (7)

Finally, cvisibilityr is used in Eq. 1 to calculate the overall
cost of a rollout. In special cases where every rollout has
an indistinguishable visibility condition, i.e., where c′visibilityr
is equal for all r , all of the outputs of Eq. 7 automatically
become zero. Thus, the visibility cost does not have any
impact on the overall rollout cost calculation in Eq. 1.

IV. VISIBILITY ESTIMATOR
In this section, our visibility estimator is explained in detail.
The goal of the visibility estimator is to calculate a numer-
ical value that is indicative of the visibility condition of an
input location. The visibility estimation method used in this
paper is based on an algorithm previously proposed in [1]
that leverages the information available in HD maps, i.e.,
a combination road network and point cloud map. The main
improvement introduced in this paper over the method pro-
posed in [1] is the ability to take into account occlusions
caused by objects that are not present in the point cloud map,
which is achieved by incorporating a 3D scan captured by a
LiDAR sensor in real-time.

An approach for identifying the visible regions of sur-
rounding roads using a 3D scan and a road network map is
first explained in Section IV-A. In Section IV-B, a method
for estimating the required local 3D scan from a point cloud
map and a live 3D scan is then described. Finally, a method of
calculating a visibility ratio from the estimated visible regions
is presented in Section IV-C.

A. ESTIMATION OF VISIBLE REGIONS
Regions visible from a specified location are estimated using
the z-buffering (depth buffering) algorithm. As shown in
Fig. 3, the algorithm first projects a set of 3D points that are
representative of the surfaces of surrounding objects onto a
2D image plane. The 3D coordinates of each surface point

FIGURE 3. Projection of 3D points onto a 2D image plane. A set of 3D
points representing the area of interest is projected onto a depth image.
By comparing the resulting depth image with that of other objects in the
scene, regions visible from the specified viewing point can be estimated.

[x, y, z]> are converted into a pixel position [u, v] and a pixel
depth value d , of a depth imageD that has a fixed pixel width
and height of Dhorizontal

resolution and Dvertical
resolution, respectively. Pixel

position (u, v) and depth value d of the projected point can
be calculated as follows:

u = barctan(
y
x
)×

Dhorizontal
resolution

Shorizontal
FOV

e (8)

v = b(arctan(
z√

x2 + y2
)− S lower

angle )×
Dvertical

resolution

Svertical
FOV

e (9)

d =
√
x2 + y2 + z2 (10)

where Shorizontal
FOV and Svertical

FOV are the horizontal and vertical
fields of view in radians, respectively. The variable S lower

angle
denotes the elevation angle, with respect to the ground plane,
from the specified viewing point to the lowest 3D point. Dur-
ing the projection, only the points that fall within the bound-
aries of the depth image, i.e., {(u, v) | u ∈ [0,Dhorizontal

resolution ), v ∈
[0,Dvertical

resolution)}, are kept. Moreover, if more than one point is
projected onto the same pixel position, only the point with the
lowest depth value is preserved as it is not occluded by other
points.

Visible areas of an object of interest with an associated
depth image Dinterest can subsequently be identified by com-
paring Dinterest with a depth image of other surrounding
objects Dother. This comparison is performed pixel-wise.
If the depth value of Dinterest in pixel [u, v]> is smaller than
that of the other depth images located at the same pixel
position, surface point [x, y, z]> of the object of interest,
which corresponds to the pixel [u, v]>, is visible from the
specified viewing location.

In driving environments, the space above the surfaces of the
surrounding lanes that other traffic participants or obstacles
may occupy is considered the object of interest for visible
region estimation. Therefore, a set of 3D points that rep-
resents the surfaces of those lanes is first extracted from a
road network map. The set of these points is denoted by
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Plane = {planei}
Nlane
i=1 where Nlane is the total number of the

lane surface points. Each point in the set can be defined as
follows:

planei =

xlaneiylanei
zlanei

 . (11)

Representative points of the area above the lanes’ surfaces
can then be obtained by offsetting the z-coordinate of each
lane surface point upward by fixed valueHobject:

pinteresti =

xinterestiyinteresti
zinteresti

 =
xlaneiylanei
zlanei

+
 0

0
Hobject

 . (12)

The resulting points Pinterest = {pinteresti}
Nlane
i=1 are subse-

quently projected onto an image plane to create depth image
Dinterest. Similarly, surface points of all surrounding objects
are projected onto a depth image Dother. As Dother can be
sparse, depending on its source, a box filter is utilized to
fill the empty pixels of Dother based on the value of their
neighboring pixels. Finally, the filledDother is compared with
Dinterest to determine which parts of the surrounding lanes are
visible from the specified viewing location.

If a 3D scan of the driving environment, taken by a LiDAR
unit from the specified viewing point, is available, the cap-
tured scan points can be used as the surface points of the
objects in the scene. In that case, depth imageDother can then
be generated directly. As a result, this approach can be used
to estimate the visible regions of the surrounding lanes from
any viewing location within the road network map if a 3D
scan captured from that location is available.

B. 3D SCAN ESTIMATION
As mentioned in Section IV-A, visible regions from any posi-
tion within a road network map can be estimated if a 3D scan
of the surrounding area captured at that position is available.
Estimating regions that are visible from the ego vehicle’s
current position is straightforward, as the 3D scan can be
directly acquired from the onboard LiDAR unit. However,
as described in Section III-B, the visibility cost calculation
requires information regarding visibility conditions at future
ego vehicle positions. Therefore, the ability to predict 3D
scans at those future positions is essential.

In order to estimate 3D scans at future ego vehicle posi-
tions, a point cloud map and a scan obtained from the LiDAR
unit at the current position are used. The incorporation of the
live scan acquired at the vehicle’s current position is the main
distinction between our approach and the algorithm proposed
in [1]. The live scan is used to account for objects that were
not present during point cloud map generation.

First, the point cloud map is used to obtain a base scan at
a specified future location. Let Pmap = {pmapi}

Nmap
i=1 be the

input 3D point cloud map, where Nmap represents the total
number of points in the map. In order to simulate a 3D scan
obtained at a target future position ptarget by a LiDAR unit
with the sensing range of Srange, the 3D points in Pmap that

are within range Srange from ptarget are denoted as base scan
points and can be defined as follows:

Pbase = {pmap ∈ Pmap |
∥∥pmap − ptarget

∥∥ < Srange} . (13)

The resulting Pbase cannot be used directly for visible region
estimation as it only contains points from objects that were
present during map generation.
In order to add objects that do not appear in the point cloud

map to the estimated scan, a live scan captured by the LiDAR
unit at its current position pcurrent is used. Each point in the
live scan, [x ′livei, y′livei, z

′
livei]>, is first transformed to point

cloud map coordinates using the following equation:

[
plivei
1

]
=

[map
currentR3×3

map
currentT3×1

0 1

]
x ′livei
y′livei
z′livei
1

 (14)

where map
currentR3×3 is a 3D rotation matrix, and map

currentT3×1 is
a 3D translation vector, representing the current position and
orientation of the LiDAR sensor, respectively, relative to the
coordinate system of point cloud map Pmap. The resulting
transformed live scan is denoted as:

Plive = {plivei}
Nlive
i=1 (15)

where Nlive is the number of live scan points. The scan Plive
is now in the same coordinate system as Pbase and therefore
can be combined directly as follows:

Pestimate = Pbase + Plive. (16)

All of the points in the resulting Pestimate are in point cloud
map coordinates. Therefore, they need to be further trans-
formed to the local coordinates of the simulated LiDAR
scanner, whose origin is located at ptarget. The transformation
of each point [xestimatei, yestimatei, zestimatei]> in Pestimate is
performed using the following equation:

[
p′estimatei

1

]
=

[map
targetR3×3

map
targetT3×1

0 1

]−1
xestimatei
yestimatei
zestimatei

1

 (17)

where the target 3D position and orientation of the simu-
lated LiDAR sensor with respect to the coordinate system of
the point cloud map Pmap are represented by map

targetR3×3 and
map
targetT3×1, respectively.

The resulting estimated scan P ′estimate = {p
′

estimatei}
Nestimate
i=1

is finally projected onto a 2D image plane using the method
described in Section IV-A, in order to generate depth image
Dother.

C. CALCULATION OF VISIBILITY RATIO
The approach described in Sections IV-A and IV-B can be
used to identify which regions of the surfaces of surrounding
lanes are visible from a specified viewing point. However,
the proposed motion planner cannot easily use the resulting
visible regions for candidate trajectory selection as they are
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FIGURE 4. Area of interest Ainterest for an ego vehicle at location ptarget.
The yellow shaded area represents sensing range Srange. Lane segments
located within the yellow area are defined as the set Lneighbor. Lane
segments within Lneighbor that have the same driving direction as the
ego vehicle and are reachable from position ptarget are designated as
Lreachable, and are represented by green lines. Lane segments with
opposite traffic directions that intersect the Lreachable lanes are
designated as Lintersect, and are represented by red lines.

not quantified. Therefore, this section explains an approach
for calculating a quantitative value that encapsulates the vis-
ibility condition from visible region estimation results.

A visibility ratio V is a numerical value that represents
the degree of visibility from a particular location, a concept
whichwas first introduced in [1]. Its value is equal to a ratio of
the area visible from the specified viewing location in relation
to the total area of interest:

V =
Avisible

Ainterest
(18)

where Ainterest is the total area of interest, and Avisible is the
portion of the total area of interest which is visible from
a particular viewing location. As Avisible ⊆ Ainterest, the
value of a visibility ratio ranges from zero to one, where
zero indicates that the area of interest is completely occluded,
while one indicates the area of interest is entirely visible from
the viewing position.

In order to calculate the visibility ratio of a given position
ptarget, the area of interest Ainterest first needs to be defined.
Let Lneighbor be a set of lane segments that are within sensing
rangeSrange from location ptarget. Assuming that no road users
will travel against the designated traffic directions, areas that
are relevant in the context of driving from position ptarget, i.e.,
Ainterest, is comprised of the space above the following lane
segments within Lneighbor:
• Lanes with the same driving direction as the ego vehi-
cle’s lane that are reachable from position ptarget, which
are denoted by Lreachable.

• Lanes with the opposite driving direction (in relation to
the ego vehicle) from position ptarget that intersect any of
the Lreachable lanes, which are denoted by Lintersect.

Examples of lane segments Lreachable and Lintersect are shown
in Fig. 4 as green and red lines, respectively.

Once the relevant lane segments are identified, a set of
3D points representing the area above those segments, i.e.,

TABLE 1. Parameters used for our experiments.

Pinterest, is obtained from the road network map and used
to generate a corresponding depth image Dinterest using the
approach described in Section IV-A. The resulting depth
image Dinterest is then compared with Dother, which is esti-
mated using the method explained in Section IV-B. Finally,
assuming that the points in Pinterest are uniformly distributed
across the surface of the lanes, Ainterest in Eq. 18 can be
substituted by the total number of points inPinterest. Similarly,
the number of points inPinterest that are visible from ptarget can
be used as Avisible.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
In order to verify the effectiveness and applicability of the
proposed planner in reducing the risk of collision with poten-
tially occluded obstacles in various situations, experiments
were carried out in three different traffic scenarios: T-junction
crossing, turning right, and preparing to pass a parked vehicle.
One or more target vehicles were placed within an occluded
area in each scenario. The position of the ego vehicle when
these hidden vehicles were first detected, measured by the
distance from its starting position, was used for evaluation.
In other words, shorter distances from the ego vehicle’s
starting position represent better performance when detecting
occluded targets. In the T-junction crossing and right turn
scenarios, the primary sources of occlusion are static objects
such as buildings and walls. In order to verify the ability of
the proposed system to take into account occlusions caused
by objects that are not included in the HD maps, in the third
scenario, the occlusion is caused by a parked vehicle that was
not present when the map was generated.

Town01 in the CARLA simulator [2], which represents a
flat, urban area, was chosen as the experimental environment.
All of the roads in the town are two-lane roads, and the traffic
is right-hand. A map of Town01 is shown in Fig. 5, where the
orange, blue, and red rectangles represent the locations of the
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FIGURE 5. Town01 of the CARLA simulator. The orange rectangle
indicates the location of the T-junction crossing scenario, the blue
rectangle indicates the location of the right turn scenario, and the red
rectangle indicates the location of the straight road where the ego vehicle
has to prepare to pass a parked vehicle. The small, red rectangles are
examples of hidden vehicles’ positions in each scenario.

T-junction crossing, right turn, and preparing to pass a parked
vehicle traffic scenarios, respectively.

The performance of the proposed planner was compared
to that of a baseline planner (OpenPlanner [43]), which does
not consider visibility when planning the vehicle’s output
trajectory. Real-time object detection and localization results
were achieved usingmodules available in Autoware [44]. The
same parameters were used in both planners, except for those
which were specific to each planner, as shown in Table 1. All
parameters remained the same in every tested scenario.

A. SCENARIO I: T-JUNCTION CROSSING
In this scenario, the ego vehicle must drive straight through
an uncontrolled T-junction, where the merging roadway is on
its right. The ego vehicle starting position in this scenario is
at the bottom edge of the orange rectangle in Fig. 5. From
the start position, the ego vehicle has to go straight, pass
through the T-junction, and reach its goal, which is located
at the top edge of the orange rectangle in Fig. 5. We tested
two variations of this scenario, the first of which involves
occlusion of the intersection primarily by a large building
set back from the road, which we called the ‘‘clear inter-
section’’ variation. The second variation included additional
structures located very close to the corner, which we called
the ‘‘occluded intersection’’ variation.

The challenge in this scenario mainly stems from the
occlusions caused by the structures near the intersection,
as shown in Fig. 6, which prevent the ego vehicle from fully
observing the roadway merging from the right. Therefore,
the merging road was chosen as the location for the target
vehicle. Three different location configurations were used for
the target vehicle. In the first configuration, the vehicle was

FIGURE 6. T-junctions used in Scenario I.

placed at x = 105m, which is approximately 11.5m from
the intersection’s entrance. The vehicle was placed at x =
110m and x = 115m in the second and third configurations,
respectively. In all three configurations, the target vehicle was
positioned at the center of the right lane of the merging road,
i.e., y = −195.25m. Both planners were tested 50 times
in each of the three configurations, resulting in 150 junction
crossings per planner.

1) THE ‘‘CLEAR INTERSECTION’’ VARIATION
First, we will discuss the ‘‘clear intersection’’ variation of the
T-junction scenario. The output trajectories for the proposed
and baseline planners in all three of the target vehicle con-
figurations tested (105m, 110m, and 115,m) are shown in
Fig. 7 as orange and blue lines, respectively. As can be seen in
Fig. 7, the output trajectories for each planner are similar for
all three configurations. When using the baseline planner, the
ego vehicle stayed close to the center of the lane most of the
time. On the other hand, when using the proposed planner,
the ego vehicle started moving to the left side of the lane soon
after the experiment began and kept left until finally moving
back closer to the lane’s center as it crossed the intersection.

As can be observed in Fig. 8 (bottom), although the lateral
position shift differed slightly between each run for both plan-
ners, their output trajectories were consistent overall. Fig. 8
(top) also shows the change in the visibility ratio V along
the ego vehicle’s trajectory, averaged over 50 runs. At the

VOLUME 10, 2022 57767



P. Narksri et al.: Occlusion-Aware Motion Planning With Visibility Maximization via Active Lateral Position Adjustment

FIGURE 7. Output trajectories generated by the baseline and proposed planners during the ‘‘clear intersection’’ T-junction traffic scenario, with
positions of the ego vehicle when the occluded vehicles were discovered.

FIGURE 8. Average visibility ratio (top) and lane center deviation (bottom) along the output trajectories of the baseline and proposed planners during
the ‘‘clear intersection’’ T-junction traffic scenario.

FIGURE 9. Distributions of the ego vehicle discovery positions (i.e., distance of the ego vehicle from its starting point when occluded vehicles were
detected) during the‘‘clear intersection’’ T-junction traffic scenario.

beginning of the experiment, the visibility ratio remained
constant at approximately 1.0 for both planners, which indi-
cates that all relevant areas of the driving environment could

be fully observed during that period. As the ego vehicle
approached the intersection, i.e., when the intersection came
within sensor range Srange, the visibility ratio started to drop,
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signifying incomplete observation of the merging roadway
from that point onward. As shown by the shaded area in Fig. 8
(top), there is a slight difference in the drop in the visibil-
ity ratio between the two planners, with the visibility ratio
along the proposed planner’s trajectories remaining relatively
higher than those of the baseline planner, suggesting that the
proposed planner was able to choose an output trajectory with
better visibility conditions compared to the baseline planner.

Although the output trajectories of both planners were con-
sistent during all three target vehicle location configurations,
the locations where the ego vehicle first detected the target
vehicle, i.e., the discovery positions, in each configuration
are clearly different, as shown by the orange and blue stars in
Fig. 7 where a red rectangle depicts the hidden vehicle in each
configuration. Differences in the discovery positions when
using the various target vehicle locations can also be observed
in Fig. 9, in which distributions of the discovery positions for
both planners in the tested configurations are shown using
histograms and cumulative histograms. The x-axes in Fig. 9
show the distance traveled along the lane’s center from the
starting position of the ego vehicle. Note that the distance
traveled along the lane’s center is exactly the same as the
actual distance the ego vehicle has traveled if, and only if,
the ego vehicle remains at the center of the lane without any
lateral deviation during the entire run. However, for the sake
of conciseness, distance traveled along the lane’s center will
be referred to as distance traveled, travel distance, or distance
in this study unless stated otherwise.

As can be observed in Fig. 9a, distribution of the proposed
planner’s discovery position when the target vehicle was
placed close to the intersection, at x = 105m, is clearly
bimodal, with the first and second peaks located at approxi-
mately 48m and 56m from the ego vehicle’s starting position,
respectively. The discovery position distribution of the base-
line planner appears to be bimodal as well. However, the two
modes are very close to each other, with all of the discovery
positions clustered around 55.5m.
Fig. 9b shows distributions of the discovery positions in the

second configuration, where the target vehicle was located
at x = 110m. The resulting discovery positions are very
consistent for both planners in this configuration. For the
baseline planner, the discovery positions appear to be nor-
mally distributed with their center approximately at 58.5m.
On the other hand, in the case of the proposed planner, the
majority of the first detections of the hidden vehicle occurred
earlier at 58.2m, causing the distribution to skew to the right.
Discovery position distributions of the last configuration,

where the hidden vehicle was placed furthest from the inter-
section at x = 115m, are shown in Fig. 9c. The distribution
results for the proposed planner have two visible peaks that
are relatively close to each other. The first peak is located at
roughly 64.5m from the starting position, while the second
peak occurs slightly later at approximately 65m. For the
baseline planner, the resulting discovery position distribution
generally resembles the second mode of the distribution for
the proposed planner, with its peak located at 65m. However,

TABLE 2. Summary of the statistics of ego vehicle positions when
discovering hidden vehicles in the ‘‘T-junction crossing’’ traffic scenario
(Scenario I), for both the ‘‘clear’’ and ‘‘occluded’’ variations of the
intersection, for both the proposed and baseline methods. Distances are
measured from the ego vehicle’s starting point. ‘‘Count’’ represents the
number of successful detections per 50 trials.

as can be observed in Fig. 9c, in a few cases, the ego vehi-
cle detected the hidden vehicle significantly later under the
baseline planner.

A summary of the statistics of the ego vehicle positions
when discovering the hidden vehicles in each hidden vehicle
configuration during the ‘‘clear intersection’’ variation of
the T-junction traffic scenario, including the total number of
experiments where the ego vehicle successfully detected the
target vehicle (count), mean, standard deviation, minimum,
median, and maximum distance from the starting point until
the detection, are given in the top part of Table 2. As can
be seen from the table, the ego vehicle was able to detect
the hidden vehicles in all configurations with both planners.
Moreover, the table shows that both mean and median dis-
tance before detecting the hidden vehicle is smaller when
using the proposed planner than when using the baseline
planner in every target vehicle configuration tested.

From the results shown in Fig. 7, 8, and 9, it is clear
that the output trajectories and discovery positions during
each run differed slightly, even when using the same planner
and hidden target configuration. This slight deviation was
expected since an actual localization and detection module
were used in the experiment instead of directly utilizing the
ground truth information from the simulation. The effects of
using live perception modules seem to be most evident in the
first configuration, as shown in Fig. 7a and Fig. 9a, where the
discovery position distribution appears to be bimodal, with
the two modes being significantly far apart in the case of the
proposed planner. In this configuration, the hidden vehicle
was initially occluded by the corner of the building and a
street light pole, located at (x = 101m, y = −202m) in
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Fig. 7a, from the ego vehicle’s point of view. Although the
size of the pole is small, when it is far from the ego vehicle
it can effectively prevent the front end of the target vehicle
from being detected by the LiDAR-based detector used in
the experiments, as point cloud sparsity positively correlates
with range. Therefore, there are two possible ways the ego
vehicle can detect the target vehicle. The first option, which
allows the target vehicle to be discovered early, is to detect
it through the gap between the building corner and the street
light pole. This early detection through the opening between
two occluding objects could explain the first peak of the
proposed planner’s discovery position distribution, shown in
Fig. 9a, which occurs at approximately 48m from the ego
vehicle’s starting position. By keeping the ego vehicle on the
left side of the lane, the proposed planner widened the gap
between the building and the pole and thus briefly allowed
the ego vehicle to detect the target vehicle earlier. While early
detection was physically possible, the target vehicle was not
discovered in some runs due to the imperfect performance of
the perception module. Another relatively more straightfor-
ward way to observe the hidden vehicle is to get close enough
to the intersection such that both the pole and the corner of
the building no longer obstruct the view. The second peak
of the proposed planner’s discovery position distribution, and
the entire position distribution for the baseline planner, reflect
this later but simpler method of detecting the hidden vehicle.
Similar situations also happened in the third configuration,
as can be observed in Fig. 7c and 9c. In the third configura-
tion, the gap occurred between the corner of the building and
a tree located at (x = 107m, y = −202m) in Fig. 7c. Despite
some minor variation, the results are generally consistent,
suggesting that the proposed planner could cope with noisy
perception to some degree in this scenario. The smaller mean
and median discovery distances when using the proposed
planner to detect the hidden vehicles in all three configu-
rations, as shown in Table 2, suggest that the ego vehicle
would likely detect a hidden vehicle earlier in this scenario
when using the proposed planner, as compared to the baseline
planner.

2) THE ‘‘OCCLUDED INTERSECTION’’ VARIATION
In order to investigate how different levels of occlusion can
affect the output trajectories produced by the proposed plan-
ner, additional experiments were conducted using a modi-
fied T-junction, i.e., the ‘‘occluded intersection’’ variation.
Several obstructions were placed close to the corner of the
building, as can be seen in Fig. 6b. Except for the modifica-
tions to the nearest corner of the T-junction, the experiments
were set up in exactly the same way as before, i.e., 50 runs
for each planner in each of the three target vehicle location
configurations, resulting in a total of 150 trials per planner.

Fig. 10 shows the output trajectories for both planners at
the modified intersection for all three hidden target vehicle
placements. Similar to the results at the original T-junction,
shown in Fig. 7, the ego vehicle generally stayed close to
the lane’s center when using the baseline planner, while the

ego vehicle gradually moved to the left side of the lane
soon after navigation began when using the proposed plan-
ner, as happened in the previous scenario. However, unlike
its behavior at the original Town01 T-junction, where the
occlusion is less severe, the ego vehicle did not move back
to the center as it approached the modified intersection when
using the proposed planner; instead, it deviated further to the
left side of the lane before entering and eventually crossing
the intersection. Differences in the lateral deviation profiles
when using the proposed planner at the two experimental
T-junctions can be further observed by comparing Fig. 11
with Fig. 8. As can be seen, when comparing these two
figures, apart from the lateral deviation, the visibility ratio
along the output trajectories of both planners at the heavily
occluded T-junction is also dissimilar to that of the original
intersection. The drop in the visibility ratios is sharper at the
modified intersection. Moreover, the visibility ratios dropped
to a lower level than when the planners encountered the less
cluttered T-junction. Another distinction between the two
tested intersections is the recovery of the visibility ratio as the
ego vehicle approaches the intersection. The increase in the
visibility ratios at the modified intersection happened later
than at the original intersection, although the increase was
relatively smoother andmore steady, as can be seen in Fig. 11.
The stable gain of visibility at the modified intersection

also directly affected the distributions of the discovery posi-
tions, as the distributions at this heavily occluded junction
were all unimodal, as can be seen in Fig. 12. As shown in
Fig. 12a, in the first configuration, where the hidden vehicle
is placed closest to the intersection, the ego vehicle usually
discovered the target vehicle after having traveled approxi-
mately 63m from its starting position, regardless of which
planner was used, thus both planners achieved similar discov-
ery positions. However, when the target vehicle was placed
at x = 110m in the second configuration, the difference
in the discovery position distributions when using the two
planners is apparent. As can be observed in Fig. 12b, the
majority of initial detections occurred at 68.75m and 69.75m
when using the proposed and baseline planners, respectively.
These results indicate that the ego vehicle could detect the
occluded target vehicle earlier in this hidden vehicle con-
figuration when the proposed planner was used. Fig. 12c
shows the resulting distributions of discovery positions for
both planners in the last configuration, where the hidden
vehicle is furthest from the intersection, i.e., at x = 115m.
The resulting distributions for both planners appear to be
very similar. The discovery of the hidden vehicle occurred
at around 72.9m, whether the proposed or baseline planner
was used.

The summary statistics of the discovery positions in the
experiments carried out at the modified junction, i.e., the
‘‘occluded intersection’’ variation, are given in the bottom
half of Table 2. The table shows that the proposed planner
resulted in lower mean and median distances from the ego
vehicle starting position when the hidden target vehicles were
detected in the second and third configurations. However,
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FIGURE 10. Output trajectories generated by the baseline and proposed planners during the ‘‘occluded intersection’’ T-junction traffic scenario, with
positions of the ego vehicle when the occluded vehicles were discovered.

FIGURE 11. Average visibility ratio (top) and lane center deviation (bottom) along the output trajectories of the baseline and proposed planners
during the ‘‘occluded intersection’’ T-junction traffic scenario.

FIGURE 12. Distributions of the ego vehicle discovery positions (i.e., distance of the ego vehicle from its starting point when occluded vehicles were
detected) during the ‘‘occluded intersection’’ T-junction traffic scenario.

both mean and median distances were lower in the first
configuration when using the baseline planner.

The experimental results, which are shown in Fig. 10
and 11, indicate that the ego vehicle also moved to the

left side of the lane prior to crossing the heavily occluded
T-junction when using the proposed planner. This movement
was anticipated because being on the left side of the lane
provides the ego vehicle with a better view of the occluded,
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merging road on the right side of the ego vehicle, even with
additional occlusion. However, unlike at the original, less-
occluded T-junction, where the road to the right becomes
minimally obstructed as soon as the ego vehicle passes the
building corner, the view of the merging roadway is blocked
right up to the corner of the modified T-junction. Therefore,
when using the proposed planner, the ego vehicle continued
traveling on the left side of the lane and entered the occluded
T-junction without reverting to the center of the lane in order
to maintain additional visibility of the intersection. A sharper
and deeper decline in the visibility ratio and its later but
smoother recovery can be observed at the modified junction
compared to the original T-junction. These are the effects of a
higher degree of occlusion caused by the additional obstacles.
The more severe occlusion also resulted in the smooth and
steady increase in the visibility ratio, as there is no gap
between these closely placed obstructing objects where the
ego vehicle can ‘‘peek’’ through. Therefore, the occlusion is
relatively more consistent. This consistent occlusion near the
modified junction is reflected by the unimodal distributions
of the discovery positions in all of the tested hidden vehicle
configurations, as shown in Fig. 12. It is evident from Table 2
that, in every configuration, the detections at the modified
intersection generally happened later than that at the original
intersection. The table also shows that the proposed plan-
ner resulted in earlier detections compared to the baseline
planner in all hidden vehicle configurations, except when the
hidden target is placed very close to the heavily occluded
intersection.

B. SCENARIO II: TURNING
In this scenario, the ego vehicle initially drives straight along
a short road segment, then turns right at an intersection. This
scenario was set up in the region indicated by the blue rect-
angle in Fig. 5. Similar to the T-junction crossing scenario,
two variations of this scenario were tested. The first of which,
referred to as the ‘‘clear corner,’’ involves occlusion mainly
from a roadside wall. In the second variation, which we called
the ‘‘occluded corner,’’ additional structures were added close
to the corner to further obstruct the view.

1) THE ‘‘CLEAR CORNER’’ VARIATION
The ‘‘clear corner’’ variation will be first discussed. Although
the ego vehicle does not need to cross into other lanes in
this scenario, there is still the risk of collision with vehicles
stopped in the ego vehicle’s lane, especially if the road to the
right is not fully observable. As shown in Fig. 13a, a corner in
the original CARLATown01 has an opaquewall that partially
obstructs the view. Therefore, the hidden target vehicle was
placed in various locations in the same lane the ego vehicle
will travel in after rounding the corner. In the first, second,
and third configurations, the target vehicles were placed in the
middle of the ego vehicle’s lane at x = 105m, x = 110m, and
x = 115m, respectively. The proposed and baseline planners
were tested 50 times each in each configuration.

FIGURE 13. Corners used for right turn in Scenario II.

Fig. 14 shows the output trajectories generated in all three
hidden vehicle configurations by the proposed and baseline
planners, represented by the orange and blue lines, respec-
tively. The initial output trajectories appear to be similar
for all three configurations. However, the ego vehicle then
started moving towards the left side of the lane when using
the proposed planner. In contrast, when using the baseline
planner, the ego vehicle stayed close to the lane’s center up to
the entrance of the intersection. As shown by the end of the
orange and blue lines in Fig. 14, during or just after its right
turn maneuver, the ego vehicle then stopped at a different
position in each configuration to avoid colliding with the
hidden vehicles, approximately 5m to 6m from the rear end
of the parked target vehicles.

Differences in the stopping position of the ego vehicle
in each configuration can also be observed in the lateral
deviation plot in Fig. 15, where a dashed red line indicates
the entrance of the intersection. As can be seen from the
lateral deviation profiles of the tested configurations, when
using the proposed planner, the ego vehicle initially moved
to the left of the lane, then generally moved back to the
center of the lane before it started turning right at the cor-
ner. Nonetheless, there appears to be a slight difference in
the output trajectories produced by the two planners dur-
ing the first hidden vehicle configuration. The ego vehicle
briefly inched to the left immediately before turning, regard-
less of which planner was used. Fig. 15 also shows similar
visibility ratio profiles for the two planners in the tested
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FIGURE 14. Output trajectories generated by the baseline and proposed planners during the ‘‘clear corner’’ right turn traffic scenario, with positions
of the ego vehicle when the occluded vehicles were discovered.

FIGURE 15. Average visibility ratio (top) and lane center deviation (bottom) along the output trajectories of the baseline and proposed planners
during the ‘‘clear corner’’ right turn traffic scenario.

FIGURE 16. Distributions of the ego vehicle discovery positions (i.e., distance of the ego vehicle from its starting point when occluded vehicles were
detected) during the ‘‘clear corner’’ right turn traffic scenario.

configurations. When the ego vehicle was close enough to
the corner, the visibility ratio dropped, indicating that the area
around the corner was not fully observable from these posi-
tions. The visibility ratio increased again once the ego vehicle

almost reached the intersection’s entrance and started to turn.
Of the two tested planners, the proposed planner seems to
have maintained a higher visibility ratio during the visibility
drop.
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TABLE 3. Summary of the statistics of ego vehicle positions when
discovering hidden vehicles in the ‘‘right turn’’ traffic scenario (Scenario
II), for both the ‘‘clear’’ and ‘‘occluded’’ variations of the corners, for both
the proposed and baseline methods. Distances are measured from the
ego vehicle’s starting point. ‘‘Count’’ represents the number of successful
detections per 50 trials.

As indicated by orange and blue markers in Fig. 14, the
locations where the ego vehicle first discovered the hidden
target vehicles in this scenario are very consistent for all
configurations under both planners. The distributions of the
discovery positions, which are shown in Fig. 16, also confirm
this consistency, as all of the distributions are unimodal.
In the configuration where the target vehicle was placed
closest to the corner, i.e., the first configuration, the ego
vehicle using the baseline planner made the majority of its
detections at around 58.8m from its starting position, whereas
these detections mainly occurred at approximately 59mwhen
using the proposed planner, as shown in Fig. 16a. Thus the
baseline planner yielded earlier detection in the first hidden
vehicle configuration. However, as shown in Fig. 16b, in the
second configuration where the target vehicle was placed at
x = 110m, when using the baseline planner, the hidden
vehicle was detected later, compared to the proposed planner.
The distribution’s peak in the case of the baseline planner is
at 66.9m, and 66.7m for the proposed planner. In the last
configuration, the peaks of the distributions for the proposed
and baseline planners are close to each other at around 69.8m,
as can be observed in Fig. 16c, although there were a number
of trials in this last hidden vehicle configuration where the
ego vehicle using the proposed planner was able to detect the
target vehicle relatively earlier, as indicated by the portion of
the orange distribution on the left that is not overlapped by
the blue distribution.

The distributions of the ego vehicle’s positions when dis-
covering the hidden vehicles for both planners under the
three hidden vehicle placement configurations in the ‘‘clear
corner’’ variation are also summarized using the number of

successful detections (count), mean, median, standard devia-
tion, minimum value, and maximum value in Table 3 (top).
As can be observed from the table, the proposed planner
resulted in lower mean and median distances from the ego
vehicle’s starting position when first detecting the hidden
vehicle in the second and third configurations but in higher
values in the first configuration.

As the results in Fig. 14 and 15 show, when using the
proposed planner, the ego vehicle initially moved to the left
and then reverted back to the center of the lane before turning
right at the corner. The initial movement to the left was
expected. Since the ego vehicle’s view of the corner on its
right is blocked by the wall close to the intersection, being on
the left side of the lane increases the visible portion of the road
around the corner. This increased visibility is also reflected
by a relatively higher visibility ratio along the trajectories
generated by the proposed planner compared to those output
by the baseline planner, as shown in Fig. 15. This figure also
shows that the output lateral deviation profiles are similar
for all of the hidden vehicle configurations, with a slight
difference in the first configuration where the hidden vehicle
was placed closest to the corner. The difference shown in
Fig. 15a is likely caused by the ego vehicle detecting the target
vehicle earlier while still on the first segment of the road
and trying to avoid the parked vehicle by moving to the left.
However, when the ego vehicle arrived at the intersection,
it had to abort its diversion and start turning right. In other
configurations, the ego vehicle detected the target vehicles
later, i.e., closer to the turning point. Therefore, no brief diver-
sion to the left occurred. As can be observed from Fig. 16,
the difference in the resulting discovery positions for both
planners is modest at this corner. The reason for this marginal
difference is believed to be an adequate level of visibility at
this corner. Although the wall indeed blocks the view of the
intersection to the right of the ego vehicle, it is located quite
far from the corner. As a result, visibility increases rapidly as
the ego vehicle moves sufficiently close to the intersection.

2) THE ‘‘OCCLUDED CORNER’’ VARIATION
In order to investigate the effects of severe occlusion on
motion planner output trajectories and discovery positions
during this turning scenario, modifications were made to the
original corner in Town01. Two kiosks were added next to
the wall, very close to the intersection, as shown in Fig. 13b.
The experimental conditions were identical to those used
in the previous experiment, i.e., three different placements of
the hidden vehicle and a total of 50 trials per planner in each
placement configuration.

The output trajectories of both planners at the highly
occluded corner are shown in Fig. 17. Similar to the output
trajectories at the original corner, when using the proposed
planner, the ego vehicle moved to the left before reverting
to the center immediately before turning. After turning, the
ego vehicle came to a complete stop 5m to 6m away from
the rear end of the parked target vehicle in all of the hidden
vehicle configurations.
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FIGURE 17. Output trajectories generated by the baseline and proposed planners during the ‘‘occluded corner’’ right turn traffic scenario, with
positions of the ego vehicle when the occluded vehicles were discovered.

FIGURE 18. Average visibility ratio (top) and lane center deviation (bottom) along the output trajectories of the baseline and proposed planners
during the ‘‘occluded corner’’ right turn traffic scenario.

FIGURE 19. Distributions of the ego vehicle discovery positions (i.e., distance of the ego vehicle from its starting point when occluded vehicles were
detected) during the ‘‘occluded corner’’ right turn traffic scenario.

Unlike at the original, slightly occluded corner, Fig. 18
shows that at the modified, heavily occluded corner, the lane
deviation profiles for each planner, during trials with the three

hidden vehicle configurations, were nearly indistinguishable
from each other when using each planner, i.e., although the
profiles differed between the two planners, the results were
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very consistent for each planner. When using the proposed
planner, the ego vehicle did not divert to the left immediately
before turning at the occluded corner in the first hidden vehi-
cle configuration, as can be observed in Fig. 18a. Moreover,
the ego vehicle stayed on the left side of the lane longer before
moving back to the center when turning, as compared to the
less occluded corner, i.e., the ‘‘clear corner.’’ Fig. 18 also
shows that the visibility ratio dropped to a lower level and
then increased later, compared to the right turn scenario at
the less occluded corner.

The distributions of the discovery positions appear to be the
major distinction between the planner results at the original
and the modified corners, as can be observed in Fig. 19.
Except for the third hidden vehicle configuration, the dif-
ference between the ego vehicle’s discovery positions when
using the proposed and baseline planners is apparent. In the
first configuration, when using the proposed planner, there
was a bimodal distribution of the discovery positions, with
the first and second peaks occurring at approximately 64.5m
and 65.75m, respectively. On the other hand, when using
the baseline planner, there was a unimodal distribution in the
discovery position results, with its peak at roughly 66.75m in
the first hidden vehicle configuration.When the target vehicle
was placed at x = 110m, i.e., during the second configura-
tion, results for both planners show a unimodal distribution of
the discovery positions, with the proposed planner achieving
earlier detection overall, as the ego vehicle was generally able
to spot the hidden vehicle at around 70.8m from its starting
positionwhen using the proposed planner compared to 72.5m
with the baseline planner. However, in the last configuration,
where the target was placed furthest from the corner, the
distribution results for both planners were very similar, with
both planners having their discovery peaks at around 74.25m.
The difference in discovery positions when using each

planner can be further observed in the lower half of Table 3.
During the first two hidden vehicle configurations, the pro-
posed planner achieved significantly lower mean and median
distances from the ego vehicle’s starting position when the
target vehicles were discovered. Nonetheless, no difference in
discovery position is apparent in the last configuration, as the
proposed planner yielded a lower median but higher mean
distance compared to the baseline planner.

Fig. 17 shows that the overall movement of the ego vehicle
when using the proposed planner at the heavily occluded
intersection is similar to that at the original intersection, i.e.,
moving to the left side of the lane soon after the experiment
begins, then returning to the center of the lane just before
turning right. However, by comparing the results shown in
Fig. 18, we can see that the ego vehicle stayed on the left
side of the lane longer in the scenario with the occluded
corner, as compared to the original, less occluded corner.
The extended deviation to the left is the direct effect of the
higher degree of occlusion at the modified corner. Unlike at
the original corner, the additional obstacles at the modified
corner obstructed the view of the road ahead right up to the
junction’s entrance. Therefore, the proposed planner kept the

FIGURE 20. Trucks parked in the ego vehicle’s lane, and a car parked in
the approaching lane, along a straight road in Scenario III.

ego vehicle on the left side of the lane to gain additional
visibility as long as possible before having to turn. The
increased occlusion is also responsible for the absence of the
brief diversion to the left that occurred at the original corner in
the first configuration, as shown in Fig. 15a. The ego vehicle
could not detect the target vehicle as early when encountering
the heavily occluded corner compared to the original, less
obstructed corner. Hence, the ego vehicle did not initiate an
avoidance maneuver before turning in the first configuration.
The proposed planner offers a clear advantage over the base-
line planner when detecting the hidden target vehicles behind
the heavily occluded corner. As shown in Fig. 19, themajority
of detections occurred significantly earlier when traveling
along the output trajectory of the proposed planner, except
during the last hidden vehicle configuration. During the last
configuration, the target vehicle was not in detection range
until the ego vehicle had already reverted to the center of its
lane for turning. Therefore, the proposed planner did not offer
any advantage over the baseline planner in detecting the target
vehicle.

C. SCENARIO III: PREPARING TO PASS A PARKED
VEHICLE
In this scenario, the ego vehicle has to travel along a straight
road segment to where a truck is parked in the ego vehicle’s
lane. The location in Town01 where this scenario takes place
is indicated by the red rectangle in Fig. 5. The ego vehicle has
to come to a complete stop behind the parked truck to prepare
to pass it. This scenario is different from the previously tested
scenarios as the occlusion is not caused by static structures
present in the point cloud map, e.g., buildings or walls, but
instead, the road ahead is obstructed by a parked truck, which
is not a part of the mapped environment. Experiments in this
scenario aim to verify improvements in our previously pro-
posed visibility estimation method for handling occlusions
caused by objects not included in HD maps. As safe passing
requires additional computation and other considerations that
are not currently supported by the proposed planner, the focus
of the experiments in this traffic scenario is exclusively the
output motion of the ego vehicle prior to passing.

57776 VOLUME 10, 2022



P. Narksri et al.: Occlusion-Aware Motion Planning With Visibility Maximization via Active Lateral Position Adjustment

Two target vehicles were used in these experiments. One
of which is a second truck parked in the same lane as the
occluding parked truck but located at various distances ahead
of it in our experiments. Both trucks are parked in the same
lane of the two-lane road that the ego vehicle is traveling
along. The second target vehicle is a normal passenger car
placed in the opposite lane, i.e., parked in the opposite direc-
tion from the direction of travel of the ego vehicle. The
arrangement of the three vehicles in this scenario (besides
the ego vehicle) is shown in Fig. 20. A total of three target
vehicle location configurations were used in this experiment.
In all three configurations, the occluding vehicle is parked at
x = 240m. In the first configuration, the target truck and
passenger car are placed at x = 250m and x = 255m,
respectively. In the second configuration, both target vehicles
are moved further from the occluding vehicle, i.e., x = 255m
for the truck and x = 260m for the car. Lastly, the target
truck and passenger car are placed at x = 260m and x =
265m, respectively, in the third configuration. A total of
50 experimental runs were carried out per planner in each of
the three configurations.

Fig. 21 shows the output trajectories of both planners in
all three of the tested configurations. Ego vehicle trajectories
generated by the proposed planner are shown in orange,
while the blue lines represent the trajectories generated by the
baseline planner. The output motion for both planners appears
to be very consistent in all three target vehicle configurations.
When using the baseline planner, the ego vehicle traveled
straight ahead from its starting position and remained in the
center of its lane until coming to a complete stop behind
the occluding truck, although there were a small number of
trials in which the ego vehicle made a slight deviation to the
left before stopping. In contrast, when using the proposed
planner, the ego vehicle always moved to the left side of
the lane after leaving its starting location. Moreover, when
the ego vehicle came to a complete stop behind the parked
truck, it was located on the left side of the lane, as opposed to
stopping in the center of the lane, which was usually the case
when using the baseline planner.

Differences in the lateral deviation profiles when using
each of the two planners can be clearly seen at the bottom of
Fig. 22. The baseline planner generally kept the ego vehicle
at the center of the lane, as indicated by the blue lines,
apart from a few trials in which the ego vehicle eventually
drifted towards the left side of the lane. When using the
proposed planner, the orange lines show that the ego vehicle
consistently moved to the left border of the lane and remained
there until it came to a complete stop behind the occluding
truck. The top of Fig. 22 also shows a stark difference in
the visibility ratios for the ego vehicle as it moved along the
trajectories produced by the proposed and baseline planners,
respectively, especially near the ego vehicle’s stopping posi-
tion. Initially, the visibility ratios declined linearly for both
planners. However, in the case of the proposed planner, the
visibility ratio started to increase again as soon as the ego
vehicle reached the left border of the lane. When stopping

FIGURE 21. Output trajectories generated by the baseline and proposed
planners during the ‘‘preparing to pass’’ traffic scenario, with positions of
the ego vehicle when the other vehicles were discovered.

behind the occluding vehicle, the proposed planner generally
achieved a higher visibility ratio compared to the baseline
planner.

The positions where the three vehicles in this scenario
(the occluding truck, the occluded truck, and the occluded
car) were detected are indicated by markers in Fig. 21.
The distributions of these discovery positions are shown in
Fig. 23. By comparing Fig. 23a, 23b, and 23c we can see
that the discovery positions for the parked occluding truck,
i.e., the first truck, are similar for both planners in all vehicle
placement configurations. The ego vehicle generally detected
the occluding truck after traveling approximately 7m from
its starting position, regardless of the planner used. However,
Fig. 23d, 23e, and 23f show a significant difference in the dis-
covery distributions between the two planners when detecting
the target truck hidden behind the first parked truck. As can
be seen in Fig. 23d, when the target truck was placed closest
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FIGURE 22. Lane’s center deviation and visibility ratio along the output trajectories of the baseline and proposed planners at the straight line with
parked vehicles.

to the occluding truck, i.e., only 10m ahead of it, and the
proposed planner was used, the hidden truck was generally
discovered by the ego vehicle at 40m or 43.5m from its
starting position. As shown by the cumulative histograms
in Fig. 23d, the proposed planner detected the hidden truck
during 17 out of the 50 trials, whereas the same hidden truck
was only detected during two of the total 50 trials when using
the baseline planner. Similarly, Fig. 23e shows that the base-
line planner only made six successful detections of the target
truck when it was parked 15m ahead of the first truck, while
the proposed planner yielded a significantly higher number
of detections (39), most of which occurred at approximately
43.75m from its starting position. The same pattern can also
be observed in the last configuration, as shown in Fig. 23f.
The distribution peak for the proposed planner is roughly at
43.75m when the second truck was parked 20m ahead of
the first. In this configuration, the proposed planner resulted
in 45 successful detections of the truck out of the 50 trials.
On the other hand, the second truck was only detected dur-
ing five of the trials when using the baseline planner. The
distributions of the ego vehicle’s positions when detecting
the target vehicle in the opposite lane, i.e., the passenger car,
in all three configurations are shown in Fig. 23g, 23h, and 23i.
As shown in Fig. 23g and 23h, the resulting distributions
for both planners appear to be very wide, with no prominent
peak in the first and second vehicle location configurations.
In both configurations, the proposed planner achieved slightly
earlier discovery as can be seen in Fig. 23g and 23h. The
car was detected in every trial by both planners in both the
first and second target vehicle configurations. In the last
configuration, where the target vehicle in the opposite lane
was at a considerable distance from the occluding truck,
most detections occurred at 45m and 45.5m when using the
proposed and baseline planners, respectively. Nevertheless,
the proposed planner achieved a noticeably higher rate of
detections (32/50) compared to the baseline planner (18/50),
as indicated by the cumulative histograms in Fig. 23i.
Table 4 shows a summary of the statistics of the ego vehicle

discovery success rates and positions when detecting the
other vehicles in this scenario in each of the three vehicle

TABLE 4. Summary of the statistics of ego vehicle positions when
discovering other vehicles during the ‘‘preparing to pass’’ traffic scenario
(Scenario III) for both the proposed and baseline methods. Distances are
measured from the ego vehicle’s starting point. ‘‘Count’’ represents the
number of successful detections per 50 trials.

configurations tested. As can be seen from the table, the
occluding truck was detected by the ego vehicle in every
trial, regardless of the planner used. The proposed planner
achieved lower mean and median travel distances before
detecting the occluding truck in the first and third configu-
rations. However, it yielded a lower mean but higher median
travel distance in the second configuration. In the case of the
hidden truck parked in front of the first truck, the proposed
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FIGURE 23. Distributions of the ego vehicle discovery positions (i.e., distance of ego vehicle from its starting point when occluded vehicles were
detected) during the ‘‘preparing to pass’’ traffic scenario, where the top row (a, b, c) = discovery of the occluding truck in each target vehicle
configuration, middle row (d, e, f) = discovery of hidden truck parked in front of the occluding truck, and bottom row (g, h, i) = discovery of car parked
in the opposite lane.

planner achieved a significantly higher number of successful
detections by the ego vehicle. Although the baseline planner
achieved lower mean and median travel distances before
discovery, it is worth noting that the ego vehicle only detected
the hidden truck during six trials in the second vehicle config-
uration and five trials in the third configuration, out of 50 total
trials in each configuration. As shown in the lower part of
Table 4, the second target vehicle, i.e., the car parked on the
other side of the road, was discovered in all experimental
trials in the first and second configurations when using both
planners, but not in the third configuration. The proposed
planner yielded a lower mean and median travel distance

prior to the detection of the parked car in all three vehicle
configurations.

As can be seen in Fig. 21 and 22, in themajority of the trials
when using the proposed planner, the ego vehicle deviated
from the center of the lane and eventually came to a complete
stop on the left side of the lane, because moving the ego
vehicle to the left allowed it to achieve a better view of the
road ahead. Since there was not enough space for the ego
vehicle to pass the parked truck without briefly entering the
opposite lane, it had to come to a stop behind the truck and
prepare for a passingmaneuver. Although the ego vehicle was
not able to simply pass the parked truck, coming to a stop on
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the left side of the lane benefited the ego vehicle by enabling it
to observe both the area behind the truck and obstacles in the
opposite lane, as indicated by its higher visibility ratio at the
stopping position in Fig. 22. Moreover, Fig. 23 and Table 4
show that the ego vehicle was more likely to discover target
vehicles placed behind the occluding truck and in the opposite
lane compared to the baseline planner. Information regarding
obstacles in these areas is crucial in determining whether
a safe passing maneuver can be performed. Therefore, the
proposed planner put the ego vehicle in a relatively safer
position for passing in this scenario compared to the baseline
planner. Note that the deviation to the left of the lane by the
ego vehicle when using the proposed planner did not occur
immediately after the beginning of the experiment. As can
be observed in Fig. 21 and 22, there is a brief segment after
departing from its starting position where the ego vehicle was
going straight along the center of the lane. This behavior was
expected because the parked truck was initially outside of
the ego vehicle’s field of perception, i.e., its sensing range.
Therefore, the proposed planner calculated the output motion
as if the road ahead was clear. Thus, there was no benefit in
moving away from the lane’s center. However, the planner
shifted the ego vehicle to the left as soon as the parked truck
was in its detection range. It is important to emphasize that
the parked truck was not included in the HD maps and that
the ego vehicle relied on its live detection results to evalu-
ate unexpected occlusions it encountered in the surrounding
traffic environment. Nevertheless, the detection results in the
experiments were not perfect. The shape and orientation of
several obstacles in the vicinity of the ego vehicle were some-
times incorrectly estimated, and these occasional incorrect
detection results caused the baseline planner to veer the ego
vehicle to the left in a few experiments, as can be observed
in Fig. 21 and 22. In those incidents, the obstacles were
mistakenly judged to be very close to the right side of the
ego vehicle’s lane. As a result, the baseline planner tried to
avoid them. These sporadic deviations to the left account
for why the ego vehicle was sometimes able to discover the
hidden target truck when using the baseline planner, as shown
in Fig. 23d, 23e, and 23f, and in Table 4. In most of the
trials where the incorrect deviation did not occur, the target
truck could not be detected when using the baseline planner.
Similarly, as can be observed in Fig. 23i and Table 4, the
number of successful detections of the target vehicle in the
opposite lane when using the baseline planner in the third
vehicle configuration was inflated by these irregular swerves.
These deviations increased the chance of successful detec-
tions because the visibility of the target vehicle in the opposite
lane was better when the ego vehicle was on the left side of
the lane compared to the lane’s center. Furthermore, when the
target vehicles were placed very far away from the occluding
truck in the third configuration, almost at the edge of the
sensing field of the ego vehicle from its stopping position,
reducing the distance to the target vehicle, even marginally,
may have significantly increased the successful detection
rate.

VI. CONCLUSION
In this paper, we have proposed a motion planner capable of
actively adjusting the ego vehicle’s lateral position in order
to minimize occlusions in various traffic scenarios under
perception uncertainty. We have also extended an approach
for 3D visibility estimation proposed in our previous work [1]
for handling occlusions caused by objects not present in HD
maps.

The proposed planner first generates candidate trajectories
with different lateral offsets from the reference path. The
current and future visibility along each trajectory is then
estimated using live sensing data from the LiDAR unit and
HD maps, which are then converted into a visibility cost.
Finally, the visibility cost and other planning costs are used
to determine the optimal output trajectory.

Experiments were conducted in the CARLA simulator [2]
to evaluate our proposed and improved methods. Live local-
ization and object detection results were used in three traf-
fic scenarios where occlusions were present: crossing an
occluded T-junction, making a right turn at an occluded cor-
ner, and preparing to pass a large, parked vehicle not present
in the HD maps. Our results showed that the ego vehicle
was able to effectively minimize occlusions and consequently
discover occluded vehicles earlier inmost cases when the pro-
posed planner was used, in comparison to a baseline planner.
Moreover, the occlusions caused by the parked vehicle that
was not present in the HD maps were correctly estimated
when using our extended visibility estimation approach.

During our review of related research in Section II,
we noted that there is a common assumption that autonomous
vehicles will generally travel along the lane’s center, which is
adopted in several of the approaches that have been proposed
for regulating the speed of vehicles when they encounter
occluded areas in the driving environment. Instead of simply
using the center of the lane as a reference, the planner pro-
posed in this paper can be used to plan a reference trajectory
that will minimize occlusions by altering the lateral position
of the vehicle within its lane. Therefore, the use of trajectories
generated by our proposed motion planner, in conjunction
with existing longitudinal motion planners, should result in
less conservative and more efficient driving in traffic scenar-
ios involving occlusions.

This work has focused only on occlusions caused by sur-
rounding objects. However, occlusions can also be caused
by several other factors, such as sensor failure or adverse
weather conditions. These occlusions should also be con-
sidered in future work to ensure the safe navigation of
autonomous vehicles in broader operational domains. One
potential solution is to extend the visibility estimationmethod
improved in this work to support multiple sources of sensing
information. Although only one sensing modality, namely
LiDAR, was considered in this paper, the concept of quan-
tifying estimated visibility conditions along candidate trajec-
tories and converting them into visibility costs for trajectory
selection could also be applied when using multiple sensing
modalities.
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