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ABSTRACT Model predictive control (MPC) is widely used in resource optimization problems because it
naturally deals with bounded controls and states and allows predictive information to be included. However,
at each sampling instant, an optimization problem must be solved. Resource optimization problems with
switching control actions naturally lead to optimization problems with integer decision variables, which
are computationally costly, particularly when the number of variables is large. As a result, the approach of
directly discretizing (DD) the problem to derive a mixed-integer linear program (MILP) sets fundamental
limitations on the MPC sampling rate owing to the computational time required to solve the optimization
problem. In this paper, we propose a two-scale optimization algorithm (TSOA) for MPC. On the first-scale,
the entire prediction horizon is considered and the algorithm provides the optimal resources to be used at each
interval with a constant weighting cost. This optimization problem may be cast as a linear program (LP);
thus, it is computationally tractable even for a large number of variables and constraints. In the second-
scale, the switching nature of the decision variable is recovered by posing an MILP to deploy the optimal
resources computed in the previous scale. In this manner, the MILP is solved for a shorter time interval
than the entire prediction horizon, thus reducing the number of variables in the optimization problem. The
simulation results demonstrate the computational advantages of the proposed algorithm compared to direct
problem discretization and optimization.

INDEX TERMS Energy optimization, linear programming, mixed-integer linear programming, model
predictive control, resource optimization, switched controls.

I. INTRODUCTION
Resource optimization applications with switching decisions
are prevalent in electric power systems, such as minimization
of the electricity cost by means of load management [1], [2],
optimization of hybrid system operation [3], reactive power
and voltage control [4], and optimal energy management in
liberalized markets [5].

The presence of discrete control variables transforms
standard continuous optimization problems [6] into integer
optimization problems that are NP-hard [7]; thus, the com-
putational burden increases exponentially with the number
of decision variables. Although it is possible to transform
optimization problems into mixed-integer linear pro-
grams (MILPs) and apply state-of-the-art solvers for planning
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purposes, the optimization of MILPs becomes infeasible
for model predictive control (MPC) applications [8], where
the available computation time is limited by the required
sampling time. Consequently, the MILP [9] cannot provide
the optimal solution before a new sample is acquired [10].

A typical approach to MPC optimization of resource opti-
mization problems with switched decisions is to fix the pre-
diction horizon to 24 h and derive an MILP using a fixed
sampling time of one hour, as can be seen from the litera-
ture review [1]–[3], [11], [12]. This is known as the direct
discretization (DD) approach. The DD approach establishes a
trade-off between the complexity of the optimization problem
to be solved and the suboptimality of the solution owing
to large sampling times (e.g. 1 h); however, some applica-
tions require incorporating longer prediction horizons beyond
24 h [3], which leads to an infeasible optimization owing to
the increase in the problem complexity. Furthermore, even if
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a feasible solution is found, it has been demonstrated
that it may become infeasible when it is periodically
repeated [13], thus requiring larger prediction horizons to
guarantee feasibility.

Another problem that limits the DD approach in MPC is
that it is difficult to determine the computational complexity
of the optimization problem to be solved a priori. In fact,
as shown in the case study in Section VI, the computational
complexity is dependent on the initial state of the system.
In this way, the optimization algorithm can provide fast
solutions for certain initial conditions, whereas others may
require the algorithm to explore a larger number of nodes,
dramatically increasing the computational time and rendering
the MPC optimization infeasible.

The main line of research to solve the computational fea-
sibility of MPC is to avoid the integer nature of decision
variables either by parameterizing the switching times [14]
or by relaxations of the optimization problems [14]. In the
first case, instead of using binary variables attached to every
sampling time, a continuous time description of the switching
time instants is used. This approach was successful applied to
the control of mixed continuous batch processes [15], control
of supermarket display cases [16], and control of wastewater
treatment plants [17]. However, the a priori definition of the
switching pattern is not known in general and can lead to
suboptimal solutions if the pattern is not equal to the opti-
mal one. In the second case, relaxations and reformulations
were obtained by adding further constraints and penalization
strategies. Unfortunately, although these approaches avoid
binary variables, they may lead to nonconvex optimization
problems. Consequently, numerical solutions are not guaran-
teed to be globally optimal.

A different line of research is to tackle the difficulty
of the optimization problem using heuristic optimization
approaches, such as genetic algorithms, simulated annealing,
and particle swarm optimization [18], [19]. These approaches
search for the optimal solution using different heuristics.
In general, heuristic optimization methods provide subopti-
mal solutions; however, it is very difficult to establish a priori
the required computation time to find these solutions what
limits their applicability in MPC.

In this article we present a two-scale optimization algo-
rithm (TSOA) for solving resource optimization problems
with switched decisions using MPC. It is derived based
on general 1-norm minimization problem that models dis-
tinct resource optimization problems under the same formal
framework. The major technical difference from previous
bibliographical contributions is that TSOA divides the opti-
mization problem into two-scale. In the first-scale, the opti-
mization problem is modelled as a linear program (LP) by
integrating binary variables. The LP solution provides opti-
mal resource consumption per interval with a constant cost.
In the second stage, switching control action is recovered
by solving a MILP for each one of the intervals defined
in the previous LP. Second-stage MILPs lead to problems
with a smaller number of integer variables than the unique

MILP resulting from DD. Furthermore, although the MPC
algorithm computes the optimal control action for the entire
prediction horizon, only the first control action is applied.
As a result, it is not necessary to solve all MILPs for all
the intervals defined by the first-scale LP, but only the first
MILP that computes the control action that will be applied
by the MPC.

The technical contribution of the TSOA is two-fold. First,
it is shown that the switched decision problem may be trans-
formed into an LP by integration on an appropriate time
scale for the entire prediction horizon, which results in an
amenable optimization problem. Second, we define a smaller
MILP that recovers the switched control action. Furthermore,
the second MILP is designed in such a way that its solution
estimates the suboptimality level of the computed solution
in a straightforward manner, as shown in Section V. Note
that heuristic optimization approaches provide no clues on
the level of suboptimality achieved by their solutions.

Summing up, the proposed algorithm can tackle problems
with long-time prediction horizons while keeping the com-
plexity of the optimization problem bounded. In this way,
the proposed TSOA is scalable with respect to the length of
the prediction horizon, because although longer prediction
horizons may increase the LP size, the second MILP com-
plexity is kept constant. Furthermore, the TSOA algorithm
is scalable with respect to the sampling time selected for
discretizing the second MILP because the increase in the
number of variables impacts only one MILP (the one that
must be solved to provide the first control action for MPC).
The results of the TSOA, compared to DD are analyzed in the
case study in Section VI. It is shown that the proposed algo-
rithm is a competitive approach for solving MPC problems
with switching decisions.

II. FORMAL FRAMEWORK AND PROBLEM STATEMENT
Consider the 1-norm minimization problem [20] as the gen-
eral modelling framework for resource optimization prob-
lems with switched decisions, defined as

min
u(t)

J = ||Wx(t)x(t)||1,1 + ||Wu(t)u(t)||1,1 (1)

s.t. ẋ(t) = Acx(t)+ Bcu(t)+ Dcd(t) (2)

x(0) = x0 (3)

xmin ≤ x(t) ≤ xmax (4)

u(t) ∈ {0, 1}p (5)

where norm || · ||1,1 in cost function (1) is a temporal 1-norm
and spatial 1-norm, that for a time interval T it is defined as

||v(t)||1,1 :=
∫ T

0
||v(τ )||1dτ (6)

where ||v(τ )||1 is the spatial 1-norm of vector v(t) :=
[v1(t), v2(t), . . . , vn(t)]T ∈ Rn, defined as

||v(t)||1 :=
n∑
i=1

|vi(t)| (7)
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Wx(t) ∈ Rn×n and Wu(t) ∈ Rp×p are the costs or weights in
the cost function (1), and are assumed to be diagonal positive
semi-definite time-dependent matrices. Constraint (2) is a
continuous-time dynamic model represented in state-space
form with state vector x(t) ∈ Rn, input vector u(t) ∈ Rp,
disturbance vector d(t) ∈ Rq, and dynamic matrix Ac ∈
Rn×n, input matrix Bc ∈ Rn×p, and disturbance matrix Dc ∈
Rn×q. Constraint (4) bounds the state x(t) and constraint (5)
sets binary values for control actions.

The optimization problem set by cost function (1) and
constrains (2)-(5) capture a wide variety of energy and energy
cost optimization problems, such as the energy management
of a colliery [2], peak load management in steel plants [21],
demand-side management of a mine winder system [22],
optimization of wind-hydro plant operation [3], and energy
cost minimization on pumping stations [23]. Furthermore,
although constraints (2)-(5) account for the dynamical sys-
tem evolution, state constraints, and binary input, it is also
possible to consider linear constraints such as production con-
strains, storage constraints, process flow constraints, sequen-
tial constraints, maximum demand constraints, equipment
unavailability under maintenance, periodic invariance con-
straints, and switching costs, among others [13], [21]. It fol-
lows that the proposed modelling framework is well suited
for the formulation of resource optimization problems.
Assumption 1: The state space vector x(t) is positive for

all t . Equivalently, the minimum bound in constraint (4) is
non-negative, that is, xmin ≥ 0.

Assumption 1 is considered for simplicity only. Otherwise,
the LP and MILP optimization problems include new slack
decision variables (see [20, p. 294]), which would make
TSOA derivation difficult with technical details.

III. OPTIMIZATION PROBLEM FORMULATION
IN TWO-SCALE
Instead of solving a single MILP obtained by DD of the
continuous-time optimization problem (1)-(5), we define a
TSOA approach in which, in the long scale that considers the
entire prediction horizon, an LP is solved, and in the short
scale, a smaller MILP is proposed that recovers the switching
nature of the control actions. The computational benefit lies in
the size of the second short-scaleMILP, which is considerably
reduced from the MILP derived from DD.

A. FIRST-SCALE LP (1stLP)
1) LP TIME SCALE
Weighting matrices Wx(t) and Wu(t) in the cost function (1)
consider the cost of state x(t) and the cost of the control action
u(t). For instance, in energy-cost minimization problems, the
weighting matrix Wu(t) may be the product of the electricity
tariff by the electrical power of the actuator. We consider the
following assumption for weighting matrices:
Assumption 2: Weighting matrices Wx(t) ∈ Rn×n and

Wu(t) ∈ Rp×p are piecewise constant with Kx and Ku inter-
vals, respectively.

In this manner, the time-dependent weight matrices can be
defined as a set of constant matrices Wxm for m = 1, . . . ,Kx
and Wxn for n = 1, . . . ,Ku as follows

Wx(t) := Wxm, txm−1 ≤ t < txm, m = 1, 2, . . . ,Kx (8)

Wu(t) := Wun, tun−1 ≤ t < tun , n = 1, 2, . . . ,Ku (9)

with eachWxm andWun being constant diagonal matrices

Wxm := diag(wxm1,wxm2, . . . ,wxmn) (10)

Wun := diag(wun1,wun2, . . . ,wunp) (11)

where wxmi ∈ R for i = 1, 2, . . . , n and wukj ∈ R for
j = 1, 2, . . . , p.

We define the time scale of the state weight Wx(t) as the
set of size Kx that contains the time instants at which the
weighting matrices change, that is Tx := {tx0 , t

x
1 , . . . , t

x
Kx }.

Similarly, we define the time scale of the input weight as
Tu := {tu0 , t

u
1 , . . . , t

u
Ku}, of size Ku. If both time scales are not

equal, that is, Tx 6= Tu, we define a unique time scale T as
the union of both time scales with size K ; thus, T := Tx∪Tu,
that is,T := {t0, t1, . . . , tK }. We also define the time intervals
1tk := tk − tk−1 for k = 1, 2, . . . ,K . This can be seen
graphically in Fig. 1.

FIGURE 1. Given a state weigth time scale Tx and an input weight time
scale Tu, the time scale T is defined as the union of both time scales, that
is, T := Tx ∪ Tu.

The goal is to have a unique time scale T, in which the
weighting matricesWx(t) andWu(t) are piecewise constants.
This time scale T is used to derive an LP optimization prob-
lem for the long prediction term.

2) LP COST FUNCTION
In this section, we derive the cost function of the first-scale
LP. We begin our transformation by discretizing the cost
function (1) with time scale T. First, recall that by definition
of the temporal-spatial 1-norm || · ||1,1, the cost function (1) is

J =
∫ T

0
(||Wx(t)x(t)||1 + ||Wu(t)u(t)||1) dt

by partitioning the integral with time scale T, we have

J =
K∑
k=1

∫
1t

(||Wx(t)x(t)||1 + ||Wu(t)u(t)||1) dt (12)

Recall that under time scale T, weighting matrices Wx(t)
andWu(t) are piecewise constants;, hence, equation (12) may
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be rewritten with constantWxk andWuk as

J =
K∑
k=1

∫
1t

(||Wxkx(t)||1 + ||Wuku(t)||1) dt

By definition of spatial || · ||1 norm we have that

J =
K∑
k=1

∫
1t

 n∑
i=1

|wxkixi(t)| +
p∑
j=1

|wukjuj(t)|

 dt

Finally, as the diagonal entrieswxki andwukj of the matrices
are non-negative for all k = 1, 2, . . . ,K , we have

J =
K∑
k=1

 n∑
i=1

wxki

∫
1tk
|xi(t)|dt +

p∑
j=1

wukj

∫
1tk
|uj(t)|dt


(13)

Variables |uj(t)| for j = 1, 2, . . . , p, in cost function (13),
are still binary variables, that is, uj(t) ∈ {0, 1}. However,
if the binary decision variable u(t) is integrated, the integral∫
1tk
|uj(t)|dt is no longer binary but real. Hence, we perform

the change of variables Xki :=
∫
1tk
|xi(t)|dt ∈ R and Ukj :=∫

1tk
|uj(t)|dt ∈ R in cost function (13), yielding

J =
K∑
k=1

 n∑
i=1

wxkiXki +
p∑
j=1

wukjUkj

 , (14)

that is the cost function of a LP with K (n + p) real decision
variables Xk ∈ Rn, and Uk ∈ Rp, for k = 1, ..,K . Finally,
cost function (14) can be expressed in compact form as

J =
K∑
k=1

wkVk (15)

with

wxk :=
[
wxk1 wxk2 . . . wxkn

]
∈ R1×n (16)

wuk :=
[
wuk1 wuk2 . . . wukp

]
∈ R1×p (17)

wk :=
[
wxk wuk

]
∈ R1×(n+p) (18)

Xk :=
[
Xk1 Xk2 . . . Xkn

]T
∈ Rn×1 (19)

Uk :=
[
Uk1 Uk2 . . . Ukp

]T
∈ Rp×1 (20)

Vk :=
[
Xk Uk

]T
∈ R(n+p)×1 (21)

3) LP CONSTRAINTS
To derive the LP constraints, it is necessary to integrate
constraints (2)-(5). First, by integrating system dynamics (2)
during the time interval 1tk we have

x(tk )− x(tk−1) = Ac

∫
1tk

x(t)dt +

+Bc

∫
1tk

u(t)dt + Dc

∫
1tk

d(t)dt. (22)

Performing the change of variable Dk =
∫
1tk

d(t)dt , and
reordering expression (22), the state value at time instant tk is

x(tk ) = x(tk−1)+ AcXk + BcUk + DcDk . (23)

Disturbance Dk is known, whereas Xk and Uk are decision
variables. We define the matrix Cc :=

[
Ac Bc

]
∈ Rn×(n+p),

equation (23) can be expressed as

x(tk ) = x(tk−1)+ CcVk + DcDk (24)

for k = 1, . . . ,K . Applying state constraint (4) to equa-
tion (24) yields

xmin − x(0)− Dc
k∑
j=1

Dk ≤ Cc
k∑
j=1

Vk , (25)

xmax − x(0)− Dc
k∑
j=1

Dk ≥ Cc
k∑
j=1

Vk , (26)

for k ∈ [1, . . . ,K ], which can be written in matrix form as[
−CT
CT

]V1...
VK

≤[−11×K ⊗ (xmin−x0)+ (11×K ⊗ Dc)D
11×K ⊗ (xmax − x0)− (11×K ⊗ Dc)D

]
(27)

where ⊗ is the Kronecker matrix product and

CT :=


Cc 0 . . . 0
Cc Cc . . . 0
...
...
. . .

...

Cc Cc . . . Cc

 , D :=


D1

D1 + D2
...∑k

j=1Dj

 . (28)

Finally, the variable Vk := [Xk Uk ]T (i.e., the integral of
the state space and the control action) is also bounded at each
time interval 1tk . Thus, for k = 1, 2, . . . ,K , we have

1tk

[
xmin
0p×1

]
≤ Vk ≤ 1tk

[
xmax
1p×1

]
(29)

which sets the bounds on the integrated state vector Xk and
on the integrated control action Uk .

B. SECOND-SCALE MILP ( 2ndMILP)
Once the LP defined by cost function (15) and con-
straints (27) and (29) is solved, the optimal resources per
period X∗k , U∗k , for k = 1, . . . ,K , are known. However,
the control action in the original problem is a discrete con-
trol variable u(t) ∈ {0, 1}p. The discrete control action is
recovered by solving the following discrete-time optimiza-
tion problem for each period with constant weights, that is
for k = 1, 2, . . . ,K . The objective of the second optimization
problem is to determine the optimal binary control u∗ that best
approximates the cost found by the 1st LP, that is, which best
matches control U∗k and trajectory X∗k . At each period k we
state the optimization problem

min
u(t)

Jk =

∣∣∣∣∣
∣∣∣∣∣Wxk

(
L∑
l=1

x(tl)1tl − X∗k

)∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣Wuk

(
L−1∑
l=0

u(tl)1tl − U∗k

)∣∣∣∣∣
∣∣∣∣∣
1

(30)

s.t. x(tl+1) = Ax(tl)+ Bu(tl)+ Dd(tl) (31)
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x(tk−1) = x0 (32)

xmin ≤ x(tl) ≤ xmax (33)

u(l) ∈ {0, 1}p (34)

The optimization problem proposed to recover the switching
nature of the control action is discrete-time, with sampling
time 1tl , obtained by dividing the interval time 1tk in L
parts, that is1tl := 1tk/L. The cost function (30) minimizes
the resources deviation from the LP solution for each interval
1tk with a constant state and input weights. Equations (31)
and (33) are the discrete-time versions of the continuous sys-
tem dynamics, where the matrices A ∈ Rn×n, B ∈ Rn×p and
D ∈ Rn×q are obtained by zero order hold discretization from
their continuous time counterparts Ac, Bc, and Dc, with sam-
pling time 1tl . Discrete-time vectors have the same dimen-
sions as their continuous counterparts, hence x(l) ∈ Rn,
d(l) ∈ Rq, and u(l) ∈ Rp.
Remark 1: Dynamic model (31) is the zero order hold

discretization of continuous timemodel (2).Moreover, during
sampling times, control action is constant due to its integer
nature, as a result both models (2) and (31) yield the same
value at sampling times intants 1tl [24].

1) MILP COST FUNCTION
In the following, we transform the optimization problem
defined in (30)-(34) into an MILP. The cost function (30) can
be written in matrix form as follows

min
u(t)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣1tlWxk
[
Inxn Inxn . . . Inxn

]︸ ︷︷ ︸
WxL∈Rn×nL


x(t1)
x(t2)
...

x(tL)

− X∗k
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1

+

+

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣1tlWuk
[
Ipxp Ipxp . . . Ipxp

]︸ ︷︷ ︸
WuL∈Rp×pL


u(t0)
u(t1)
...

u(tL−1)

− U∗k
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1

which may be transformed into an MILP by introducing
slack variables r ∈ Rn×1 and t ∈ Rp×1, see for instance
[20, p. 294], yielding

min
u(t)

J = r + t (35)

s.t. (36)
WxL −Inxn 0n×pL 0n×p
−WxL −Inxn 0n×pL 0n×p
0p×nL 0p×n WuL −Ipxp
0p×nL 0p×n −WuL −Ipxp



x
r
u
t

 ≤

WxkX∗k
−WxkX∗k
WukU∗k
−WukU∗k

 (37)

with x := [x(t1) x(t2), . . . , x(tL)]T ∈ RnL×1, u :=
[u(t0) u(t1), . . . , u(tL−1)]T ∈ {0, 1}pL , r ∈ Rn×1, t ∈ Rp×1.

2) MILP CONSTRAINTS
Now, we transform constraints (31)-(34) to be used in
MILP. Applying the dynamical system in (31) to state con-
straints (33), for l = 1, . . . ,L, we obtain the following

equations in matrix form:

1L×1 ⊗ xmin ≤ Apx0 + Bpu+ Dpd (38)

Apx0 + Bpu+ Dpd ≤ 1L×1 ⊗ xmax (39)

with variables and prediction matrices defined as

u =


u(t0)
u(t1)
...

u(tL)

 , d =


d(t0)
d(t1)
...

d(tL)

 , Ap =


A
A2
...

AL

 (40)

Bp =


B 0n×q . . . 0n×q
AB B . . . 0n×q
...

AL−1B AL−2B . . . B

 (41)

Dp =


D 0n×p . . . 0n×p
AD D . . . 0n×p
...

AL−1D AL−2D . . . D

 (42)

Finally, the constraints in (38)-(39) can be compacted as[
−Bp
Bp

]
u ≤

[
−1L×1 ⊗ xmin + Apx0 + Dpd
1L×1 ⊗ xmax − Apx0 − Dpd

]
(43)

IV. TWO-SCALE MODEL PREDICTIVE
CONTROL ALGORITHM
In this section, we describe the two-scale optimization algo-
rithm used in MPC. First, on the long scale provided by the
time scale T = {t1, t2, . . . , tK }, an LP is defined and solved,
as shown in Figure 1. Therefore, this approach is feasible for
long prediction horizons. As a result, the 1st LP (summarized
in Section IV-A) provides, at each time interval 1tk with
constant weights, the optimal resources V ∗k = [X∗k U∗k ]

T .
Next, for each short time scale defined by the time interval

1tk , where k = 1, 2, . . . ,K , an MILP (summarized in
Section IV-B. 2nd MILP) is solved to determine the optimal
switched control u(tl)∗. In Figure 1, we shown the 2nd MILP
for 1tk and 1tk+1. The 2nd MILP is now feasible because
the time scale is reduced to 1tk , instead of T , as is the
case with the MILP obtained by the DD of problem (1)-(5).
Furthermore, for the optimization in MPC, only one MILP,
the one whose its 1tk contains the present time instant,
is solved to obtain the optimal control action to be applied
by MPC.

Once the fundamental idea behind the two-scale algorithm
is formulated, we describe its implementation as an MPC
control problem. Figure 3 shows the flowchart of the TSOA
MPC implementation. After loading the problem data and
the initial value of the state x0, the 1st LP time scale T is
computed and the 1st LP problem formulated. The solution
of the 1st LP is given by V ∗k = [X∗k U∗k ]

T , that is used to
formulate the 2nd MILP. Its solution provides the vector u(tl)∗

for l = 0, 1, . . . ,L − 1. Then, the first control action u(t∗0 )
is applied, the new state x0 is measured, and the process is
repeated as shown in the flowchart in Figure 3.
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FIGURE 2. The1st LP is defined on the large time scale T = {t0, t1, . . . , tK }.
It provides the optimal resources X∗k and U∗k for each time interval 1tk .
The time intervals 1tk := tk − tk−1 for k = 1, 2, . . . , K of time scale T
define the intervals where the 2nd MILPs are solved. In particular we
shown the 2nd MILP for 1tk and 1tk+1. However, for the optimization in
MPC only one MILP, the one whose 1tk contains the present time instant,
is solved to obtain the optimal control action to be applied by MPC.

The major advantage of the two-scale optimization algo-
rithm for its application to MPC lies in the fact that it is
not necessary to solve all the 2nd MILPs for 1tk with k =
1, 2, . . . ,K but just one 2nd MILP for the current 1tk , that
is, for 1tk that contains the present time instant. Although
the two-scale approach provides computational advantages
for planning by reducing a single large MILP into K -shorter
MILPs, its major advantage relies on its application to MPC
because only an LP followed by a single MILP on a short
scale must be solved to compute the optimal control action to
be applied at each sampling instant.

In fact, for a time horizon T = K1tk , a sampling time
1tl = 1tk/L, and a dynamical system of order n and p inputs,
the DD approach results in aMILPwith n(KL+1)+p(KL+1)
variables and 2nKL constraints. On the contrary, the TSOA
results in a MILP with n(L+1)+p(L+1) variables and 2nL
constraints. As a result, the DD yields a problem which num-
ber of variables and constraints are of order O(KL) whereas
in the TSOA are of order O(L). As the MILP is an NP-hard
optimization problem, the complexity increase is not linear in
K but factorial, thus dramatic reduction in computation time
can be achieved even for moderate values ofK . In Section VI,
we quantitatively demonstrate the computational advantage
of the TSOA in MPC when compared to the computational
cost of the DD approach.

A. FIRST-SCALE LINEAR PROGRAM
This section summarizes the 1st LP cost function and con-
straints. These are

min
u(t)

J =
K∑
k=1

wkVk (44)

s.t.
[
−CT
CT

]V1...
VN

 ≤ [−11×n ⊗ (xmin − x0)+ Dc ⊗ D
11×n ⊗ (xmax − x0)− Dc ⊗ D

]
(45)

x(0) = x0 (46)

1tk

[
xmin
0p×1

]
≤ Vk ≤ 1tk

[
xmax
1p×1

]
(47)

Vk ∈ R(n+p)×1 (48)

B. SECOND-SCALE MIXED INTEGER LINEAR PROGRAM
This section summarizes the 2nd MILP cost function and
constraints. These are

min
u(t)

J = r + t (49)

s.t. (50)
WxL −Inxn 0n×pL 0n×p
−Wxk −Inxn 0n×pL 0n×p
0p×nL 0p×n WuL −Ipxp
0p×nL 0p×n −WuL −Ipxp
0nL×nL 0p×n −Bp 0n×p
0nL×nL 0p×n Bp 0n×p



x
r
u
t

 ≤ (51)


WxkX∗k
−WxkX∗k
WukU∗k
−WukU∗k

−1L×1 ⊗ xmin + Apx(0)+ Dpd
1L×1 ⊗ xmax − Apx(0)− Dpd

 (52)

x ∈ RnL×1 (53)

r ∈ Rn×1 (54)

u ∈ {0, 1}pL (55)

t ∈ Rp×1 (56)

V. OPTIMALITY AND COMPLEXITY PROPERTIES
OF THE TWO-SCALE ALGORITHM
In this sectionwe analyse the optimality and complexity prop-
erties of the proposed two-scale optimization. First, we define
the optimal solution of problem (1)-(5) as u∗∗(t) and x∗∗(t).
This baseline serves as a comparison to other solutions.
We also define the optimal solution of the 1st LP (44)-(48)
as X∗k ,U

∗
k for k = 1, 2, . . . ,K , and the optimal solution of

the 2nd MILP (49)-(56) as u∗(t) and x∗(t).
We have the following lemma that bounds the optimal

solution u∗∗(t) and x∗∗(t) with the solutions of the two-scale
algorithm:
Lemma 1: The optimal solution of the optimization prob-

lem (1)-(5) is bounded above by the optimal solution of
the TSOA and below by the optimal solution of the 1st LP,
that is,

||Wx(t)x∗(t)||1,1 + ||Wu(t)u∗(t)||1,1
≥ ||Wx(t)x∗∗(t)||1,1 + ||Wu(t)u∗∗(t)||1,1

≥

K∑
k=1

(WxkX∗k +WukU∗k )

Proof: Consider that the optimal solution of optimiza-
tion problem (1)-(5) is given by x∗∗(t), u∗∗(t). As a result,

VOLUME 10, 2022 57829



P. Balaguer-Herrero et al.: Two-Scale Model Predictive Control for Resource Optimization Problems

FIGURE 3. Application of the two-scale optimization algorithm to model
predictive control. The major computational advantage follows because
only one 2nd MILP msut be solved at each iteration.

it follows from the definition of optimality that ∀ x(t), u(t)

||Wx(t)x(t)||1,1 + ||Wu(t)u(t)||1,1 (57)

≥ ||Wx(t)x∗∗(t)||1,1 + ||Wu(t)u∗∗(t)||1,1 (58)

Particularizing the previous result for x(t), u(t) the solution
provided by the TSOA algorithm proofs the first inequal-
ity. The second inequality follows because the 1st LP is a
relaxation of the optimization problem (1)-(5). In fact, the
constraint of problem (1)-(5) is

xmin ≤ x(t) ≤ xmax , ∀t ∈ R (59)

The particularization of t ∈ R into time instants tk , k =
1, 2, . . . ,K and the integration of x(t) for each1k yields the

following constraints of the 1st LP,

xmin ≤ x(tk ) ≤ xmax , (60)

1tkxmin ≤
∫
1tk

x(t)dt ≤ 1tkxmax (61)

As a result, it is not true that equations (60) and (61) implies
equation (59). �
The main advantage of Lemma 1 is that the TSOA auto-

matically provides the upper and lower bounds on the opti-
mal solution of the problem. As a result, if both bounds
are tight, we can ensure near-optimality properties of the
solution. In the following, we show that the cost function of
the 2nd MILP automatically provides an upper bound on the
suboptimality of the two-scale algorithm.
Lemma 2: The value of the cost function obtained by the

2nd MILP, that is Jk of Equation (30), is an upper bound of
the difference between the cost of problem (1)-(5) obtained
by the solution of the TSOA minus the cost of the 1st LP,
that is

Jk =

∣∣∣∣∣
∣∣∣∣∣Wxk

(
L−1∑
l=0

x(tl)1t∗l − X
∗
k

)∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣Wuk

(
L−1∑
l=0

u(tl)∗1tl − U∗k

)∣∣∣∣∣
∣∣∣∣∣
1

≥

=

∣∣∣∣
(∣∣∣∣∣
∣∣∣∣∣Wxk

L−1∑
l=0

x(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣Wuk

L−1∑
l=0

u(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

)

−

(
||WxkX∗k || + ||WukU∗k ||

)∣∣∣∣
Proof: The optimal solution of the 2nd MILP at interval

1tt is x∗(tl) and u∗(tl) for l = 1, 2, . . . ,L. Furthermore recall
that, for any norm, we have the inequality ||a− b|| ≥

∣∣||a||−
||b||

∣∣. As a result, it follows that
Jk =

∣∣∣∣∣
∣∣∣∣∣Wxk

(
L−1∑
l=0

x(tl)∗1tl − X∗k

)∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣Wuk

(
L−1∑
l=0

u(tl)∗1tl − U∗k

)∣∣∣∣∣
∣∣∣∣∣
1

≥

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Wxk

L−1∑
l=0

x(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

− ||WxkX∗k ||1

+

∣∣∣∣∣
∣∣∣∣∣Wuk

L−1∑
l=0

u(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

− ||WukU∗k ||1

∣∣∣∣
=

∣∣∣∣
(∣∣∣∣∣
∣∣∣∣∣Wxk

L−1∑
l=0

x(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣Wuk

L−1∑
l=0

u(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

)
︸ ︷︷ ︸

Optimal Solution of the TSOA Algorithm at interval 1tk

(62)

−

(
||WxkX∗k || + ||WukU∗k ||

)
︸ ︷︷ ︸

1st LP Optimal Solution at interval 1tk

∣∣∣∣ (63)
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FIGURE 4. Water management pumping scheme benchmark.

The term (62) is the discrete-time approximation of the
solution computed by the two-scale optimization algorithm
for the problem (1)-(5) because∣∣∣∣∣

∣∣∣∣∣Wxk

L−1∑
l=0

x(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

≈ Wxk

∫
1tk

x∗(t)dt∣∣∣∣∣
∣∣∣∣∣Wuk

L−1∑
l=0

u(tl)∗1tl

∣∣∣∣∣
∣∣∣∣∣
1

= Wuk

∫
1tk

u∗(t)dt

whereas the term (63) is the optimal value obtained by the
1st LP. As a result, the cost of the 2nd MILP is greater than
or equal to the difference between the cost of problem (1)-(5)
obtained by the solution provided by the two-scale algorithm
minus the cost of the 1st LP. �
Lemma 2 allows to obtain optimality bounds on the two-

scale solution. In fact, Lemma 2 can be rewritten as, Jk ≥
|JTSOAk−JLPk |, where Jk is the 2

nd MILP optimal cost, JTSOAk
is the optimal cost obtained by the two-scale optimization
algorithm, and JLPk is the 1

st LP optimal cost, all considered
at time interval 1tk . As a result it follows that

JLPk − Jk ≤ JTSOAk ≤ JLPk + Jk

If these bounds are tight we have a certificate of near-
optimality for the TSOA for each interval 1tk .

VI. CASE STUDY
In this section, we consider the optimal operation of a water
supply system as a simple benchmark to show the infeasibility
of MPC arising from MILP optimization problems derived
by direct discretization from optimization problem (1)-(5).
The benchmark comprised three reservoirs and two pumps
to be controlled, as shown in Figure 4. Even for this simple
problem, infeasible computation results were obtained for the
MPC with DD optimization.

Reservoir 1 has a constant input flow of Fi = 1/6 m3/min
(i.e. cubic meters per minute), whereas reservoirs 2 and 3
must supply a constant output flow of Fo2 = Fo2 =
1/12 m3/min. The maximum volume for each reservoir is
xmax = [400 250 250]T m3, whereas the minimum volume
is xmin = [20 20 20]T m3. Pump 1 provides a nominal
flow of F1 = 1/2 m3/min and a power consumption of
P1 = 5 kW (i.e. kilowatt). Pump 2 provides a nominal
flow of F2 = 3/5 m3/min, and the power consumption is
P2 = 6 kW. Electricity tariff, in ce

kWh (i.e. cents of euro
per kWh), is given for 24 hours period as, 11.87 ce/kWh,

t = [0, 6]∪ [22, 24], 14.11 ce/KWh, t = [6, 7]∪ [10, 18],
and 20.05 ce/kWh, t = [7, 10] ∪ [18, 22]. Finally, the
dynamic model matrices are

A =

0 0 0
0 0 0
0 0 0

 , B =

−F1 −F2F1 0
0 F2

 ,Bd =
 Fe
Fo2
Fo3


First, we demonstrate how infeasibility can be attained

by optimization of the DD model. Consider optimal pumps
MPC for a 24 hours time horizon with initial state x0 =
[200 100 100]T m3. The optimal problem is transformed into
an MILP with a sampling time Ts = 30 min. The solution
was computed using the ’intlinprog’ function in MATLAB
with a computational time of 0.4364 s. However, when
the initial state is changed to x0 = [100 30 30]T m3,
the optimal solution is not found, because the ’intlinprog’
function reached the default value of the maximum num-
ber of nodes with a total computational time of 1815.04 s
(i.e. 30.25 min).

A consequence of the previous example is that it is very
difficult to establish a priori the computational requirements
to find a (sub)optimal solution with an MILP obtained using
DD. In fact, it is the change in the initial condition x0 that
transforms an easy optimization problem into a difficult one,
by increasing the required computational time by two orders
of magnitude. This is because the value of the initial condi-
tion, x0, defines the problem constraints. Thus, for certain
values of x0 it may be the case that a larger number of
constraints are active, increasing the required computational
time to find the optimal solution. Furthermore, note that this
approach is infeasible for use in MPC because the required
computational time of 30.25 min is larger than the sampling
time of Ts = 30 min. As a result, the direct approach of using
DD in MPC is, generally, not a feasible approach, even for
problems with a reduced number of actuators and constraints,
and with large sampling times. The fact that one instance of
the optimization problem can be solved within the allowed
computational time, does not guarantee that the next instance
of the optimization problem will be solved.

Now, we perform a quantitative comparison analysis
between DD approach and the TSOA for the initial state
x0 = [200 100 100]T m3. First, we obtained the optimal
solution by DD with two distinct sampling times of 30 min
(i.e., DD30) and 5 min (i.e., DD5). The cost of the direct
discretization algorithm with a sampling time of 30 min is
DD30min = 195.85 whereas the cost with sampling time of
5 min was DD5min = 166.22. The reduction in the sampling
time from 30 to 5 min reduces the cost of 17 %; however,
the required computational time was increased to 93 %. This
clearly shows the trade-off between optimality and computa-
tional complexity in the DD approach.

For comparative purposes, we now compare the DD
approach with the TSOA, where the 2nd MILP is discretized
using the same time interval as in the DD approach. The
optimal cost achieved by the TSOA approach is equal to that
obtained by DD, as shown in Table 1. The total computational
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TABLE 1. Comparative study of the two-scale optimization with respect to direct MILP solution with initial condition x0 = [200, 100, 100]T .

TABLE 2. Comparative study of the two-scale optimization with respect to direct MILP solution with initial condition x0 = [100, 30, 30]T .

time (i.e. 1st LP time plus the 2nd MILP) for TSOA30 is a 23%
larger than the DD30 approach. However, for the TSOA5 the
computational time is 25 % shorter than the DD5. Further-
more, the TSOA computational time hardly increases with a
reduction in the sampling time from 30min to 5min, showing
the scalability properties with respect to the sampling time of
the proposed two-scale optimization approach.

The TSOA also provides optimality bounds for the com-
puted solution. First, recall that from Lemma 2, we have
JLPk − Jk ≤ JTSOAk ≤ JLPk + Jk . In this way, for the
first time interval 1t1 and sampling time 30 min, we have
JLP1=138.48 and J1=21.76; thus, the cost of TSOA30 is
bounded by 116.72≤ JTSOA1 ≤160.24. Now, applying
Lemma 1, the optimal solution for the whole prediction
horizon is bounded above by JTSOA=195.85 and below by
JLP=158.26. As a result, the a priori worst-case suboptimality
of the TSOA with respect to the DD is approximately 23 %.
A posteriori, it can be seen that both the TSOA and DD,
provide the same cost. For a sampling time of 5 min we have
JTSOA=162.22 and JLP=158.26. Consequently, the a priori
worst-case suboptimality of the TSOA with respect to DD
is 2.5 %. Henceforth, the provided TSOA optimal solution,
in the worst-case, deviated by less than 2.5 % of the optimal
solution.

Now, consider the more computationally demanding MPC
problem with the initial state x0 = [100 30 30]T m3.
The DD30 cost is 515.79 whereas the DD5 cost is 460.35.
Reducing the sampling time from 30min to 5min reduced the
cost by 10 %. However, although DD5 has a computational
cost of 1.08 s, for DD30, the computational cost is 1855 s
because, although DD5 has more variables than DD30, the
shorter sampling interval makes it easier to find a feasible
solution, whereas DD30 has to explore more nodes to find
a suboptimal solution. This again shows the difficulty to
ascertain the computational complexity of the DD problems.

FIGURE 5. Optimal pumping scheme obtained by direct discretization
approach with sampling time of 5 min. Zero is pump off and 1 pump on.

We now compare the TSOA approach with the DD.
TSOA30 achieves a cost 2.3% lower than DD30, as TSOA5
and DD5 achieve nearly the same cost, as shown in Table 2.
Regarding the total computational time for TSOA30 it is
0.38 s and for TSOA5 it is 0.39 s. The computational time
is shorter than that in the DD approach, and it can be seen
that the computational time hardly changes with respect to
the sampling time, again showing the scalability properties
with respect to sampling time.

Regarding the optimality bounds for the first time inter-
val 1t1 and sampling time 30 min, we find that JLP1 =
276.96 and J1 = 9.89; thus, the cost of TSOA30 is bounded by
267.07 ≤ TSOA1 ≤ 286.85. For the first time interval 1t1
but with a sampling time of 5 s, we have JLP1 = 276.96 and
J1 = 0; thus, the cost of TSOA5 is bounded by TSOA1 =
276.96, that is the cost achieved by the TSOA5. Applying
Lemma 1, the optimal solution for the whole prediction
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FIGURE 6. Optimal reservoir volume evolution obtained by applying the
optimal pumping scheme computed with the direct discretization
approach with sampling time of 5 min. The reservoir volume evolution is
plot in blue whereas the reservoir maximum and minimum level are plot
in red.

FIGURE 7. Optimal pumping scheme obtained by the two-scale
optimization algorithm with sampling time of 5 min. Zero is pump off and
1 pump on.

FIGURE 8. Optimal reservoir volume evolution obtained by applying the
optimal pumping scheme computed with the two-scale optimization
algorithm approach with sampling time of 5 min. The reservoir volume
evolution is plot in blue whereas the reservoir maximum and minimum
level are plot in red.

horizon is bounded above by JTSOA = 503.47 and below by
JLP = 57.63. As a result, the a priori worst-case suboptimality
of the TSOA with respect to DD is approximately 10 %.

A posteriori can be seen that both, TSOA and DD, provide
the same cost. For a sampling time of 5 min we have JTSOA =
459.23 and JLP = 457.63. Consequently, the a priori worst-
case suboptimality of the TSOA with respect to the DD
is 0.3 %. Henceforth, the provided TSOA optimal solution,
in the worst-case, deviated by less than 0.3 % of the optimal
solution.

Finally, we graphically show the optimal control and state
evolution for the initial state x0 = [100, 30, 30]T , solved
with DD5 and TSOA5. The optimal control actions for DD5
are shown in Figure 5, and for TSOA5 in Figure 7. The state
evolution, that is, the reservoir levels, is shown for DD5 and
TSOA5 in Figure 6 and 8, respectively.

VII. CONCLUSION
In this article, a new two-scale optimization algorithm
(TSOA)is proposed for use in model predictive con-
trol (MPC) for resource optimization problems with switched
decisions. The proposed approach overcomes the infeasibility
and scalability problems in optimization that appear in the
mixed-integer linear program (MILP) derived from the direct
discretization (DD) approach because the TSOA can con-
sider the entire prediction horizon while keeping the MILP
complexity bounded. As a result, the solution is feasible as
the computational time is reduced with respect to DD, and
is scalable because the increase in the prediction horizon
does not increase the MILP complexity. Furthermore, the
algorithm is also scalable with respect to the sampling time
because only one MILP with a fixed length must be solved
to compute the first control action. The TSOA was tested
on a three reservoirs with two pumps water supply system.
The computational results show that MPC with TSOA is
computationally feasible because the required computational
time is shorter than that of theDD approach. Furthermore, it is
scalable as the computational time hardly increases when the
MPC sampling time is reduced. As a result, the TSOA enables
the application of MPC in optimal resource problems with
switched decisions.
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