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ABSTRACT Nowadays, video recordings of sport events is standard practice for a variety of applications,
ranging from entertainment to competition analysis. Beside that, analysis of athletes while exercising is of
particular interest for their coaches in order to gain insight into training quality and allow for training control.
To bring together video recordings and the desire for analysis we present the implementation of a genetic
algorithm (GA) for the important step of camera calibration. Our implementation can be used not only in a
prospective but also in a retrospective manner for the squash sport. We do not rely on directly or manually
provided image-world coordinates, but rather only on the playing field as known geometric object, present
in the physical camera’s captured image. To find the best GA configuration, we evaluate all combinations
of 2 initialization-, 2 fitness-, 3 selection-, 4 crossover-, and 2 mutation strategies. We apply and evaluate
the GA’s accuracy on synthetic, artificial renderings, and real world data as well as comparing it to other
standard optimization algorithms. Our results reveal the importance of correct camera placement and show
sufficient accuracy for our goal of athlete movement analysis. The results will serve for a automatic athlete
movement analysis tool to support squash specific training procedures.

INDEX TERMS Camera calibration, genetic algorithm, position estimation, squash sport, videos.

I. INTRODUCTION
Camera resectioning, also known as geometric camera cal-
ibration, is typically the first step in many computer vision
applications [1]–[4]. It is known as the process of estimating
intrinsic and extrinsic camera parameters. While intrinsic
parameters define the camera’s focal length and principal
point, extrinsic parameters denote the camera pose as rotation
and translation transformation from world to camera coor-
dinates. Thus, in combination, they reflect the relationship
between the captured world scene and the images acquired by
the camera. In general, stereo camera calibration is required
in applications, where cameras are used for obtaining abso-
lute quantitative measurements, such as position, distance,
velocity, size, or angle with respect to a world coordinate sys-
tem. Applications for that can be found in the medical domain
for X-Ray calibration, where an attached color camera [3]
with additional depth information (RGB-D) [4] is used. How-
ever, in contrast to using time-of-flight sensors or a multiple
view camera setup, depth information is lost when using a
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single stationary camera. On the other hand, if such cameras
are calibrated, quantitative measurements on planar objects
can still be obtained. Applications are calibration of action
cameras for photogrammetric purposes [5] or using roadside
traffic management cameras for vehicle speed estimation [6].
Further, for educational purposes, camera resectioning has
been used for visual tracking in Aikido [7]. Here we present
a single camera calibration method, developed for the spe-
cific requirements posed by sports applications. Specifically,
we are interested in the game of squash and aim for providing
a tool for coaches and athletes to optimize the training pro-
cess and improve performance during competition. This is of
particular interest, since well-planned and executed training
not only leads to physical adaptation mechanisms, but also
reduces the risk for injury [8].

In general squash is an agile racket sport played on a squash
court by two athletes on a 6.4m×9.75m shared playing field,
which is surrounded by four walls and has been characterized
as a complex sport which demands a combination of physi-
cal, technical, and tactical abilities [9]. Lines relevant to the
game are well defined [10] and are present on the two side
walls, the front wall as well as on the floor. For broadcasts
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and video recordings of squash matches the camera position
corresponds to a typical viewer position centered behind the
court. After initial setup, camera parameters do not change
during matchplay, resulting in a stationary view. This per-
spective represents the preferred view for broadcasting large
tournaments, since it can easily be setup to capture the entire
court.

During a rally, both athletes play the ball alternating as
to hit the front wall directly or indirectly (via a wall). One
special characteristic of squash is that both players share the
same physical space, while they must not interfere with each
other. Thus intelligent shot selection, body positioning, and
motion patterns are important elements in the game of squash.
In [11] dynamic motions for players with different technical
abilities have been studied and it was reported that athletes’
position was closer to the front wall for winning rallies
across different skill levels. More recent research investi-
gated the difference in work-rate as a function of game dura-
tion and distance covered between international and Slovene
national players, founding that international players cover
larger distances caused by longer average game duration [12].
In addition, the importance of a specific area on the court
floor, called the T area was investigated [13], revealing that
controlling this area relates to player’s dominance during
a rally and ultimately with the likeliness of winning that
rally. Further, awareness the opponent’s motion is essential
to retaining control of a rally. Moreover, it is significant that
squash requires quick reactions to opponent’s actions. Thus
there remains only a short time for making tactical decisions,
and as a consequence, internalizing certain patterns during
training and retrieving them in competition is an important
skill. A recent study found six situation awareness cluster
including players’ position on court and found differences in
expert athletes’ behavior [14]. This empathizes the impor-
tance of this topic even for elite squash athletes. Further,
individual locations on the playing field may also reveal
individual strength and weaknesses during match play and
allow investigating athletes’ performances during training.
This is particularly relevant for amateur players, as they often
have considerable potential for improvement. Consequently
extracting the player’s locations over time from images of a
single camera video feed is of particular interest, since they
provide information for motion and game tactics analysis in
competition and for training assessment.

In preliminary work, we have shown that human pose
estimation using convolutional neural networks is able detect
athletes’ feet in squash in image coordinates and can be used
for further processing [15]. To estimate positions from these
coordinates on the planar playing field, geometric camera
calibration is necessary.

For that, our application specific requirements for a camera
calibration method are fivefold:
• R0: Allows for retrospective calibration of existing
recordings

• R1: Accurate w.r.t. reprojection error on the game field
and robust w.r.t. initial values

• R2: Fully automatic without manually defining point
correspondences and no additional calibration target

• R3: Inexpensive hard and software
• R4: Mobile and fast setup
While several standard methods for camera calibration

exist, they fall short fulfilling all our requirements. A dis-
tinctive feature of our specific application is the fact that
the squash court itself can be regarded as a 3D calibration
object. The obvious choice for camera calibration methods
points at early methods using 3D calibration objects instead
of planar calibration targets and manually establishing point
correspondences. A naive solution for obtaining point cor-
respondences, would require the user to click on junctions
of the court lines in a certain order. However, ease-of-use
(R2) is important for our application and we therefore aim
for developing a fully automatic calibration method using a
squash court as calibration object without manually provided
point correspondences.

Geometric camera calibration can be posed as a multi-
variate non-linear iterative optimization problem: Finding a
set of camera parameters that minimize an error function,
which is usually the L2-distance between control points
from the image and the corresponding reprojected control
points from the calibration target. An accurate and robust
calibration method provides good accuracy (low reprojection
error), while allowing for poor initial values, respectively far
away starting positions. Therefore, we investigate the field of
genetic algorithms (GA) for optimization as they are known
to find high-quality solutions even to NP-hard problems [16].
Thereby, we systematically evaluate which combination of
fitness computation and genetic operator work best for accu-
rate and robust camera calibration in our application context.

II. RELATED WORK
In early motion research studies, position notation was done
fully manually [17]. This implies recording a full squash
match followed by a tedious frame by frame video anal-
ysis. This approach is found not only in squash, but was
also the usual approach in other racket sports e.g. bad-
minton. A review is provided in [18] which compares man-
ual, indoor / outdoor automated, and commercially available
vision based analysis systems with respect to different kinds
of sport. The authors conclude that with increasing comput-
erization and computational power, the capturing process has
become more and more (semi-) automated.

As an example for squash, the SAGIT / Squash soft-
ware [19], a supervised automatic system for player tracking
was introduced. This method requires a downward facing,
ceiling mounted camera capturing the complete court from
above and processes the captured images with a 384 px ×
288 px resolution. For system calibration a custom radial
distortion correction method as described in [20] was applied.
Investigating the software’s accuracy was done in [21]. This
included, amongst other aspects, the calibration error. It has
been reported that the players’ systematic positioning error is
higher for positions further away from the camera. Different

VOLUME 10, 2022 58137



C. Brumann, M. Kukuk: Evolution Based Single Camera Resectioning Based on Distance Maps

experiments showed that a player’s position error is 0.08 m in
the middle of the court and 0.33 m in the corners, defined as
0.5 m along each of two adjacent walls towards the middle.
The authors state that these errors are related to imperfect
calibration.

Different methods for camera calibration exist. One of the
most common is Tsai’s method [22] which is a two staged
method based on a single set of coplanar image – world coor-
dinates. First, the camera’s 3D orientation, X – Y position,
and scale factor are approximated. And subsequently in the
second stage the focal length, distortion parameters, and Z
position are estimated. An other well known calibration algo-
rithm is Zhang’s method [23]. In contrast to Tsai’s method
this requires a camera to observe a planar pattern from at
least two (recommended are four to five) different orienta-
tions. Beside that, other camera calibration methods for live
broadcasts are applied in the field of sports graphic systems.
In [24] a method for calibrating multiple pan-tilt-zoom (PTZ)
cameras is proposed. However this method is different to our
approach as a PTZ camera’s parameter changes constantly
in contrast to our camera view. Further our method must
be applicable to existing video recordings (R0), using single
stationary camera views to allow for retrospective motion
analysis. We also aim to be able to deploy our algorithm in
courts with basic soft- and hardware requirements.

Beside that, first genetic algorithms for camera calibration
already exist. In [25] an algorithm is proposed which relies
on a pinhole camera model without modelling lens distor-
tion. This method allows calibration using seven image –
world coordinate correspondences. These calibration points
are used for fitness evaluation of a possible solution. Com-
pared to Tsai’s method the authors state that their approach
has a high accuracy and robustness even in noisy conditions.
A second genetic approach including distortion correction is
presented in [26]. Similar to [25] this approach also includes
the process of extracting calibration points for estimating a
solution’s fitness.

Compared to the other, our approach is different in terms of
fitness calculation. Instead of relying on the correspondences
of the world image coordinates, we perform a lookup of a pro-
jection of the court in a distance-transformed edge image of
the scene the fitness estimation. We also investigate different
strategies for genetic operators in the algorithm.

We begin by describing the underlying pinhole camera
model and show how geometry projection is performed.
Subsequently we present our genetic algorithm, including
our fitness estimation method and introduce all investigated
operators. Then our experiments on synthetic and real world
data are described and results are presented.

III. CAMERA MODEL
In general a camera model formally describes the image
formation process of a physical camera, that is the map-
ping from a 3D scene to a 2D image. More specifi-
cally, it describes the projection of three dimensional (3D)
world coordinates [X ,Y ,Z ]T to two dimensional (2D) pixel

coordinates [u, v]T . For the basic pinhole camera model this
projection is expressed formally in terms of (1) intrinsic and
(2) extrinsic parameters [27]. The model’s intrinsic parame-
ters are defined by a 3× 3 matrix:

A =

fu s cu
0 fv cv
0 0 1

 (1)

MatrixA contains a total of five unique camera parameters.
The focal lengths fu and fv are given with respect to the
corresponding image dimension in pixel units. Parameter s
describes the skewness between the image’s two main axes
and models a shear distortion in the projected image. Since
the shear distortion of modern cameras is close to zero,
we neglect this parameter by setting s = 0. The remaining
two parameters [cu, cv] model the principal point offset. For
perfect cameras this point corresponds to the image center.
Together, the intrinsic parameter set is defined as CI =
{fu, fv, cu, cv}.

Next to the intrinsic parameters, the model’s extrinsic
parameters are defined by an augmented 3× 4 matrix:

[R|t] =

r11 r12 r13
r21 r22 r23
r31 r32 r33

∣∣∣∣∣∣
tx
ty
tz

 (2)

The first matrix R of the augmented matrix describes the
rotation by a general 3×3matrix. AlthoughR contains in total
nine entries, it is important to note that this is constructed by
only three different, individual rotation matrices, each with
a single degree of freedom. Thereby each of them specifies
an elemental rotation around one of the camera’s axes, i.e.
α rotates around the x-, β around the y-, and γ around the
z-axis as follows:

Rx(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (3)

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (4)

Rz(γ ) =

cos(γ ) − sin(γ ) 0
sin(γ ) cos(γ ) 0
0 0 1

 (5)

By multiplying these three individual matrices, the result
is the final matrix R = Rz(γ )Ry(β)Rx(α) which describes
the camera’s full rotation. Beside rotation, the second part
in the augmented matrix formulates the camera’s translation.
Translation is done for any dimension along the three main
coordinate axes and the translation vector t consists of three
elements [tx , ty, tz]T . Therefore, the final augmented matrix
[R|t] encodes the camera’s extrinsic parameters with six
degrees of freedom as CE = {tx , ty, tz, α, β, γ }.
By multiplying the intrinsic matrix A with the augmented

extrinsic matrix [R|t], a world point in homogeneous coordi-
nates w = [X ,Y ,Z , 1]T is projected to an image coordinate
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m′ = [x, y, z]T , with

m′ =

fu 0 cu
0 fv cv
0 0 1


︸ ︷︷ ︸

A

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

[R|t]

w (6)

After perspective division [x/z, y/z, 1]T , the corresponding
2D point is denoted by m = [u, v]T .
The pinhole camera model above describes a perfect lens

which only models rectilinear projections. In other words,
this model does not include image distortions. In real cameras
however, there are lenses that deviate from the rectilinear pro-
jection and therefore lens distortion is important for camera
calibration and must be addressed. Often distortion is radially
symmetrical due to the symmetric construction of a lens. This
causes straight lines to appear curved which mainly occurs
in two variants. First, positive radial distortion (referred as
‘‘barrel’’), which makes the image look convex and known
as ‘‘fisheye’’ effect and second, negative radial distortion
(referred as ‘‘pincushion’’) which results in the opposite
effect and lets images appear concave. Radial distortion for an
image point m can be modelled using Browns model [28] by
using three different coefficients k1, k2, k3 with r2 = u2+ v2

as follows:

mr = (1+ k1r2 + k2r4 + k3r6)m (7)

An other type of distortion occurs when the lens is not
perfectly parallel aligned to the image plane. This is called
tangential distortion and results in tilted and stretched images.
Tangential distortion is also included in [28] and modelled by
using two parameters p1, p2 as follows:

mt =

[
2p1 · u v+ p2 · (r2 + 2 u2)
2p2 · u v+ p1 · (r2 + 2 v2)

]
(8)

The full distortion is then constructed using a set of five
parameters CD = {k1, k2, k3, p1, p2} and is composed as the
sum of both distortion typesmd = mr +mt . These distortion
parameter set together with the previously described intrinsic
and extrinsic parameter sets yield a 15-parameter camera
model C = CI ∪ CE ∪ CD that allows the projection of an
object in 3D space onto the 2D image plane of the camera.

IV. GEOMETRIC CAMERA CALIBRATION
Geometric camera calibration is a method for finding values
for the parameters in C of a physical camera. The projection
is modeled according to a camera model, such as the pinhole
model (6) and may also include image distortions (7) – (8).
The parameters of a physical camera describe how the camera
captures a 3D scene onto a digital image, resp. sequence of
digital images. In the same way these digital cameras capture
objects of real 3D scenes, methods from computer graph-
ics define synthetic cameras using the same pinhole model
to render synthetic images of mathematically defined 3D
objects. Early basic calibration methods combined images of
a physical and synthetic camera, depicting the same physical

3D object of known geometry (e.g. a machined calibration
target). Given a set of initial values, this allows for calibrating
the camera by iterative refining the parameters:

Let Cp ⊆ C and Cs ⊆ C be two sets of initial values for a
physical and synthetic camera, respectively. LetW be a set of
3D control points in world coordinates of a calibration target
and M the corresponding set of image coordinates identified
in an image I of the same calibration target obtained by
camera Cp. Further, let e(M1,M2) ∈ R an error function
like e.g. the euclidean distance metric on pairs of image
coordinates. Then a calibration procedure is obtained by the
following steps:

1) Project all w ∈ W using (6) – (8) with Cs to obtainM ′

2) Compute the projection error e(M ,M ′)
3) Minimize e by adjusting Cs
4) Repeat with refined parameters Cs

In this process, step 3 is essentially an optimization method
with respect to minimizing the re-projection error. For a per-
fect physical camera and convergence to the global minimum
the error approaches zero and the camera’s exact parameters
Cp are given by the final adjusted synthetic camera Cs.
State-of-the-art methods rely on manually or automatically

defined point correspondences betweenW andM as well as a
precisely constructed calibration target. Our method is based
on steps 1-4 but differs from related work in that we do not
require a manually machined calibration target, nor do we
require point to point correspondences. Instead, we regard an
object that is anyway shown in the image as calibration target
and establish world to image correspondences by means of a
distance map of an edge image of the captured squash court.
Furthermore, we propose a genetic algorithm for robust and
accurate optimization.

V. CALIBRATION TARGET AND COURT GEOMETRY
The boundary of objects in 3D space can be represented, or at
least approximated, by a set of connected spatial coordinates.
In many sports, the playing field forms a boundary and can
be defined by a network of corner points, connected by lines.
In squash, the playing field (court) is a 3D object which is
almost always visible in broadcasts and video recordings,
except for close-ups and special camera angles. It is defined
by five planes: four walls and one floor. The intersections
of these planes define corner points and lines. Additionally,
lines relevant to the game, are present on the planes, which
also lead to more points. Due to the guaranteed visibility of
the court in the captured image and its known 3D structure
and dimensions, it can be considered a calibration target.
The geometry of an object with known dimensions in world
space can conveniently be represented by an undirected and
unweighted graph:

G = (V ,E) (9)

V = {[X ,Y ,Z ]T | X ,Y ,Z ∈ R} (10)

E ⊆ {(Q, S) | (Q, S) ∈ V 2
∧ Q 6= S} (11)
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FIGURE 1. A standard squash court geometry can be represented as
undirected, unweighted graph. In total it is constructed of 22 nodes and
32 edges.

Here, we define squash court geometry as a graph G with
22 nodes V and 32 edges E . Each individual node carries
the individual location in 3D world space as information
[X ,Y ,Z ]T . Edges represent connections between two nodes
Q and S each, which form the court’s boundaries and game
defining lines. By rendering the court geometry using a syn-
thetic camera, a visual representation of the projected court is
obtained and used in our calibration method.

More specifically, we use the court geometry inside our
fitness function to calculate the accuracy of the synthetic
projection of the court geometry with the unknown projection
of a given camera. The following sections describe a genetic
algorithm (GA) with different operators in the context of
optimizing camera parameters in order to minimize an error
metric which is based on the distance transform.

VI. GENETIC ALGORITHM
Genetic algorithms (GA) as subclass of evolutionary algo-
rithms (EA) are commonly used for solving optimization or
search problems. As GA mimics evolutionary processes, the
terminology used in this context is adopted from evolutionary
biology. In general, all GA use the following building blocks:
(A) For a given problem, a population of individual solutions
(genomes), called a generation, is constructed. (B) A fitness
metric, computed for each genome in the current generation.
This metric states how well a genome is adapted to the
problem to be solved. (C) Based on that, genomes are chosen
by a selection process and used by (D) a crossover operator
to produce two offspring. The main concept at this point is
to ensure survival of the fittest, which is expected to result in
a satisfying solution. However, to represent diversity through
generations and improve the solution quality, there is the pos-
sibility for (E) genome mutation in the offspring. This selec-
tion andmutation process is repeated until the next generation
contains enough genomes, so that the amount of individuals
matches the initial population size. Now, the next generation
represents the population in the next iteration which starts
over again with fitness computation. This process is repeated
until a termination criterion (F) is satisfied.

Our approach defines one population as a set of genomes
representing cameras, obtained during initialization. The
camera introduced in section III is given by 15 parameters
and likewise a formal representation of one genome is given
by a vector:

[fu, cu, cv, c, tx , ty, tz, α, β, γ, k1, k2, p1, p2, k3] (12)

Please note the different order of distortion coefficients.
We adopted this order to reflect the implementation which
is based on OpenCV’s application programming interface.

Algorithm 1
1: Initialize N genomes as generation VI-A
2: Create the fitness map VI-B
3: repeat
4: Calculate fitness for genomes in generation VI-B
5: Sort genomes in generation desc. w.r.t. fitness
6: Add two best fitted genomes to next generation
7: repeat
8: Select two parents from generation VI-C
9: Crossover parents to produce offspring VI-D

10: Mutate option for both offspring VI-E
11: Add (mutated) offspring to next generation
12: until Next generation contains N genomes
13: Next generation becomes current generation
14: until Termination criterion satisfied VI-F

Algorithm 1 outlines the proposed GA for camera cali-
bration. In this context fitness is a measure for how well
the projection of the synthetic camera matches the projection
of the physical camera. Computing fitness does not require
world to image correspondences of known calibration points.
Instead, we look up values in a map, representing a distance
transform of the image acquired by the physical camera. This
distance map is constructed once at the beginning and is
reused for fitness computation during the entire evolution
process. An initialization function is used to create the first
generation with N genomes. For computing the fitness of
a single genome, the defined synthetic camera projects the
geometry and the result is looked up in the distance map.
Subsequently we sort the generation’s genomes in descending
order w.r.t. their fitness. Then the two best fitted genomes
are retained for the next generation, which models a slight
elitism selection. Genomes are then selected in pairs based
on their fitness and two offspring are constructed by applying
the crossover operator and mutated with a certain probability.
This selection, crossover, mutation process is repeated until
the next generation matches the current population’s size.
Finally the next generation becomes the current generation.
In the following sections we investigate and adapt different
strategies for the main GA-operators (A) - (F).

A. INITIALIZATION
During the initialization stage a number of genomes is
defined and a population is constructed. A start genome
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FIGURE 2. Top: Input image with two sharp edges, the associated
distance transform E encodes distances to edges and the final lookup
map F which shows the fitness. Bottom: Corresponding intensity profiles
along a single pixel row.

as defined in (12) is used to derive an initial population
with N genomes. For all parameters, besides the distortion
parameters, offsets are added as random values drawn from
a uniform distribution with individual ranges, resp. limits.
Thereby, all genomes in the first generation share the same
distortion parameters but differ w.r.t. all other parameters.
The focal length offset limit is set to± 100, the principal point
offset range is ± 10. For all rotation parameters the limits
are ±π/180rad. While for X and Y translation ranges are
±0.1m, whereas for Z the range is±0.5m. This distinction in
translation parameters has been made to cover a wider range
in the Z direction within the initial population. In this way,
a population of N genomes around the initial value (starting
point) in search space is constructed.

B. FITNESS
Determining for each genome an individual fitness score is an
essential step in GA as this metric is the fundamental basis
for controlling algorithmic evolution. First, to compute the
fitness for an individual genome a fitness map E is extracted
from the scene. To construct this map, initially an image
captured by the physical camera (i.e. the unknown target
genome) of the world scene is needed. As a first step this
image is transformed to an 8-bit single channel edge image
by using any known edge detector. Subsequently the distance
transform, as described in [29] is applied by using a Moore
neighborhood with radius 1 and Euclidean L2-Norm with the
original suggested values for a = 0.955 and b = 1.3693.
As the resulting values in the map measure the distance in
pixel, normalization to [0, 1] is performed. To increase the
gradient’s steepness of the normalized distance image E, the
lookup map F is computed by a scaled logarithmic transfor-
mation with values clamped to [0, 1] by:

F = 1−max(0,min(ln(E+ 1)/0.3, 1)) (13)

As shown in Fig. 2, transformation results in a border
around a target edge. Thus, a pixel value in E reflects the
distance at that location to the closest edge pixel in the target
image. Finally, F allows for estimating the fitness, i.e. how
well edges in the synthetic camera match edges in the target
camera.

1) DISTANCE MAP
A first strategy for obtaining a fitness score is based on the
projection of the 3D target geometry shown in Fig. 1 using a
single genome of a generation. After thresholding, a binary

FIGURE 3. Comparison of two different fitness maps. (a) shows the
binarized projection of a standard squash court using a camera.
(b) shows the distance transform (E) of (a) using a Moore neighborhood
with radius 1 together with the Euclidean L2-Norm. (c) shows distance
map F obtained from (b), containing only positive values. (d) shows
distance map 2F− 1, additionally containing negative values to model a
punishment mechanism.

image is obtained and the fitness value λ is computed as
the sum of all rendered pixels in the lookup map. This is
done by applying the binary image of the court as a mask to
the distance map and summing up all non-zero pixel values.
If the court in the binary mask is far away from the court in
the distance map, the fitness value yields zero. On the other
extreme, for a perfect match the fitness value is themaximum.
In general, the better the match, the higher the fitness.

2) TRANSFORMED DISTANCE MAP
Our second strategy extends the first by punishing large devi-
ations between the two courts by introducing an additional
step during fitness map initialization. By computing 2F− 1,
fitness lookup values are mapped from [0, 1] to [−1, 1] which
results in a kind of punishment mechanism during lookup.
Accordingly, a perfect projection still leads to a maximal
fitness value, whereas a bad match / fitness yields a negative
value in the worst case. Fig. 3 illustrates for the 3D court
model shown in Fig. 1, a binary projection using a camera,
the corresponding distance transform, as well as the first and
second strategies of constructing the corresponding fitness
maps.

C. SELECTION
In this phase of the algorithm reproduction of the current
generation is initiated in order to create the next generation.
To decide which individuals are used to produce the next
population of desirably better cameras, the selection operator
is applied. To ensure that always two fitted individuals are
present in the next generation, we determine the two best fit-
ted genomes and add them to the next generation. Thismodels
a very light elitism selection approach aswe are retaining only
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FIGURE 4. Simplified representation of two parent genomes (cameras).
As indicated by the template, each parent consists of all camera
parameters in C . A different hatching style represents a different camera.

the two best results, while the rest of the population is filled
by repetitively applying one of the following operators:

1) ROULETTE WHEEL
The roulette wheel is the first strategy investigated. It per-
forms a statistically weighted selection for two genomes of
the current population. Here, the individual fitness values are
used as the relative weights. Thus, a higher fitness results in a
higher probability of being selected. Since this is performed
on the same population twice per repetition, it is possible to
select the same individual in both cases i.e. the two selected
parents are the same.

2) TOURNAMENT
The selection of individuals based on a tournament mecha-
nism depends on a tournament size k . First, a group is formed
by uniformly selecting k individuals from the population as
participants. While preserving their order w.r.t. descending
fitness, the probability of being selected is p(1 − p)a for
the a-th participant. This ensures that participants with a
higher fitness are more likely to be chosen. But compared
to the roulette wheel it is possible that all participants show
medium to low fitness values. In this way, even less adapted
genomes have a chance to reproduce, favoring the best within
competition. By using the tournament two participants are
selected for crossover in the next step. We study tournaments
with group sizes of k = 4 and k = 8 with p = 0.5 in both
cases.

D. CROSSOVER
Using the result of any selection operator, the two selected
genomes are interpreted as parents. As shown in Fig. 4 the
parents are basically a genome (camera vector) with indi-
vidual parameters. During crossover, they are recombined
to produce two offspring which will replace them in the
upcoming generation. In this way, both offspring carry the
information from their parents over time. This is achieved by
applying one of the crossover operators

1) SINGLE POINT
When recombining two parents using the single point strategy
both genomes are split at the same random index, resulting
in two sections per parent. The single point strategy denotes
recombining the individual sections, by simply swapping the
respective first sections. The resulting two children are shown
in Fig. 5.

FIGURE 5. For single point crossover, the parents’ parameters are split at
a single location and are then individually used for both offspring.

FIGURE 6. For two point crossover, the parents’ parameters are split at a
two locations and are then alternately used for both offspring.

FIGURE 7. For uniform crossover, every parameter has its individual
probability to be chosen from the first parent. This leads to a more
divided distribution of the parents’ parameters.

2) TWO POINT
Recombination involving two points works nearly identical to
the single point strategy. Instead of splitting the genome into
two parts at a random index, two random locations are used
to obtain three sections per parent. By alternately combining
these sections as shown in Fig. 6, two offspring are created.

3) UNIFORM
Compared to the previous strategies for crossover, uniform
selection does not split the genome into several sections for
recombination, although it may seem that way. Instead, for
the first child genome values are selected independently from
the first parent with a certain probability p. For the second
child, the discarded values are used. Thus, this strategy corre-
sponds to mixing the genomes together, where the probability
can be interpreted as a factor influencing the mixing extent.
When using this crossover strategy, we use a probability of
either p = 0.5 or p = 0.01 for mixing genomes.

E. MUTATION
The mutation operator implements random modifications of
genomes. This introduces diversity for genome values after
crossover across generations and thus is intended to prevent
the convergence to a local optimum. Although the presence
of mutation is desirable and an important aspect, the mutation
probability Pmut should be kept low, as high values lead to
a rather random search. We apply mutation by offsetting
every genome parameter with a statistically chosen value at a
certain probability. In total we investigate two different types
of mutation:

1) UNIFORM MUTATION
The first mutation strategy utilizes continuous uniform dis-
tributions U (a, b). Every genome parameter is defined sepa-
rately, thus the limits are defined individually. If a genome
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TABLE 1. Applied distributions and parameters for mutation operators
according to strategies. Translation and rotation parameters differ by
their distribution in the distribution mutation strategy.

parameter is selected for mutation, a value is drawn from
the corresponding distribution and subsequently added to the
corresponding genomes value. While we set the mutation
probability for a parameter to be chosen for all intrinsic and
extrinsic values to Pmut = 0.05, the probability for distortion
parameters is Pmut = 0.01. We implement this strategy using
the distributions shown in Table 1.

2) DISTRIBUTION MUTATION
This strategy uses different types of distributions (uniform,
normal, lognormal) for mutating genome parameters, instead
of simply using the uniform distribution of different ranges.
If a parameter was chosen for mutation based on the spe-
cific probability Pmut, a value is drawn from the selected
distribution instead and subsequently added to the parame-
ter’s value. In addition we implemented shifting the chosen
value in a fixed direction. For that a defined scalar offset is
added. While this would obviously be redundant for a normal
distribution N (µ, σ 2) as one could achieve the same effect by
changingµ, it is however a convenient possibility for shifting
values drawn from a lognormal distribution. While retaining
uniform distributions for intrinsic and distortion, we changed
the distributions for all extrinsic parameters for this strategy.
Values for all rotation and tx , ty translation parameters are
selected using normal distributions. The only parameter that
is assigned a lognormal distribution is tz as the probability
density function (PDF) of this distribution appears skewed.
Accordingly, values in a specific direction can be preferred.
As for squash recordings it is common that the court fills the
scene, translation w.r.t. tz may be also preferable in a specific
direction. All used distribution types are shown in Table 1
with their respective parameters.

F. TERMINATION
Checking the binary termination condition is the final step in
the GA during every iteration. The result determines whether
the current generation of the algorithmwas the last or whether
to proceeded with another generation. Different strategies
can be used according to the application at hand for vari-
ous reasons. If the application is time critical, a fixed time

TABLE 2. Operators with associated available strategies used for
composing the strategy bundles. Values for selected strategy parameters
are shown next to them.

bound can be specified and the best fitted genome up to
that elapsed time is assumed to be the solution. This leads
to the problem that on different machines, the number of
generations for finding solutions vary. And due to this, it can
lead to bias and lack of comparability of results. Another
option for addressing this problem is to use a fixed number of
generations. However, finding the best amount of generations
is difficult, because a too high value consumes unnecessary
computing time and a too low value does not find an opti-
mum. Following that a more convenient strategy would be
to define a sufficient fitness value. Unfortunately, by using
our fitness strategies the best fitness value is unknown and
therefore no good assumption for an acceptable fitness value
can be made. Therefore, in our method as soon as the best
fitness value stagnates for a given number of generations,
the corresponding genome is assumed to be the best fitted
solution for the problem. In our case we terminate when
the fitness stagnates for n = 300 generations, i.e. the last
improvement was observed 300 generations ago. For the sake
of completeness, it should be mentioned that various logical
conjunctions from different strategies are also possible but
not investigated further.

VII. EXPERIMENTS
As laid out in sections VI-B – VI-F, various operators (e.g.
fitness, selection, mutation) and for each operator various
strategies are available to drive the evolutionary process,
simulated by our genetic algorithm. We define the combina-
tion composed of one selected strategy for each of the six
operators as a strategy bundle. Table 2 lists for each opera-
tor the strategies considered. With 2 different initialization-,
2 fitness-, 3 selection-, 4 crossover-, 2 mutation-, and 1 ter-
mination strategy variations, a total of 96 unique strategy
bundles are available. For evaluation purposes, we have con-
ducted experiments that systematically execute all possible
strategy bundles on synthetically created data.

To compute and compare performances, for each exper-
iment a target vector, representing the physical camera is
defined which the GA should approach during optimization.
Values for this vector are based on a camera typically found
in squash recordings.
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TABLE 3. Offsets for deriving a start camera from a given target camera.
Three offsets per parameter group result in near, medium, and far
distances, respectively low, medium, and high optimization complexity.

In addition to the target vector, another vector representing
a camera vector to start the optimization with, is required
for each experiment. Since optimization complexity highly
depends on the euclidean distance between target and start
vector, we control complexity by simply adjusting the start
vector to obtain a target vector. For that, we define and apply
a wiggle operator to b15/2c = 7 randomly chosen parameters
of the camera model. The operator is able to alter a camera
vector in three different modes by utilizing one of the offsets
per parameter shown in Table 3. For each chosen parameter
either a positive or negative offset is randomly selected and
added to the corresponding target’s parameter value. In that
way we vary ≈ 50% of the target’s parameters to obtain the
start vector, resulting in low, medium, or high optimization
complexity.

Thereby, the wiggle operator allows for randomized, but
controlled construction of the start genome. Applying each
operator mode to each of the 96 strategy bundles leads to a
total of 288 unique experiments.

Since an edge image of the court geometry serves as input
to the fitness map, we consider different quality levels for
the computed edge image. To that extent, we add 5 different
types of noise to the court projection before computing the
fitness: First we add salt as a local impulsive noise. Second,
horizontal and third vertical lines are added to model false
positively extracted edges. The fourth variation combines
horizontal and vertical lines, forming a regular grid. Lastly,
rotating the grid by 45◦ represents the fifth variant. Fig. 8
shows fitness maps for the same court projection, but with
previously added noise types.

In summary, these noise variations allow for investigating
how inaccuracies during the initial edge extraction affect
fitness computation. Additionally considering six noise types
(including no noise), the number of unique experiments
extends to 1728.

To ensure that results are not random, we repeat each of
the 1728 unique experiment 32 times, resulting in a total of
55296 optimizations were performed. While no change to the
experiment’s strategy bundle and noise type was made, a new
starting vector was constructed for each optimization.

During optimization, we keep track of several performance
metrics. Beside the number of generations until conver-
gence, we compute the reprojection error for three different
geometries. As we defined in (9) – (11), a single geometric
object can be represented as a graph G. After projecting all

FIGURE 8. Fitness maps for an edge image with different artificial noise
to model possible inaccurate edge extraction.

vertices of a graph to image coordinates, the projection error
is computed as the euclidean distance of the true image
point m, obtained by the target camera and m̂, obtained by
the result camera. The first geometry Gc we consider is the
court itself. From this a geometry Gb is derived by sampling
the bounding box in all three dimensions. Finally, we define
a third geometry Gm×np as a regular m × n sampled grid,
representing vertices on the court’s playing field. This one
is of particular interest, since athletes feet are usually located
on the floor, therefore the accuracy on this surface is crucial
for movement analysis.

A. EXPERIMENTAL RESULTS
1) MEAN REPROJECTION ERROR FOR DISTANCE / NOISE
TYPES
First, we compare the three start distances and the six noise
types to one another. For that we use the mean reprojection
error (MRE) of the court’s playing field geometry G16×16

p ,
which includes in total 256 vertices on the court’s floor.
Sorting all MRE results in ascending order and computing
the normalized cumulative sum w.r.t. distance (18432 each)
and noise type (9216 each) investigation of the number of
optimizations withMRE below a threshold is possible. Fig. 9,
shows results for the distance type and the noise type sepa-
rately, up to a threshold of 10 px.

By comparing the distance type results, it can be seen that
60% of near optimizations show an MRE of< 2 px. At 8 px,
the proportion increases to 91%, while at this threshold
medium distance experiments reach 38%. The far distance
experiments first reach 40% at a very high MRE of 50 px,
while at this threshold already 99% of the near and 82% of
the medium experiments can be found.

Regarding noise variation, experiments with horizontal and
vertical line noises reach 23% and 25% respectively for an
MRE < 2 px. Up to this threshold, 23% of both grid variants
are located while 17% are observed for salt. With no noise
only 19% show an MRE < 2 px. Considering an MRE
threshold of 4 px, 47% of the noiseless, 36% and 40% of
the horizontal and vertical, and 36% of both grid types can
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FIGURE 9. Relative number of experiments below a given mean
reprojection error (MRE) threshold as a function of MRE threshold.
Results with respect to distance types and all six noise types are shown
at the top and bottom, respectively. Note the different ranges of the
vertical axes.

be found. Here, salt shows the lowest experiment proportion
with 23%. Even considering an MRE of 6 px shows only a
24% for salt experiments, whereas noiseless achieves 59%,
horizontal and vertical 43% and 45%, respectively.

In general, two conclusions can be drawn from the results.
First, unsurprisingly, the distance between start and the target
vector is a key factor, since with smaller variation in camera
parameters a higher fraction of experiments already shows a
low MRE. Secondly, it can be concluded that optimization
quality is directly related to the quality of the edge image.
Although noise in terms of horizontal, vertical, or grid lines
decrease the optimization quality compared to perfect noise-
less edge images, the worst results are shown for salt noise
experiments. These findings support that large proportions of
high frequent noise influence the result the most. Therefore,
it can be concluded that these effect should be avoided during
edge detection or should be filtered beforehand.

2) NUMBER OF GENERATIONS
To compare computation time, we consider the number of
evaluated generations until termination. Although our termi-
nation strategy is based on the fact that fitness stagnates for
300 generations, and thus the result is already found earlier,
these generations are part of the applied GA and are therefore
purposely included in this metric. We group experimental
results w.r.t. distance and noise types and report their dis-
tribution in Table 4. Each group theoretically consists of
n = 3072 experiments, but as we only consider experiments
with a G16×16

p MRE of < 10 px (26860 in total) the number
of experiments is different per group.

For every noise type individually, it can be seen that
with increasing complexity, the number of generations also
increases. Here, salt again stands out in particular, since
the rate of generation increase is lower compared to other

TABLE 4. Median number of generations until termination as a function
of distance and noise type for experiments with a mean reprojection
error of < 10 px on the court’s playing field.

noise types. This lets us conclude that salt noise has a large
impact on the fitness computation, regardless the distance
type. Further salt seems to distract the GA, leading to more
generations.

To examine the computational cost, we measured the GA’s
mean run time per generation. All measurements were per-
formed sequential in a single thread using non-optimized
Python code on a standard CPU. We observe that with larger
populations as well as with higher image resolution, the
required computational effort increases. For an 800 px ×
600 px fitness map, population sizes of 8, 16, and 32 achieve
run times of 5.2 ms, 9.8 ms, and 21.8 ms per generation.
For 1920 px × 1080 px, the run times increases to 18.4 ms,
32.9 ms, and 66.6 ms. This demonstrates a median run time
of 32.9 s for 1000 GA generations with 16 individuals at a
1920 px× 1080 px (Full HD) resolution.

3) STRATEGY BUNDLES
For evaluation of the different strategy bundles, we consider
all results on the G16×16

p geometry with an MRE < 10 px.
An inspection of strategy distributions shows that the best
28 strategy bundles include the transformed distance map
for fitness computation. Among these, 21 are found with a
population of 16 individuals. In 12 cases the roulette wheel is
used for selection and 19 times the distribution mutation. For
the crossover operator, no strategy stands out in particular.

From this we conclude that for the implemented GA the
type of crossover has no particular influence, much more
important is a larger population. Moreover, for the best
results, the transformed distance map is crucial. In summary,
we present the following combination to represent the best
strategy:

(A) Initialization: 16 individuals
(B) Fitness: Transformed distance map
(C) Selection: Roulette wheel
(D) Crossover: e.g. SinglePoint
(E) Mutation: Distribution based mutation

4) FITNESS ERROR AS A FUNCTION OF TIME
Insights into the optimization process can be obtained from
plotting the fitness error as a function of time, respectively
number of generations. As for this synthetic experiment, the
start and target camera vectors are known, the fitness error
can be computed at any step of the optimization process. For
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FIGURE 10. Fitness error as a function of time, illustrating the
optimization process. Continuous variation and adaptation of the
population increases fitness and thus decreases the fitness error. Next to
incremental improvements and plateaus, large optimization steps can be
observed in phases 1-3 ((a)-(c)), indicating that the GA algorithm
repeatedly found its way out of local minima. Selected projections of the
court geometry are shown in the top row. Please note that the final 300
generations are not shown, since the termination criterion was met,
resulting in no improvement during this period.

this, we run an optimization by using our best found strategy
(VII-A3 A-E). Error measures λ and λtarget represents the
fitness value obtained by projecting court geometry G16×16

p
using the camera vector corresponding to the current popu-
lation and the target camera vector, respectively. Then, the
fitness error is given by ε = λtarget − λ. Thus, the closer the
current projection to the target projection, the lower the error.
Fig. 10 illustrates the process of the population adapting to the
target during the first 1300 generations. The top row shows
two court geometries at four points in time, rendered by the
current and target camera, respectively:

The fluctuations of the mean fitness error ε̃ suggests that
the algorithm varies camera parameters and thereby explores
the search space. This agile method eventually leads to
convergence, respectively adaptation to the target geometry.
In particular, the GA algorithm’s ability to repeatedly escape
local minima and thereby improving the solution becomes
evident.

5) PROJECTION ERROR ON PLAYING FIELD
Weaim for analyzing on-court player location andmotion and
therefore, the error of estimating 3D world locations from 2D
image coordinates needs to be considered. For determining
this error, we construct our camera model from a genome
vector. We then compute a ray starting from the camera’s
focal point through the image point and compute the inter-
section with the court’s floor. The top row of Fig. 11 shows
exemplary projections of the court Gc and the playing field
G16×16
p obtained by the start (left) and result (right) genome.

FIGURE 11. Projection error estimated from synthetic 3D grid points
placed on the squash court’s floor. Top: Court projections obtained from
the start camera (left) and from the result camera (right). The unknown
target geometry is shown in white, start and result in green. Bottom:
Corresponding top views of the courts above, showing displacement
vectors (arrows) of all grid points.

Below, the projection error for all 256G16×16
p sampling points

is shown by displacement arrows. The results were obtained
using our best identified strategy (VII-A3A-E), without noise
for a medium optimization distance.

In white the target vector was used to project the court
Gc and playing field G16×16

p geometry. While the left side
additionally shows the projection obtained by the start vector,
the right shows the final result projection in green, respec-
tively. Below, the court is shown from above. Arrows indicate
projection errors for all grid points, resulting from 3D esti-
mation using the corresponding camera. After iterating for
4261 generations, a clearly visible overall improvement can
be seen between the start and result genome. The resulting
accuracy (short arrows) would provide sufficient accuracy for
our application of position estimation in squash.

6) GA COMPARED TO CONVENTIONAL OPTIMIZATION
METHODS
Since a GA performs optimization with respect to some
objective function, it can be compared to standard
optimization methods. Here, we use the Subplex [30] and
DIRECT-L [31] methods, provided by the NLopt library [32].
The maximum number of fitness function evaluations per
optimization was set to 100000. Following our GA experi-
mental setup, optimizations were performed for every fitness
map, distance, and noise types at a 32-fold repetition each.
This results in a total of 2304 optimizations performed.
Fig. 12 presents a comparison of all three optimization meth-
ods, which achieve a C16×16

p MRE < 10 px.
In Fig. 12 a) it can be seen that for near distances Subplex

with a median MRE (px) of 2.8 shows better results than
DIRECT-L with 5.8. For medium distances, both algorithms
are almost equal with 5.9 and 5.3, respectively. Last, for the
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FIGURE 12. Distribution of MRE for DIRECT-L, Subplex, and GA with
playing field MRE < 10 px. In a) results are shown with respect to
distance and in b) for noise separately. The corresponding number of
experiments n is given above each plot. The red circle indicates the result
for the experiment presented in Fig. 11.

far distance, only a single Subplex optimization shows an
MRE of< 10 px (9.7), while themedianMRE for DIRECT-L
is presented as 6.5. These results are explained by the fact
that Subplex is intended for local and DIRECT-L on the
other hand for global optimization. The GA reports, for all
distance types, the lowest medianMREwith 1.5, 3.4, and 4.7.
When discriminating the experimental results w.r.t. noise,
the median MRE shows a similar result. For all noise types
presented in Fig. 12 b) DIRECT-L has the highest median
MRE followed by Subplex optimization results. While again,
the GA demonstrates the smallest median errors. It is fur-
ther noticeable that a lower median MRE is measured for
the GA experiments with salt noise compared to noiseless
experiments. This seems to be contradictory to our previ-
ously reported results. However, here only the best strategy
bundle is used whereas previous observations included all
strategy combinations. This also can be seen by the num-
ber of experiments, which are reported with 60 for salt and
154 for no noise. Thus, the group of experiments, at an
MRE < 10 px, without noise contains a significantly larger
proportion compared to experiments with salt noise. We con-
clude that Subplex is capable of optimizing at short distances
using our fitness lookup map, but becomes significantly
worse as the distance increases. For all nine experiments GA
outperforms the conventional methods.

B. REAL WORLD RESULTS
So far, our investigations and reported results are based on
perfect images of the squash court geometry. They can be
understood as the actually required edge images. Even though
real world aspects have been modeled by adding different
artificial noise types, actual real world scenarios include

more complexity. Therefore, we apply the described GA
in two other scenarios: (1) artificial renderings and actual
(2) real-world images. In both cases edge extractions as a
preprocessing step is required. In Fig. 13 our experimental
results for four artificial renderings, six real-world situations
are presented. Each result includes projections of the court’s
geometry Gc for its initial and final camera, overlaid on top
of the physical camera image, as well as the extracted fitness
map F.
For (1) artificial scenarios, a single court with red lines

was modeled using the 3D computer graphics software
Blender [33]. If was then rendered in four different per-
spectives. Two of them are from a straight perspective, one
depicting the entire court, while the other shows the court
cropped across its top and bottom. The other two capture
the entire court but with a Z-axis angle of ±5◦, so that the
court appears slightly rotated. These four perspectives were
chosen as they represent the most common camera setups
in squash broadcasting. Preprocessing was carried out by
using Canny edge extraction [34] applied to the gray scale
transformed image for all four images. The geometry used
for optimization was limited to the visible edges only. Thus,
computation of the fitness value is only based on actual
extracted observations.

By using (2) real images we go one step further and
apply the GA to images extracted from video recordings
of real squash matches. As this is a retrospective investi-
gation, we manually removed any existing athletes in the
images by hand. This is done by subtracting different frames
across the video, with athletes located at different positions.
By that we obtain empty court images. Edge extraction was
done in the same way as for the artificial renderings. This
also includes limiting the geometry to the visible edges.
We derive the start vector from the fact, that for broadcasts
and video recordings of squash matches the camera position
corresponds to a typical viewer position centered behind the
court and therefore can be good estimated. This is done by
averaging the obtained parameters of previously carried out
camera calibration results.

Results for experiments of both scenarios (1) and (2) are
shown in Fig. 13. In total three components make up each
sub-image (a)-(j). The upper left depicts the start vector for
projection which is overlaid on top of the physical camera
image. Below that, the fitness mapF computed after applying
Canny edge detection is shown. Finally, on the right the pro-
jection of the GA’s optimized camera is presented as overlay.

The (1) artificial images are shown in (a)-(d). First, it can
be seen that fitness maps very clearly correspond to parts of
the court geometry. We explain this by the fact that there is
no disrupting background, no advertising, mirroring or simi-
lar effects present on these courts. Applying the GA shows
good results for the fully captured courts (a)-(c). For the
truncated court in (d), however, two problems exist. First, due
to the front wall truncation, the geometry projection appears
stretched horizontally in (I). The same effect can be seen at
the bottom of the image, at the back wall. Since the lower
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FIGURE 13. Fitness maps and geometry projections for the start and the GA optimized camera on artificial and real squash court scenarios,
respectively. In (a)-(d) artificial and in (e)-(j) real world scenarios are presented. Each scenario is composed of three images. First, in the top left,
geometry projection by the start camera (initial vector) is shown on top of the physical camera’s captured image. Below, the fitness map obtained
after edge detection is presented. Finally on the right, geometry projection by the optimized camera (result vector) is overlaid.

edge is not visible here, the available edges on the side in II
get stretched and thus do not correspond to those captured by
the physical camera.

The real world images (e)-(h) show a similar picture.
Again, it is noticeable that a good result is achieved for a

fully captured court (e). With a truncated front wall (f), again
the misalignment (I) is present at the top of the image. But
as no stretching occurs in the floor area, the projection for
this area corresponds to the physical camera and is there-
fore sufficient. On the other hand, a cut off backwall (g),
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the result gives a different picture. Similar to the artificial
images, horizontal stretch (II) is present. Thus, the projection
of the back court area does align with reality. Similar to the
modelled situation (d), the court in (h) is cut off at the front
as well as at the back wall. The result is a projection which
is not fully accurate either in (I) nor in (II). All courts (e)-(h)
considered so far, present realistic fitness maps as they appear
after edge extraction. In contrast to the artificial ones, here
edges extracted from advertisements and the like are also
present. These results show that this has no influence on the
adaptation process by the GA.

The situation for a weak fitnessmaps is different. An exam-
ple is given in (i). A mesh above the backwall for keeping
balls from flying off court, leads to many edges which are
interpreted as high fitness values in the fitness map (III).
Consequently, the camera projection adapts to a state where
edges of the geometry are projected to exactly that region.
The final result is then a fully misaligned camera. A similar
effect is shown in (j), where a railing located at the bottom of
the image leads to many edges. Although these represent high
fitness values there is no misalignment regarding the final
projection. This may be due to the fact that the interference
is not directly within, but more outside of the geometry to be
fitted. Additionally, here the court is not horizontally centered
and instead slightly shifted to the right. The final projection
shows that the GA is still able to manage this situation. From
(i) and (j) can be concluded, that the GA is sensitive to large
interference inside, but not outside the target geometry.

VIII. CONCLUSION
We presented a GA for camera resectioning in squash based
on a known three dimensional court geometry. Further,
we also implemented multiple variations of operators for the
GA and evaluated the resulting possible strategies. On this
basis, we have shown that the mean reprojection error on
the court’s playing surface is within an acceptable range
when considering synthetic images with non-extreme starting
conditions (R1). By translating these findings to artificial
and even real world scenes, we have also shown that the
GA is able to perform camera resectioning in those cases.
However, this is only possible if edge extraction has been per-
formed successfully beforehand. Following that, our results
demonstrated to be fully automatic after edge extraction as
no additional calibration target is needed (R2). As our imple-
mentation relies on consumer hard- and free software, we do
not have any special requirements (R3). Our results show that
run time performance is acceptable, but may be improved
by a multiprocessing approach. Since only a fixed physical
camera, capturing the empty court, is needed, mobile and
fast camera setup is possible (R4). As we have demonstrated
retrospective camera resectioning (Fig. 13) and conclude that
our GA allows for retrospective analysis of existing record-
ings of squash matches (R0). Overall, we conclude that our
specific requirements R0 - R4 are fulfilled.

Our analysis leads to the following additional conclusions:
Since the court serves as a geometric calibration object,

truncated courts affect the scenarios in which our approach
is applicable. This is especially true in applications where
accurate court floor projection is important (e.g. estimation
athlete positions on the playing surface). False projections
on the front wall are of minor interest in these scenarios.
Contrary to this, incorrect geometrical fitting of the court’s
back wall is more problematic. In these cases no accurate
positioning near the corners is possible. The main conclusion
that can be drawn from this is that lastly the type of applica-
tion matters. For example in scenarios where athlete position
should only be assigned to large quadrants on the playing
surface, our method is still very well suited. Whereas with
decreasing quadrant sizes the applicability of our approach
also decreases. This is based on the fact, that at certain
locations, no or insufficiently accurate positional information
can be obtained. Beside that, we have shown that for real
world scenarios the quality of the extracted geometry, i.e.
edge image, matters. This conclusion follows the fact that
this extraction builds the foundation for the fitness map and
fitness computation. On this basis, we conclude that the GA
provides a well suited method for easy stationary camera
resectioning, from which sports applications with an easy
extractable and well defined geometry could benefit from.

A. FUTURE WORK
As edge detection is challenging, it is left for future research
to systematically investigate different preprocessing steps for
geometry extraction and ways to replace the basic canny
approach. This future research should consider the potential
effects for geometry extraction more carefully. Regardless,
future research could continue to explore the implementation
of a crossover operator based on logical groups: For example
crossover of two offspring may be applied to a single param-
eter group (e.g. translation or rotation) only. Future research
should certainly further test whether the GA can benefit from
the implementation of evolutionary phases. As an example of
this, it is probably worth investigating whether to limit fitting
to parameter groups (e.g. translation or rotation) for a given
number of generations. Rotating the parameter groups could
be performed in round robin until the termination criterion
is satisfied. So far, we have investigated false positive errors
in edge extraction. In further studies, false negative errors
should also be investigated. This can be achieved by reducing
the edges of a geometry for fitness map generation while
considering the full geometry for fitness calculation. It is a
question of future research to compare our single camera
approach to other sports multi camera calibration methods.
In order to translate our findings into the real world, our
next step is to apply the presented method for automatic
camera resectioning to a squash specific training scenario for
extracting the players’ motions paths while exercising.
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