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ABSTRACT Learning the structure of Bayesian networks is a challenging problem because it is a NP-Hard
problem. As an excellent search & score based method, the K2 algorithm strongly depends on the input of
global order of all nodes to ensure the result is a directed acyclic graph. And theK2 algorithm searches parents
for each node from the nodes before it in the global order. Incorrect node order is likely to result in a wrong
structure. In this paper, we propose a new method to avoid the global order by Local structure Searching for
Strongly Connected Components with hill climbing method Twice. Firstly, we search the best parent nodes
for each node from all the remaining nodes except itself, and form a global directed graph by concatenating
the arcs between nodes and their parents. Then, the directed acyclic structure of all the strongly connected
components are determined by hill climbing algorithm twice continuously. Finally, we adopt local search
method further to get the final result by taking the previous result as a start point. The proposed algorithm
is evaluated on several standard benchmark networks with sampled data. Experimental results show that our
algorithm outperforms the four compared algorithms in terms of structural Hamming distance, Bayesian
information criterion score and their average ranking.

INDEX TERMS Bayesian network, structure learning, hill climbing search, strongly connected component.

I. INTRODUCTION
As one of the important methods of uncertainty reasoning
in artificial intelligence, Bayesian network (BN) qualita-
tively represents the dependence between random variables
through directed acyclic graph (DAG), and quantifies this
dependencies with conditional probability distribution, which
has strong interpretability. Bayesian networks are widely
used in various fields, including knowledge representation
and reasoning [1], clinical decision-making [2], financial
modeling& analysis [3], risk prediction [4], gene analysis [5],
industrial application [6], etc.

A Bayesian network, also known as belief network, is a
graphical model that consists of two parts: network structure
and network parameters. The structure G = {V ,E} is
a DAG, in which nodes V = {X1,X2, . . . ,Xn} represent
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random variables in the problem domain, and directed arcs
correspond to the qualitative characterization of the relation-
ship between nodes. Each node has a conditional probability
distribution, namely network parameters, associated with it,
which quantitatively depicts the dependence between random
variable nodes and their parent nodes. The dependencies
satisfy the first-order Markov property. And the following
expression holds:

P(X1,X2, . . . ,Xn) =
n∏
i=1

P(Xi | Pa(Xi)), (1)

where P(Xi | Pa(Xi)) is the conditional probability
distribution between node Xi and its parent node set Pa(Xi).

Bayesian network structure learning is a NP hard prob-
lem [7] and remains a challenging problem, due to the
exponential growth of the space of valid networks with
respect to the number of nodes. This paper studies the
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structure learning method of discrete BNs under complete
data. The data sets involved have no missing values. The
existing approximate algorithms for BN structure learning
from complete data include conditional independence (CI)
test based method, score & search based method and the
hybrid method.

K2 algorithm [8] and hill climbing (HC) algorithm [9]
are classical and efficient score & search based methods.
HC algorithm is simple and easy to implement, but it is easy to
fall into local optimum. K2 algorithm is an efficient algorithm
based on greedy strategy, which has very excellent learning
performance. However, K2 algorithm requires the maximum
number of parent nodes and depends heavily on the order of
nodes. Incorrect node order will result in a very poor result.
Moreover, the impact of node order on result structure is
much greater than the maximum number of parent nodes.
A large number of literatures [10]–[12] have been devoted
to improve this drawback and achieved certain effect. In
2020, Behjati and Beigy [10] proposed a competitive method
with good result in structure score, which regards strongly
connected component (SCC) as a contracted node, learns
the local order of SCC nodes by exact learning method with
recursive strategy, and then forms the global order, which is
used as the input of K2 algorithm. In essence, the aim of this
approach is to build a better order of nodes for K2 algorithm.
However, it has the following two disadvantages. Firstly,
in extreme situation, if the global directed graph contains
only one SCC with all the nodes in dataset, then the recursive
call of the algorithm is invalid and will be an endless loop.
Secondly, the topological order of DAG is not unique, and
the number of topological orders increases with the number
of nodes. However, only one order of nodes is selected in the
algorithm.

Themain contribution of this paper is to provide a Bayesian
network structure learning approach from data based on
maximum weighted spanning tree, bidirectional greedy
search and SCC local structure search. First, we estimate the
maximum number of parent nodes roughly and construct the
initial network structure with directed graph. Then, we extract
all the SCCs and search the local DAG structure of each SCC
with HC algorithm twice. A global DAG can be formed by
concatenating all the local DAGs. Finally, this global DAG,
as a starting point, is passed to a local search method to learn
the structure of Bayesian network. The algorithm proposed
can avoid the global order of nodes.

The rest of the paper is organized as follows. Section 2
presents a brief review of Bayesian network structure
learning methods. Section 3 devotes for introducing
some preliminaries about the proposed approach. Then,
in Section 4, the proposed algorithm is described in detail.
And Section 5 is dedicated to the experimental evaluation.
Finally, we conclude in Section 6.

II. BAYESIAN NETWORK STRUCTURE LEARNING
Bayesian network structure learning refers to combining the
prior knowledge as much as possible to obtain the optimal

topological structure, including exact algorithms and approx-
imate algorithms. The existing approximate learningmethods
can be divided into three categories: CI test based, score &
search based and hybrid methods. Exact learning algorithms
can guarantee the global optimal solution in theory, but it
is complex and inefficient. Approximate learning algorithms
trade the loss of accuracy for computational efficiency, and
aim to obtain a suboptimal network structure in an acceptable
computing time.

A. EXACT METHODS
Exact methods contain integer linear programming (ILP)
methods [13], [14], A* algorithm [15], [16] and dynamic
programming (DP) methods [17], [18]. Exact methods have
excellent learning performance, but its efficiency is very low,
so it is difficult to be applied to networks with a large number
of nodes.

B. APPROXIMATE METHODS
1) CI TEST BASED METHODS
The CI test based methods [19] regard BN as a network
model representing the relationship of independent variables.
Usually, statistical or information theory methods are used
to analyze the dependency relationship between variables by
calculating the mutual information and conditional indepen-
dence between nodes, and finally a network structure is got in
line with them. Typical representatives of such methods are
Shrink-Grow-Shrink (SGS) algorithm [20] and Peter-Clark
(PC) algorithm [9]. This kind of method is more intuitive
and effective, but it requires a large number of samples to
determine the independence, resulting in unreliable CI test
results. Moreover, the number of CI test times grows rapidly
in nodes count.

2) SCORE & SEARCH BASED METHODS
The score & search based methods regard structure learning
as an optimization problem, whose goal is to search the
network structure with highest score. A score & search based
algorithm can be formulated as follows: given a dataset
D = d1, d2, . . . , dm of cases, find a DAG G∗ such that

G∗ = argmax
G∈�

score(G | D), (2)

where � is the space of DAGs defined on node set
V = {X1,X2, . . . ,Xn}. From the perspective of algorithm,
it is necessary to determine the appropriate search strategy
and the scoring function to measure the fitting degree to
dataset. The number of DAGs grows super-exponentially
with the number of nodes. It has been proved that this is a
NP-Hard problem [7]. Heuristic search methods are usually
used to solve this problem which is easy to fall into the local
optimum. The search for the network structure can be carried
out in the DAG space, the equivalence class space, or the
ordering space.

Search on the DAG space is the most direct mode. Each
candidate DAG is assigned a network score reflecting its
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goodness of fit, which the algorithm then attempts to max-
imize. Some examples are heuristics, such as hill climbing,
genetic algorithms [21], whale optimization strategy [22],
differential evolution algorithm [23] and Particle Swarm
Optimization (PSO) [24]. K2 algorithm is a classical one
of this kind with outstanding performance but needing
pre-provided order of nodes.

In the search method based on equivalence class space, the
points in the search space are no longer a single BN structure,
but a class of structures with equivalence relationship. Two
examples of this category are Greedy Equivalent Search
(GES) [25] and Iterated Local Greedy Equivalent Search
(ILGES) [26].

Ordering based search methods [27], [28] search in the
space of node orders and construct BN structure based on
the obtained result order. The fundamental observation of this
kind of methods is that, finding the highest score structure
is not NP-Hard given an ordering on the variables in the
network.

3) HYBRID METHODS
Hybrid methods [29], [30] integrate the advantages of CI
test based methods and score & search based methods for
solving the structure learning problem, which reduce the size
of structure space by CI test, and then adopt score & search
methods further to obtain the optimal result.

III. PRELIMINARIES
In this section, we introduce several fundamental concepts
about the proposed approach.

A. MUTUAL INFORMATION
l Given random variables X and Y , the mutual information
between them is defined as:

I (X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

= H (X )− H (X | Y ), (3)

where p(x, y) is the joint probability of x and y, p(x) and
p(y) are the marginal probability distribution of X and Y
respectively, H (X ) is the entropy of X , and H (X | Y ) is the
conditional entropy of X given Y . Mutual information is a
metric of the degree of interdependence between two random
variables.

B. MAXIMUM WEIGHTED SPANNING TREE (MWST)
The spanning tree of a connected graph with N nodes is the
minimal connected subgraph of the original graph, which
contains all the N nodes, and has the least edges to keep the
graph connected. The weight of a tree refers to the sum of
the weights of each edge in the tree. The maximum weighted
spanning tree is the spanning tree with maximal weight.

C. STRONGLY CONNECTED COMPONENT
In a directed graph, two vertices X and Y are said to be
strongly connected, if there exists a path from X to Y , and

exists a path from Y to X meanwhile. The directed graph
is strongly connected if each pair of vertices in the directed
graph is strongly connected. A strongly connected component
of a directed graph G = {V ,E} is a maximal set of vertices
C ⊆ V such that for every pair of vertices u and v in C ,
vertices u and v are strongly connected.

D. HILL CLIMBING ALGORITHM
Starting from an initial network structure, the hill climbing
algorithm modifies the current network structure through
three search operators (add one edge, delete one edge and
reverse one edge) to obtain neighborhood points, and selects
the network structure from the neighborhood with the highest
score as the starting point of the next iteration until the local
optimal network structure is obtained. The reason why hill
climbing algorithm is easy to fall into local optimum lies
in the selection of initial network structure. A good initial
structure will lead to a better result.

IV. THE PROPOSED APPROACH
As mentioned above in section 1, the method proposed
in [10], denoted as SCC-Order-K2, has two drawbacks.
Firstly, in extreme situation, if the global directed graph
contains only one SCC with all the nodes in dataset, then
the recursive calling of the algorithm is invalid and will be
an endless loop. Secondly, the topological order of a DAG is
not unique, and the number of topological orders increases
with the number of nodes. However, only one order of nodes
is selected in the algorithm. In this section, to overcome
them, we propose a novel approach based on local structure
search for strongly connected components. In the following,
we describe how the method proposed in this paper works.

A. METHOD DESCRIPTION
The method proposed is mainly based on the following ideas:

1) If a good initial value is provided for HC algorithm,
the global optimal network structure can be obtained.
In this paper, we are committed to finding a good initial
value of HC algorithm to obtain the (approximate) opti-
mal solution of Bayesian network structure learning
problem.

2) It is difficult to learn the global Bayesian network struc-
ture directly, for which the divide and conquer strategy
can be adopted. We can learn the local structures first,
then fuse and revise them, and finally get the global
network structure. Similar to the calculation of local
scores, each node and its parent nodes form a local
network structure. Greedy search method is an intuitive
and feasible method to search the set of parent nodes.

3) The fused global network structure may not meet the
characteristic of directed acyclic, that is, there exists
one or more SCCs. The global network structure can
be revised step by step. We can first revise each SCC
to a directed acyclic graph. Here, we use the HC
algorithm twice to make full use of the results of the
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FIGURE 1. An example of estimating the maximal number of parent
nodes.

previous steps. Local structure modification is also an
optimization problem, but the scale of it is smaller.

4) The maximum number of parent nodes is an important
information for many structure learning algorithms
such as K2. If it is known, the amount of computation
can be greatly reduced, and a more accurate structure
with fewer wrong directed edges can be obtained.

MWST is an undirected graph representation of the asso-
ciation between nodes which has the minimum connection
weight to keep the graph connected. The maximum degree
of nodes in MWST can be used as a rough estimate of the
maximum number of parent nodes, although this estimate
is not optimal. Mutual information is a good metric for
the dependent relation of random variables. Taking mutual
information as the weight of edge, we can construct a
maximum weighted spanning tree T for all the nodes in V ,
which is an undirected graph. For each node in T , there
must be at least one node connected to it. The number of
nodes connected to node X , is defined as the degree of it.
And the maximum degree of a nodes in T can be used as
the upper limit of the number of parent nodes. As shown
in Fig. 1(a), we give an example of estimating the maximal
number of parent nodes with a 4 nodes network. Fig. 1(b)
shows the mutual information of each pair of nodes and
Fig. 1(b) is its corresponding maximum weighted spanning
tree. From Fig. 1(b) we can get the following information:
degree(A) = 3, degree(B) = degree(C) = degree(D) = 1.
Therefore, the rough estimate value of maximum number of
parents is max([3, 1, 1, 1]) = 3.
In K2 algorithm, the parents of each node are selected from

the previous nodes of it in the order through greedy search.
To relax this restriction of global order, we can use greedy
strategy to select the best parent node set from all the other
nodes. And then, a global directed graph G0 is formed by
concatenating all the edges. However, it is likely to be no
longer a DAG which, therefore, must be revised to meet the
limitation of directed acyclic.

Following the approach in SCC-Order-K2 algorithm,
we extract all the SCCs in the global directed graph G0.
If each SCC is regarded as a contracted node, the global
directed graph G0 is a DAG in a broad sense, called SCC
graph. A directed graph is acyclic if and only if it has no
strongly connected subgraphs with more than one vertex.
Therefore, we only need to revise the local structure of each

SCC to get a local directed acyclic subgraph. Instead of
learning the order of nodes in each SCC, we learn the local
directed acyclic structure of SCC directly by HC algorithm
twice, because the edges in SCC contain some information
which can be fully utilized. If we convert each directed edge
in SCC to undirected one, the resulting undirected graph is
a skeleton of SCC. Therefore, when using HC algorithm for
the first time, this skeleton is used as the white list. And its
result can be deemed as a point close to the global optimum
for local structure. Then, we take it as the start DAG and adopt
HC algorithm once again.

If we revise each SCC to a local DAG, and then expand
the previous corresponding contracted node with the revision
result, then the whole network will be a DAG. After local
structures of all SCCs are determined, a global DAG G can
be obtained, which is a point close to the global optimum
for global structure. Then, we employ a local search method
further such as HC algorithm to get the final result of BN
structure with G as the initial point.
The proposed structure learning method for Bayesian

networks, denoted as SCC-LST (SCC Local structure
Searching with hill climbing method Twice), includes the
following steps.

1) Compute the mutual information matrix.
2) Take mutual information as weight of edges, create the

maximum weighted spanning tree, and compute the
maximal number of parent nodes, denoted as µ.

3) Compute parents for each node with bidirectional
greedy search under the limitation of µ, and form a
global directed graph G0.

4) Search all the strongly connected components of G0
and construct GSCC by keeping the directed edge
between SCCs and its outside.

5) Determine the local directed acyclic structure for each
SCC by HC algorithm twice, and form the global DAG
G.

6) Adopt a local search method such as HC algorithm by
takingG as the initial point further to get the final result.

The differences between our method SCC-LST and the
SCC-Order-K2 in [10] are as follows. (1) We employ the
bidirectional greedy search to construct the initial directed
graph network with the maximal number of parents obtained
through maximum weighted spanning tree, while the Sparse
Parent Graph Algorithm [16] is adopted in SCC-Order-K2
algorithm. (2) We learn the local directed acyclic structure
of SCC by using HC algorithm twice, while the SCC-Order-
K2 algorithm only learns the nodes ordering in SCC by
exact learning algorithm recursively. (3) The SCC-Order-K2
algorithm regards SCC as a contracted node to form a DAG
in a broad sense and obtain the global node order. However,
the topological order of a DAG is not unique. SCC-Order-K2
algorithm does not select the best order among all the orders,
which fails tomake full use of the results of the previous steps.
Our method directly constructs the local directed acyclic
structure of SCC to avoid this problem. (4) In SCC-Order-K2
algorithm, the final result is obtained by K2 algorithm taking
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FIGURE 2. The flow chart of SCC-LST method.

the global order of nodes as an input value. While, in SCC-
LST method, we get the final result by local search algorithm
taking the global DAG structure as input instead of global
order. (5) In extreme situation, there is only one SCC that
contains all nodes. In this case, our method degenerates to a
simple method using HC algorithm twice, while SCC-Order-
K2 algorithm is invalid and falls into endless loop.

Fig. 2 shows the flow chart of our method. And
the pseudo-code of the proposed algorithm is shown in
Algorithm 1.

Algorithm 1 SCC-LST Algorithm
Input: Dataset D with m cases on nodes set V = {V1,V2, . . . ,Vn}.
Output: a Bayesian network structure G∗.
1. compute the mutual information matrix.
2. compute the maximum weighted spanning tree.
3. µ← max1≤i≤n deg(Xi) /* maximal number of parents */
4. initialize variable edges as an empty set.
5. for i← 1 to n do
6. Pa(Xi)← bidirectional_greedy_search(Xi, µ)
7. update edges with directed edges (Xj,Xi) for all Xj ∈ Pa(Xi)
8. end
9. construct a global directed graph G0 from edges.
10. search strongly connected components of G0: C1,C2, . . . ,CT .
11. construct GSCC from G0.
12. for i← 1 to T do
13. ugi ← to_undirected_graph(subgraph(Ci))
14. dgi ← to_directed_graph(ugi)
15. dag_scci ← HC(white_list = ugi)
16. dag_scci ← HC(start_dat = dag_scci)
17. end
18. dag_global ← concatenate({dag_scci}1≤i≤T )
19. G∗ ← HC(start_dag = dag_global)
20. return G∗.

Based on the Bayesian network CHILD and its sampled
data, we give a demonstration example of our method. For
the sake of space, we put it in the Appendix.

TABLE 1. Networks used in the experiment.

In the SCC-LST method proposed in this paper, the two
steps of ‘‘finding candidate parents (sub-net construction)’’
and ‘‘SCC revision’’ are naturally suitable for parallel
processing. In addition, on the one hand, due to the
previous estimation of the maximum number of parent
nodes, it provides very favorable information for the sub-net
construction step, which can be utilized to save a lot of
computing time. On the other hand, the number of nodes
contained in each SCC will not exceed the number of nodes
in the whole network, so its revision time is relatively
less. Moreover, HC algorithm itself is a very fast method.
Therefore, it can be anticipated that our method can be scaled
to massive networks with hundreds and even thousands of
nodes.

B. TIME AND SPACE COMPLEXITY
In this subsection, we briefly analyse the time and space
complexity of our method.

The mutual information matrix is symmetric, and the
computation time is O(n), where n is the number of
nodes. The time complexity of MWST computation is
O(n2). Searching the maximum number of parent µ need
O(n) comparisons. Finding parents for each node with
bidirectional greedy search under the limitation of µ requires
O(µn) score calculations, and all the nodes need O(µn2)
score calculations in total. The fusion step to get G0 requires
O(1) computations. Searching all the strongly connected
components in a directed graph needs O(n+ e) calculations,
where e is the number of edges in the graph. There are
approximately O(n2) possible changes in HC algorithm, the
score for the O(n2) initial changes are calculated firstly,
after which each iteration requires O(n) new calculations.
And then, revision each SCC to get a local DAG by HC
algorithm twice needs O(r2) score computations, where r
is the maximum number of SCC nodes. So, revision all the
SCCs requires approximatelyO(nr) score computations. The
time requirement for getting the global DAG G is O(1).
And in the final step of further local search optimization,
O(n2) score calculations are needed. Therefore, the total time
complexity of our method SCC-LST is approximately O(n2)
score calculations and additional O(n2) computations.

HC algorithm is a local search method, which can find
a reasonable solution in a certain space with constant
spatial complexity. For matrix related operations, the spatial
complexity is O(n2). Therefore, the space complexity of our
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TABLE 2. Results comparison with size=500.

TABLE 3. Results comparison with size=5000.

algorithm SCC-LST is a polynomial expression about the
number of nodes.

V. EXPERIMENT EVALUATION
In this section, we aim to empirically evaluate the proposed
method and compare it with 5 of the most popular algorithms:
HC algorithm, PC-HC algorithm, K2 algorithm with random
order (K2-RND), MWST-K2 algorithm and the OBS algo-
rithm. PC-HC algorithm first obtains the skeleton of network
via PC algorithm which is an undirected graph, and then
orients the undirected edges with HC algorithm to obtain
the final DAG structure. MWST-K2 algorithm adopts K2
algorithm with the order got from MWST. While the OBS
algorithm is an ordering based searchmethod by hill climbing
search with tabu lists and random restart [27].

Our experiment is executed in the environment of PyCharm
2021.2.2 (Community Edition) with Python 3.9.7, on the
platform of win 10 (64 bits) with Intel Core i9-10900 CPU
@ 2.80GHz and 64G RAM.

A. DATASETS
The benchmark datasets include 9 Bayesian networks taken
from the Bayesian network repository taken from the bnlearn
R package [31]. We selected 3 small size networks (no more
than 20 nodes), 3 medium size networks ( 20 – 50 nodes) and
3 large size networks (50 – 100 nodes). Table 1 shows the
detailed information upon each network including the number
of nodes, the number of directed edges (i.e. arcs), the number
of maximal parent nodes, and the type of network. And for
each network, we independently sample 10 datasets with 500,
5000 and 10000 cases respectively.

B. PERFORMANCE MEASURES
We evaluate the performance of our SCC-LST method
in terms of structural Hamming distance (SHD) and the
Bayesian information criterion (BIC) score of the result
structure on the dataset. The SHD is sum of number of the
correct edges, the additional edges, the missing edges and the
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TABLE 4. Results comparison with size=10000.

TABLE 5. Average ranking of algorithms.

reverse edges compared with the original network structure.
The smaller the SHD, the better, indicating that the obtained
network structure is closer to the original network structure.
On the other hand, the larger the BIC the better, which shows
that the learned network structure can fit the data set better.
In addition, we give the average ranking of the algorithms on
SHD and BIC score.

C. EXPERIMENTAL RESULTS
In the following, we present the experimental results and
compare them. Tables 2, 3 and 4 give the average SHD and
BIC score of 10 datasets on each network with sample size
500, 5000 and 10000 respectively. The results highlighted in
bold are the best one for the corresponding network. By a
quick look at the results reported in the 3 tables, we can
draw the conclusion that the proposed SCC-LST method
outperforms the other algorithms, especially with respect to
BIC score.

Table 2 shows the comparison result of the 6 methods
with 500 samples. Of the nine networks, our algorithm has
the best SHD on six of them, especially in the 3 medium
networks. The SHD of our method in the three remaining
networks is also very close to the best comparison algorithm.
In BIC score, our algorithm has more advantages. It is only
slightly inferior to HC algorithm onALARMandWIN95PTS
networks.

FIGURE 3. True structure of the CHILD network.

FIGURE 4. Maximum weighted spanning tree of CHILD.

Table 3 gives the comparison result about 5000 sampled
data. Also, it shows the good performance of our algorithm.
With respect to SHD, our algorithm is slightly better than
PC-HC algorithm, but it is obviously better than the other
4 algorithms. Moreover, in terms of BIC score, our algorithm
is not as good as HC algorithm only on the ASIA network.
And we get the best BIC score in all the other 8 networks.

From the comparison result of 10000 samples in Table 4,
we can get that our algorithm does not have much advantage
in SHD, and its performance is equivalent to that of the PC-
HC algorithm. However, our algorithm is still significantly
better than the other 5 algorithms in BIC score.

In order to further illustrate the performance of our
algorithm, we give the average ranking of six algorithms
on SHD and BIC in Table 5. And the results show that
the average ranking of our SCC-LST method is always the
highest.
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FIGURE 5. Fusion result of CHILD.

FIGURE 6. The SCC graph.

FIGURE 7. SCC-CO2 (left) and its revised result (right).

VI. CONCLUSION
In this paper, based on searching local structure of strongly
connected compo-nents, we proposed a simple algorithm
SCC-LST for learning Bayesian network structure from data
that can avoid the global order of nodes. The proposed
algorithm estimates the maximal number of parents through
maximum weighted spanning tree firstly. And then the initial
global directed graph is constructed by searching parents
for each node from the remaining nodes except itself. After
that, we search the local directed acyclic structure of strongly
connected components by hill climbing search twice. Finally,
a further local search process is used to get the final DAG as
the structure of Bayesian network, taking the previous result
as input.

We evaluated the proposed method on 9 benchmark
networks by sampled datasets, in terms of SHD andBIC score
and its average ranking. Experimental results showed that the
proposed method outperforms the five compared algorithms.

However, two research issues remain. The quality of the
parent nodes searched by bidirectional greedy search has a
great impact on the performance of the proposed method.
Also, when determining the local directed structure of SCC,
only the internal nodes and directed edges of SCC are used,
and its dependence on the outside is not fully utilized.
In future, we will develop new approaches to overcome these
drawbacks.

Bayesian network is one of the important methods
of knowledge representation and reasoning in uncertainty

FIGURE 8. SCC-Sick (left) and its revised result (right).

FIGURE 9. SCC-Disease (left) and its revised result (right).

FIGURE 10. Global DAG after SCCs revision.

FIGURE 11. Final learned structure of CHILD.

problem, which has a wide range of applications, especially
in the medical field. In the near future, we intend to apply
Bayesian network to the actual scene of medical and clinical
diagnosis.
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APPENDIX
DEMONSTRATION EXAMPLE OF OUR METHOD
Based on the Bayesian network CHILD, we give a demon-
stration example to further illustrate the procedure of our
method SCC-LST, as shown in Figs. 3 to 11. The CHILD
network is a medium Bayesian network with 20 nodes and
25 directed edges. The maximum number of parent nodes
is 2. In this demonstration example, we learn the Bayesian
network structure from 5000 sampled data of the original
network.

Fig. 3 shows the original true structure of the CHILD
network. Fig. 4 is the maximum weighted spanning tree
based on mutual information, from which we can get that
the maximum number of parent nodes is 6 (pay attention
to node: Disease). Fig. 5 gives the fusion result graph G0
of each node and its parents. There exist three SCCs in
Fig. 5: SCC-CO2, SCC-Sick and SCC-Disease. SCC-CO2
contains 2 node: CO2 and CO2Report. SCC-Sick contains
8 nodes: Sick, Age, Grunting, GruntingReport, LungParench,
LungFlow, ChestXray and XrayReport. While SCC-Disease
contains 9 nodes: RUQO2, HypoxiaInO2, CardiacMixing,
HypDistrib, LowerBodyO2, DuctFlow, Disease, LVH and
LVHReport. The SCC graph GSCC is shown in Fig. 6. There
is no intersection between any two of the three SCCs. And
the node BirthAsphyxia is not in any SCC. The three SCCs
and their revised directed acyclic structures are shown in
Figs. 7, 8 and 9 respectively. The global DAG G after all
the SCCs are revised is presented in Fig. 10. And Fig. 11
gives the final learned structure of CHILD, in which the black
arrows represent the completely correct directed edges while
the bold red ones are the reversed edges. There are only
two reversed directed edges: (Disease, BirthAsphyxia) and
(CardiacMixing, Disease). In this demonstration example,
there is no missing and additional edge.
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