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ABSTRACT Nonlinear model predictive control (NMPC) has proven its ability to control constrained
nonlinear processes. Although NMPC can achieve exemplary tracking performance, the related computation
effort as well as guaranteeing tracking convergence are its main drawbacks. Indeed, constrained NMPC is a
nonlinear and nonconvex optimization problem where it is difficult to find a feasible solution within a rea-
sonable time.Motivated by these difficulties, this study proposes a procedure, using the Euler approximation,
to transform the nonlinear optimization problem of NMPC into a constrained quadratic optimization prob-
lem. The proposed tracking controller is applied to the autonomous navigation problem of a wheeled mobile
robot (WMR) in a constrained space. Under certain assumptions, we prove the closed-loop system stability
and boundedness of the tracking error. Furthermore, we demonstrate the recursive feasibility of the solution.
Simulations are performed, first to determine the adequate control parameters, and second, to demonstrate
the effectiveness of the proposed algorithm, while its real-time implementation is experimentally verified
using a differential drive mobile robot.

INDEX TERMS Nonlinear predictive control algorithm, state and control signal constraints, convex
optimization, stability, and feasibility analysis, wheeled mobile robot.

I. INTRODUCTION
Mobile robots have been widely studied over the last few
decades, owing to their inherent applications in various
fields. Mobile robots are used for the simple exploration
of unknown regions for search and rescue military appli-
cations and surveillance [1]. Hence, many researchers have
focused on the autonomous navigation of mobile robots in
unknown environments with static and dynamic obstacles.
Therefore, the desired trajectory is generated online by a
motion planner, based on the information acquired from the
environment, to avoid obstacles and minimize the distance to
the target. The controlmethods used to control under-actuated
systems are primarily nonlinear. Therefore, several meth-
ods based on nonlinear techniques, have been developed to
solve the tracking problem and allow mobile robots to track
the desired trajectory [2]–[5]. The authors in [6] and [7]
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focused on a more complex environment (outdoor) where
the wheels are subject to deformation. However, mobile
robots have physical limits, and space constraints that affect
the achievable closed performance in indoor and outdoor
environments.

It is a known fact that model predictive control is the best
technique used to cope with hard constraints on controls and
states. For this reason, nonlinear model predictive control has
been widely used in academic research and industry because
it is simple to include different constraints in the optimization
problem [8], [9].

To solve the NMPC problem various approaches, based
on sequential quadratic programming (SQP) algorithms, have
been developed. This direct method converts the NMPC prob-
lem into an optimal control problem. This nonlinear program-
ming (NLP) problem requires an online solution to a receding
horizon optimization problem to be implemented in practice.
Thus, this is a nonlinearly constrained optimization problem
with the following challenges:
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1- The processing time of the algorithm.
2- Nonconvexity of the optimization problem.
3- Stability of the closed-loop system and feasibility of the

solution.
Therefore, most NMPC applications reported in the lit-

erature have been applied to systems with slow dynam-
ics, such as chemical processes. For instance, in [10], the
authors designed an NMPC for a continuous stirred tank
reactor (CSTR) using a multi-stage control approach. The
authors in [11], presented a linear mismatched model-based
offset-free model-predictive control approach for CSTR non-
linear system. In [12], the authors applied robust nonlinear
predictive control to the CSTR process using a radial basis
function network (RBF-ARX) model. In [13], the authors
formulated a nonlinear optimization problem as a quadratic
cost function with inequality constraints and applied it to a
CSTR plant.

In recent years significant efforts have been made to cope
with the real-time implementation of NMPC to be applied
to highly dynamic systems with a fast sampling rate. The
real-time iteration (RTI) scheme was proposed in [14], and
the authors combined ideas of the RTI with multi-level
iteration (MLI) to ensure high computational efficiency for
real-time implementation of the NMPC. The authors in [15]
proposed a homotopy-based nonlinear interior-point method
for the efficient real-time implementation of NMPC. In [16],
the authors developed a highly parallelizable Newton-type
method to efficiently solve NMPC. In [17], the authors pre-
sented a collection of embedded optimization algorithms
under a modular structure written in the C language for
better real-time nonlinear optimization. A parallel optimiza-
tion toolkit for the real-time implementation of NMPC was
proposed in [18]. Indeed, the authors used a highly par-
allelizable method for efficient real-time implementation
of NMPC. The authors in [19] used the RPROP algorithm
based on a faster backpropagation approach for a gradient-
descent optimizer. To this end, the authors in [20] used the
high-performance framework ACADO software for compu-
tationally efficient implementation of NMPC to reluctance
synchronous machines. Consequently, to overcome the com-
putational burden of NMPC, numerous schemes have been
developed in recent years (see excellent reviews [38]).

Despite these challenges, several applications of NMPC to
mobile robots have been reported in the literature. The first
applications focused on tracking the desired trajectory [19],
[21], [22]. In [23], the authors proposed an NMPC using a
nonlinear (nonconvex) optimization algorithm to track the
centerline of the roadway while avoiding obstacles. However,
the iterative method used to determine the optimal solution
is highly time-consuming. The authors in [24] combined a
path-following controller with obstacle avoidance using non-
linear model predictive control. Although the authors have
provided stability and feasibility analysis of the algorithm,
the optimization problem is nonlinear and nonconvex with
a high computational burden. Nonlinear model predictive
control was also used in [25] to steer the WMR to the desired

pose. Despite the rigorous asymptotic stability analysis, the
proposed solution must solve the nonlinear optimization
problem. To avoid the local minimum of the optimization
problem, using receding horizon control (RHC), the authors
in [26] proposed a local-minima-free navigation function
with a global minimum at the target state. The proposed
algorithm solves the navigation problem by using control
constraints. The authors in [27] used a genetic algorithm (GA)
to solve the NMPC algorithm to avoid the computational
difficulties of nonlinear programming-basedMPC. This algo-
rithm has been successfully applied to solve the steering prob-
lem of autonomous vehicles. To reduce the processing time
owing to online optimization, the authors in [28] proposed
a convex quadratic programming-based model predictive
scheme for collision-free collision navigation of autonomous
vehicles.

Consequently, the processing time of the NMPC algorithm
is one of the most commonly encountered problems when
it is used to control a highly dynamic nonlinear system.
The time required to reach the optimal solution is high with
regard to the dynamic of the process. This is because of the
nonlinear optimization problem that is solved at each sample
time (online) [29]. Furthermore, the optimization problem
is, generally nonconvex, and the solution can converge to
the local minimum [30], [31]. Hence, the convexity of the
optimization problem plays a central role in the practical
implementation of constrained NMPC.

In this paper, we propose a simple algorithm, based on
approximated model predictive control, for safe autonomous
navigation of the WMR in a constrained space. This
algorithm permits the WMR to accurately track a feasi-
ble predefined trajectory. To avoid the computational bur-
den of the NMPC, the Euler approximation is utilized
to convert the NLP to constrained quadratic programming
(QP). Figure 1 shows the constrained QP implementation
of the proposed algorithm. This study aims to transform
the tracking problem, which is a nonconvex optimization
problem, into a constrained QP problem. The restricted
space and constraints on the control input are expressed
as convex constraints (inequality constraints). Thus, the
heavy computational burden of the original optimization
problem can be considerably reduced using fast-available
algorithms [32], [33]. Furthermore, the stability analysis of
the closed-loop system is investigated using the Lyapunov
method and the positive invariance principle in constrained
cases. The feasibility of the constrained QP solution is also
investigated. Consequently, the contribution of the proposed
algorithm solves the challenges previously cited in the appli-
cation of NMPC to wheeled mobile robots.

The proposed algorithm can be used efficiently in appli-
cations where navigation space is limited, such as in robot
vacuum cleaners and landmine detection robots. Moreover,
undetectable obstacles, such as stairs in an indoor environ-
ment, can also be included as space constraints to prevent
the robot from falling downstairs. Thus, the proposed control
algorithm is simple, practical, and efficient with a feasible
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FIGURE 1. Trajectory tracking and collision-free path planning.

solution and asymptotic stability of the equilibrium point of
the closed-loop system.

The remainder of this paper is organized as follows.
In Section 2, the kinematic model of a unicycle mobile
robot is derived based on certain assumptions and proper-
ties. Section 3 describes the trajectory tracking algorithm
based on the approximated nonlinear model predictive con-
trol (ANMPC). The stability of the closed-loop system and
the feasibility of the solution are discussed in Section 4. Sim-
ulations and experimental tests are conducted to determine
the effectiveness of the proposed scheme. Section 5 presents
the results of the study. The paper ends with the conclusion
and future work.

II. PRELIMINARIES
This section deals with some preliminaries required for this
work.

A. MATHEMATICAL MODELING
In this study, we considered a differential drive mobile robot.
It contains two independent rear wheels and a front-castor
wheel. The linear speed v of the WMR is given by the
combination of the left speed vl and right speed vr of each
DC motor: v = vl+vr

2 and the angular speed ω = vr−vl
L

,
where L is the distance between the left and right wheels.
The transformation of these variables, it is shown in Figure 1,
is given as follows:

[
vr
vl

]
=

 1
L
2

1 −
L
2

[ v
ω

]
= T

[
v
ω

]
.

The Kinematic model of the mobile robot is given by [1]
ẋc = ν cos (θ)
ẏc = ν sin (θ)
θ̇ = ω

(1)

This kinematic model is valid under nonholonomic con-
straints [1]. To overcome the controllability problem of the
kinematic model (1), the coordinates of the WMR are shifted
from the mass center C(xc, yc) to point C(x, y) along the

FIGURE 2. Wheeled mobile robot structure.

sagittal axis by a distance|d | 6=0 (see Figure 2). Thus, the new
coordinates of the WMR are given by

x = xc + d cos (θ )

y = yc + d sin(θ )

Under the matrix form, the nonlinear kinematic model of
WMR is

Ż (t) = f (Z ,U , t) = G (θ) u(t) (2)

where

G (θ) =

 cos (θ ) − d sin (θ )sin (θ ) d cos (θ )
0 1

 ,
Z (t) =

[
x(t) y(t) θ (t)

]T
and u(t) =

[
v(t) ω(t)

]T . The discrete-time version of the
model (2) is

Z (k + 1) = Z (k)+ Ts G (θ (k)) u(k)

where Ts is the sampling time.
The tracking error dynamic can be written as

ė(t) = f (Z ,U , t)− ˙Zref = G (θ) u(t)− ˙Zref (3)

B. ASSUMPTIONS
In order to design the ANMPC algorithm, some assumptions
are required.

1- Both reference position Zref (t) and its time derivative
Żref (t) are bounded. So, ∃Zmax > 0, Źmax > 0 such that∣∣Zref (t)∣∣ < Zmax;

∣∣Żref (t)∣∣ < Żmax , ∀ t ∈ R+ where
Zref (t) =

[
xref (t) yref (t) θref (t)

]T
∈ R3.

2- The first-order Taylor approximation (Euler method) is
used to convert the constrained nonconvex optimization
problem to a constrained quadratic optimization problem.
It is assumed that the approximation is valid for a small
step-time h.

3- The state vector Z (t) is available.
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C. DEFINITIONS
Here, we define some properties that will be used in the
stability and feasibility analyses.
1- The column vectors of G (θ) are linearly independent.

Consequently, G (θ) u(t) = 0 H⇒ u(t) = 0. Accord-
ingly, for any positive definite (or negative definite)
matrix u, the matrix GT (θ) u G(θ ) is also a definite
positive (or negative definite) matrix.

2- The minimal and maximal eigenvalue of a matrix Q is
denoted by λmin(Q) and λmax(Q) respectively.

3- The identity matrix is denoted by In.
4- The Euclidean norm in Rn is written as |.| while for a

matrix P ∈ Rn×m, ‖P‖ = λmax
(
P PT

)1/2.
D. NOTATION
In addition to the nonholonomic constraint, the position
of the WMR Pxy(t) =

[
x(t) y(t)

]T
∈ R2 and the

input vector u(t) =
[
ν(t) ω(t)

]T
∈ R2 are constrained

inside a given compact set. For the control signal: ∪ ={
[νmin, νmax]× [ωmin, ωmax]⊂ R2

}
.

The sequences of the control signals

U (t) =
[
u(t) u(t + h) · · · u(t + (m− 1)h)

]T
is feasible, if U (t) ∈ fT , where

fT =

{
U (t)∈R2×m/u (t + ih)∈∪ for i=0, 1, · · · ,m− 1.

}
.

while the restricted cartesian space is defined as com-
pact (nonempty) set by:

Z =
{
[xmin, xmax]× [ymin, ymax]×R⊂ R3

}
,

ZT =
{
Z (t)∈R3×m/Z (t + ih) ∈ Z, for i=0, 1, · · · ,m

}
,

Z (t) = b Z (t + h) Z (t + 2h) · · · Z (t + mh) cT .

We can also define the constrained compact set related to the
predicted tracking error as

E =
{ [
xmin − xref (t), xmax − xref (t)

]
×
[
ymin − yref (t), ymax − yref (t)

]
× R ⊂ R3

}
,

ET =
{
E(t) ∈ R3×m/e (t + ih) ∈ E for i = 1, · · · ,m

}
where

E(t) =
[
e(t + h) e(t + 2h) · · · e(t + mh)

]T
.

Then, for an initial feasible state error e(t), the sequence of
the control vector is

U (t) =
[
u(t) u(t + h) · · · u(t + (m− 1)h)

]T
∈ fT ,

is an admissible control vector, if the state error trajecto-
ries E(t), generated by the dynamic system (3), satisfies
E(t) ∈ ET .
We also define a compact set ZU =

{
U (t) ∈ R2×m,

Z (t) ∈ R3×m/ U (t) ∈ fT , Z (t) ∈ ZT } , which will be
converted to a polyhedral set using the Euler approximation.

III. RECEDING HORIZON CONTROL OF A WMR
The formulation of the NMPC problem for trajectory tracking
is to determine the control vector u(t) such that the predicted
tracking error e (t + τ) = Z (t + τ)− Zref (t + τ) converges
to zero along the interval τ ∈ [t, t + T ]. Note that Zref (t)
is the safe trajectory generated by the planner (Figure 1) to
move the WMR to the desired target without colliding with
the obstacles.

The above problem is reformulated as an optimization
problem [8], [9]:

Min
u∈fT

J (t, e, u,T ) = Min
u∈�

1
2

∫ t+T

t
L (τ ) dτ, (4)

subject to:
- ė = f (e, u, t) = G (θ) u(t)− Zref (t),
- u (τ ) ∈ ∪R2, e (τ ) ∈ E,
- L (τ ) = e (τ )TQ e (τ )+ u (τ )TR u (τ ),
- e (τ ) = Z (τ )− Zref (τ ), τ ∈ [t, t + T ],
where T > 0 is the prediction horizon, Q > 0 is a positive
definite matrix (dim (Q) = 3 ×3), and R ≥ 0 is a positive
semi-definite matrix dim (R) = 2 ×2).
Problem (4) is a nonconvex optimization problem that must

be solved online at each sampling time with computational
complexity. Furthermore, most of the existing algorithms
may converge to local solutions. In this study, optimization
problem (4) is converted to a convex quadratic optimization
problem using the first-order Taylor approximation to solve
it efficiently with a global minimum. Therefore, to obtain
an explicit solution of NMPC, the prediction horizon T is
divided intom subintervals (m ≥ 2) of equal width h such that
T = m h. The discrete-time version of the cost function (4)
is given by

J (e(t)) =
∑m−1

i=1
L(t + i h)+ LT (t + m h), (5)

where e(t) is the initial tracking error and L (t + jh) =
e (t + jh)TQ e (t + jh)+ u (t + jh)TR u(t + jh).
To ensure the stability of the closed-loop system, the ter-

minal cost should be included in the objective function (5),
as follows

LT (t + mh) = e (t + mh)TP e (t + mh)

where the adequate selection of the symmetric definite-
positive matrix P ∈ R3×3 is provided later. Thus, the cost
function (5) can be written as

J (t, e(t),U (t), h) =
(∑m−1

i=0
e (t + ih)TQ e (t + ih)

+ u (t + ih)TR u(t + ih)
)

+ e (t + mh)TP e(t + mh) (6)

To avoid the cross product of the control signals in (6), the
following approximation is used:{
sin(θ (t + jh)) ≈ sin(θ (t))
cos(θ (t + jh)) ≈ cos(θ (t))

⇒ G(θ (t + jh)) ≈ G(θ )

65070 VOLUME 10, 2022



R. Hedjar: Approximate Quadratic Programming Algorithm for Nonlinear Model Predictive Tracking Control of a WMR

Hence, the cost function (6) becomes

J (e(t),U)=
{
ϕ
(
e(t), ˙Zref , h

)
+

∑m−1

i=1
e (t + ih)T

Q e (t + ih)

+ e (t + mh)TP e (t + mh)+U (t)TRU (t)

}
,

where ϕ
(
e(t), ˙Zref , h

)
represents terms that are independent

of the control vectorU (t) and R = diag(R, R, R, . . . . . . .,R).
To evaluate the effect of the control effort on the predicted

tracking error, Euler approximation was used as follows

e (t + jh) = e(t)+ h G (θ)
∑j−1

i=0
u(t + jh)

− h
∑j−1

i=0
˙Zref (t + jh) (7)

where UT (t) =
⌊
uT (t) uT (t + h) · · · uT (t + (m− 1)h)

⌋
,

and

˙Z ref T (t)=
[
ŻTref (t) Ż

T
ref (t + h) · · · · · · ˙Zref

T (t+(m−1)h)
]T

Using (7), the cost function can be rewritten under the
quadratic form

J (e(t),U (t)) =
{
ϕ
(
e(t), ˙Zref , h

)
+ 2 h UT (t)G

T
Q
(
I1 e(t)− hI3m

˙Z ref
)

+UT (t)
(
R+ h25

)
U (t)

}
(8)

where

I3m =


I3 0 · · · · · · 0
I3 I3 0 · · · 0
· · · · · · · · · · · ·

I3 I3 I3 · · · I3

 ; dim
(
I3m

)
=3m× 3m;

I1 =
∣∣ I3 · · · I3 ∣∣T ; dim

(
I1
)
= 3m× 3;

5 = G
T
Q G.

Q = diag (Q,Q, · · · ,P) ;

G =


G(θ ) 0 0 · · · 0
G(θ ) G(θ ) 0 · · · 0
· · · · · · · · · · · · · · ·

G(θ ) G(θ ) G(θ ) · · · G(θ )

 ;
dim

(
G
)
= 3m× 2m.

Because Q > 0, P > 0, and R ≥ 0, the matrix
(
R+ h2 5

)
is a positive definitematrix. The optimization problem (8) can
be written in the following quadratic form

Min
U (t)∈fT

J (t, e,U (t))

= Min
U (t)∈fT

{
ϕ + 2 h UT (t)GT Q

(
I1e(t)− hI3m

˙Z ref
)

+UT (t)
(
R+ h25

)
U (t)

}
, (9)

such that
- e (t + jh) = e(t)+ h G (θ) I2j U (t)− h I3j

˙Z ref , for j =
1, · · · ,m

- U (t) ∈ fT , and E(t)∈ ET

A. CONSTRAINTS HANDLING
Constrained spaces are primarily utilized in the motion plan-
ning of robot manipulators. Hence, the contribution of this
study is the formulation of the motion-planning problem of
a mobile robot in a constrained environment as a constrained
quadratic optimization problem. Therefore, two types of con-
straints were considered:

1) CONSTRAINTS ON CONTROL VECTOR
All real-world control problems are subject to the actuator
constraints. Thus, the control signals v(t) and ω(t) of the
mobile robot (speed and steering angle) are bounded and can-
not exceed a certain threshold level [2]. In model predictive
control, the predicted control signals should be constrained
within the admissible set. Thus, constraint U (t) ∈ fT can be
expressed as a linear constraint

A1 U (t) ≤ B1

where A1 = diag(A, A, · · · · · ·,A), A =


1 0
0 1
−1 0
0 −1

, B1 =

B
...
...

B

, and B =


vmax
ωmax
−vmin
−ωmin

.

2) STATE CONSTRAINTS
The idea used in this work, which allows the mobile robot
to navigate safely inside a restricted space, has been used in
the handling of contacts in crowd motion simulations [34]
and extended to mobile robot navigation [35]. The admissible
sub-space FR can be seen as an intersection of finitely many
half-planes in space R2 and can be defined by a set of
nonlinear inequalities Cr (P) such that

FR =
{
Pxy(t) ∈ R2

: Cr (P) ≤ 0
}
⊂ E, (10)

where Pxy(t) =
[
x(t)
y(t)

]
is the Cartesian position of the

mobile robot at time t . To ensure a global solution of the
constrained QP, the achievable region is defined as a convex
polyhedron with a set of p convex inequalities: Cr (P) =
ArPxy(t) + Br , where Ar ∈ Rp×2, and Br ∈ Rp. For
simplicity, this region is defined by a convex polyhedron in
Cartesian space, as follows:

FR =
{
Pxy(t) ∈ R2

; xmin ≤ x(t) ≤ xmax and ymin

≤ y(t) ≤ ymax , t ∈ [t, t + T ]
}
.

Let us define the kinematic model of the WMR position in
Cartesian space as Ṗxy(t) = Gxy (θ) u(t),

where Gxy (θ) =
[
cos (θ ) −d sin (θ )
sin (θ ) d cos (θ )

]
.
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It is desirable to maintain the predicted Cartesian position
of the mobile robot within this region FR. Therefore, the
problem to be solved is to determine an adequate control
vector U (t) that satisfies the following constraints.

Pxy(t) ∈ R2
; Pxy (t + τ) ⊂Fr , τ ∈ [0,T ]

Or under the following inequalities

Pmin ≤ Pxy (t + τ) ≤ Pmax , τ ∈ [0, T ] , (11)

where Pmin =
[
xmin
ymin

]
and Pmax =

[
xmax
ymax

]
.

The m− steps predicted Cartesian position of the WMR is
given by: Pm(t) = P(t)+ h AGxy U (t),

where AGxy =


Gxy 0 · · · 0
Gxy Gxy 0· · · 0
· · ·

Gxy
· · ·

Gxy
· · ·

Gxy
· · ·

Gxy

;

P(t) =


Pxy(t)
Pxy(t)
...

Pxy(t)

, and Pm(t) =


Pxy(t + h)
Pxy(t + 2h)

...

Pxy(t + mh)

.
Constraints given in equation (11) can be written as:

h AGxy U (t) ≤ Pmax−P(t)

−h AGxy U (t) ≤ −Pmin + P(t)

where Pmin(t) =


Pmin
Pmin

...

Pmin

 and Pmax(t) =


Pmax
Pmax

...

Pmax

.
Under matrix-vector form

h A2 U (t) ≤ B2,

which are convex constraints with A2 =
[
AGxy
−AGxy

]
, and

B2 =
[
Pmax − P(t)
−Pmin + P(t)

]
.

Consequently, the state constraints Z (t + ih) ∈ ZT are
approximated by a linear inequality (with regard to U (t))
h A2 U (t) ≤ B2. Therefore, if assumption 2 holds, the
optimization problem can be formulated as a constrained
QP problem as follows

U∗(t) = arg min
Ac U (t)≤Bc

J (t, e, u,T ) (12)

where Ac =
[
A1
A2

]
,Bc =

[
B1
B2

]
.

The optimization problem (12) is a convex quadratic
problem because of the quadratic cost and linear inequal-
ity constraints (with regards to vector U(t)). Furthermore,
the optimization problem is feasible because the feasible
set, defined by fT =

{
U (t) ∈ R2×m/Ac U (t) < Bc

}
is

nonempty (the matrix Ac has a full rank). Hence, many
algorithms exist for solving this convex optimization problem
within a few steps [31]–[33].

IV. STABILITY AND FEASIBILITY ANALYSIS
The stability of constrained model predictive control of non-
linear systems has been the main subject of research for
many years. The closed-loop stability of the plant under the
cost function with state and input constraints (12) can be
guaranteed independently from the nonlinear mathematical
model of the plant [36], [37]. This is realized by adding
an equality constraint to the optimization problem, which
forces the tracking error to lie inside a terminal region at the
end of the finite horizon. This terminal region is the region
of attraction for a nonlinear system controlled by a local
controller.

A. STABILITY ANALYSIS
In this work, the Lyapunov method is used to prove the
stability, and feasibility of the system closed by the model
predictive control. The proposed controller drives the state
error to the terminal set. Inside this terminal set, a local
controller was used to steer the error state to the equilibrium
point.
Lemma: For system (3), the compact set 3F = {e(t) ∈

R3,VF (e) = e (τ )TP e (τ ) ≤ α, for τ ≥ tF = t + mh} is
a positively invariant set with α = δM

2, under the local
controller:

uF (τ ) = −
1
h

(
G (θ)TP G (θ)

)−1
G (θ)TP e (τ ) , (13)

Proof: To determine the current control uF (τ ) that reduces
the tracking error along with the interval τ ∈ [tF tF + h],
we consider a dynamic performance index, that penalizes the
tracking error in the form

JInd (e, uF ) = e
(
tf + h

)TP e (tf + h) ,
where tf = t + T . The minimization of JInd (e, uF ) with
respect to uF (τ ), using the first-order Taylor approximation
of the one-step-ahead predicted tracking error and setting
∂JInd
∂uF
= 0 yields:

uF (τ ) = −
1
h

(
G (θ)TP G (θ)

)−1
G (θ)TP e (τ ) ,

where
(
G (θ)TP G (θ)

)−1
is a positive-definite matrix.

Let’s take the following Lyapunov function

V (e) =
1
2
e(tf )TP e

(
tf
)
. (14)

Given that the planned trajectory can be considered as a path
or set of points with ˙Zref = 0, the time derivative of the
Lyapunov function using the local controller (13) yields,

V̇ (e) = e(tf )TPė
(
tf
)

= −
1
h
e
(
tf
)T P G (θ) (G (θ)T P G (θ))−1

×G (θ)T P e
(
tf
)

V̇ (e) = −
1
h
e
(
tf
)T
4(θ) e

(
tf
)
< 0,
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since 4(θ) = P G (θ)
(
G (θ)TP G (θ)

)−1
G (θ)TP is also

positive definite. The function sT
(
G (θ)TP G (θ)

)−1
s >

0, ∀ s 6=0 ∈ R2. Using the transformation s = G (θ)TP e,
the function eT4(θ) e > 0, ∀ e ∈ R3 provided that e6=0.
Thus, the set3F =

{
e(t) ∈ R3,VF (e) = e (τ )TP e (τ ) ≤ α,

for τ ≥ tF = t + mh} is a positively invariant set under the
local controller (13). The tracking error entersset 3F , then
it belongs to this terminal set for τ ≥ tF . Subsequently, the
tracking error asymptotically converges to the origin.
Theorem 1: Assume that the initial solution of the

optimization problem is feasible, e (t + ih) ∈ E, and
u (t + (i− 1)h) ∈ ∪ for i = 1, m. Suppose that the following
inequality holds:

GT (θ)P G (θ) > GT (θ)Q G (θ)+
1
h2
R. (15)

Then, under terminal controller (13), the optimal cost func-
tion J (t, e(t), h) is a control Lyapunov function (CLF) for
system (3). Consequently, the equilibrium point becomes
asymptotically stable.
Proof: See the appendix.

B. FEASIBILITY ANALYSIS
To guarantee the closed-loop stability and convergence
derived previously, we assume that the predictions by the tail
lie inside the constrained space. In other words, the optimal
solution at time t is feasible.

U∗(t) =
[
u∗(t) u∗(t + h) · · · u∗(t + (m− 1)h)

]T
,

where u (t + ih) ∈ ∪, i = 1, · · · ,m.

P∗xy(t) =
[
P∗xy(t + h) P∗xy(t + 2h) · · · P∗xy(t + mh)

]
where P

∗

xy(t) is the predicted cartesian position of the mobile
robot using the optimal solution U∗(t) with P∗xy (t + ih) ∈
ZT ⊂ R2, i = 1, · · · ,m.
We must ensure the feasibility of the solution in the next

step, that is, at time t + h [36], [37]. Hence, the next solution
to the optimization problem must be feasible (not necessarily
optimal). The solution at time t + h is

Ũ (t + h)

=
[
u ∗ (t + h) · · · u ∗ (t + (m− 1)h) uF (t + mh)

]T
,

P̃xy (t + h)

=
[
P∗xy(t + h) P∗xy(t + 2h) · · · P∗xy(t + mh+ h)

]T
.

Therefore, the necessary and sufficient conditions for the
predictions generated by tilde Ũ (t + h) and P̃xy (t + h) to be
feasible at time t + h, whenever the solution of the optimiza-
tion problem at time t is feasible, are
i. Pmin ≤ P∗xy (t + mh+ h) ≤ Pmax or P∗xy(t + mh+
h) ∈ Z.

ii. umin ≤ uF (t + mh) ≤ umaxoruF (t + mh) ∈ ∪,
For the solution given by (i), it is assumed that the

predicted tracking error at time t + mh is feasible, then
there exists a feasible subset of E, named 3F such that

e∗ (t + mh) ∈ 3F ⊆E. Hence, using the Lemma, the tracking
error at the next time is also feasible e∗ (t + mh+ h) ∈
3F ⊆ E. Thus, the optimal solution will drive the state error
from the setE to the terminal set3F . To constraint the control
signal within its limits (ii) when the tracking error lies inside
the terminal region 3F , the following inequality should be
satisfied

|uF (τ )| ≤
1
h

∥∥∥∥(G (θ)TP G (θ))−1G (θ)TP∥∥∥∥ |e (τ )| ≤u,
using assumption 6, the inequality becomes

|e (τ )| ≤
hu

λmax
(
9 9T ) 12 , (16)

where 9 =
(
G (θ)TP G (θ)

)−1
G (θ)TP, u = Max

(umax , |umin|).
Hence, condition (16) is satisfied if the terminal region is

selected to be.

3F =

{
e (τ )∈ E⊂ R3 /VF (e) ≤ α, sucht hat α

=
λmax(P)h2u2

λmax
(
99T

)1/2
}
.

Consequently, feasibility can be achieved provided that the
control problem admits a feasible solution at the initial time t ,
in order to maintain the feasibility of all solutions. It is well
known that feasibility at one time instant leads to a feasible
solution at the next instant, and the value of the cost function
decreases [36], [37].
Theorem 2: Suppose that assumptions 1-3 hold, and

matrix P is chosen such that inequality (15) holds. Starting
from a feasible initial position Z (t)∈ Z and a feasible control
prediction sequence U (t) ∈ fT , then the solution U∗(t) of
the quadratic problem (12) steers any initial tracking error
fromE to3F . Furthermore, the terminal control signal uF (τ )
steers the tracking error to the equilibrium point e∗ when
τ ≥ (t + T + h).
Proof: Assume that the initial control sequence U (t)

and the initial state are feasible at time t . Using the con-
strained QP problem (12), the optimal solution U∗(t) is
feasible. From Theorem 1, the control Lyapunov function
is a decreasing function. Then, the polyhedron set ZT is
a positively invariant set and the tracking error converges
to the terminal region within the interval [t, t + T ]. For
τ ≥ (t + T + h), the terminal controller uF (τ )steers the
tracking error to the equilibrium point e∗. Thus, the equi-
librium point of the closed-loop system is asymptotically
stable.

According to the feasibility or unfeasibility of the reference
trajectory Zref (τ ), there are two cases:

1) CASE 1: Zref (τ ) ∈ Z (FEASIBLE TRAJECTORY)
In this case, the terminal region is an attractive region with an
equilibrium point at the origin. Indeed, the solution provided
by the QP algorithm (12) is feasible, because Z(τ ) ∈ Z and
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Zref (τ )∈ Z, the equilibrium point is e∗ = lim
τ→∞

Z (τ ) −
Zref (τ ) = 0. The dynamic of the tracking error inside the
terminal region is given by

è (τ ) = −
1
h
H e (τ ) for τ ≥ t + mh

H⇒ e (τ ) = e (t + mh) e−
1
hHτ ,

where H =
(
G (θ)TPG (θ)

)−1
G (θ)TP. Hence, we have

lim
τ→∞

e (τ ) = e (t + mh) e−
1
hHτ = e∗→ 0

2) CASE 2: Zref (τ )6∈ Z (UNFEASIBLE TRAJECTORY)
In this case, Z(τ ) ∈ Z and Zref (τ ) 6∈Z, the equilibrium point
is e∗ = Z (t + T )− Zref (t + T ) = Zs− Zref = es 6=0, where
Zs is the value of Z (t) on the border of the feasible set Z.
Thus, the solution converges to an equilibrium point defined
by es 6=0.
In conclusion, the solution to the convex optimization

problem (12) asymptotically steers the tracking error to the
equilibrium point e∗ defined by

e∗ =

{
0 if Zref (τ ) ∈ Z
es if Zref (τ ) 6∈ Z.

V. SIMULATION AND EXPERIMENTAL RESULTS
This section illustrates the effectiveness of the proposed con-
trol algorithm, given by QP (12), through simulation using
MATLAB software (2021b) and a real-time implementation
using the Khepera III platform [39]. This section addresses
the different performances achieved by the proposed algo-
rithm in terms of the:

1- Achieved control performances (tracking performance
and feasibility of the solution).

2- Processing time comparison.
3- Real-time implementation of the approximated NMPC.

For the simulation part, the control parameters Q, R, and h
were tuned to determine the optimal values that achieved
reasonable tracking performance. It is noticed that the step
time h is a key parameter that should be chosen carefully to
validate the Euler approximation used in this work. There-
fore, many simulations have been performed to determine
the adequate control parameters that achieve an admissible
tracking performance.

A. CONTROL PERFORMANCE RESULTS
For this part, we have stated two different scenarios [19]:

I. Tracking an eight trajectory. In this case, the constraints
on the y-axis and control signals are included in the
optimization problem.

II. Tracking a circular trajectory in which the admissible
region is a square-shaped space. In this case, both state
and input constraints are included in the optimization
problem.

For simplicity, we assume that the matrices Q and R are
diagonals. After tuning the control parameters, the numerical
values are selected as follows:

h = 0.1s; Q =

 104 0 0
0 104 0
0 0 1

 ;
Ts = 0.01s; P = 2 Q; d = 0.2; T = 0.4s; m = 4;

R =
[
10−4 0
0 10−2

]
.

With these control parameters, condition (15) is satisfied.

1) FIRST SCENARIO
The eight-shaped desired trajectory defined by{

xref (t) = xc + R1sin (ω1 t)

yref (t) = yc + R2sin (ω2 t) ,
t ∈

[
0, tf

]
;

where (xc = 3, yc = 3) represents the center of the eight-
shaped trajectory. The reference trajectory of the orientation
angle is deduced from

θref (t) = tan−1
(
˙yref
˙xref

)
, t ∈ [0, tf ]

Trajectory parameters are

R1 = R2 = 2m; ωr = 0.05 rad/s; ω1 = ωr ;

ω2 = 2ωr ; tf = 42πs.

Because of the bounded velocity of each wheel, constraints
on the control signals should be included in the optimization
problem. In this simulation, the same bounds provided by the
authors in [2] were used.

�={0 ≤ v(t) ≤ 0.3 m/s;−0.5 rad/s ≤ ω(t) ≤ 0.5 rad/s} .

The constrained space is delimited over the y-axis, where
FR = {y(t) ∈ R; 1.5m ≤ y(t) ≤ 4.5 m, t ∈ [t, t + T ]} .
Figure 3 shows the good tracking performance achieved by

the proposed controller. In this scenario, the mobile robot is
represented by a black triangle and the moving target using
a green ball. It can be observed that the desired eight-shaped
trajectory was precisely tracked inside the constrained space.
The applied control signals, which are within the saturation
limits, are shown in Figure 4 for t ∈ [0, 75s]. Small oscilla-
tions in the steering angle were observed during start-up.

2) SECOND SCENARIO
In this case, the WMR must follow a circular trajectory gen-
erated by the planner. The circle-shaped trajectory is defined
as follows 

xref (t) = xc + Rosin (ωot)
yref (t) = yc − Rocos (ωot)
θref (t) = ωot

where Ro = 2m; ωo = 0.05 rad
s .

The mobile robot must navigate inside the restrained
region; therefore, it is necessary to determine the control
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FIGURE 3. Tracking performance for the first scenario.

FIGURE 4. The time variation of the applied control signals.

vector U (t) to track the desired trajectory only inside the
free space. Thus, the following constraints are included in the
optimization problem

FR =
{
Pxy(t) ∈ R2

; 1.2m ≤ x(t) ≤ 4.8 m

× and 1.5 m ≤ y(t) ≤ 4.5m , t ∈ [t, t + 0.4s]
}
.

The initial position of the WMR is
[
2m 4m 0m

]T and the
desired trajectory starts at

[
xref (0) = 3m yref (0) = 1m

]T .
The tracking performance of the WMR under the control

algorithm (12) is shown in Figure 5. It was observed that when
the desired trajectory was inside the feasible region, the robot
followed it precisely. However, when the reference trajectory
was outside the desired region (unfeasible), the mobile robot
navigated close to the border of the admissible region.

Figure 6 illustrates the applied control signals. Therefore,
the linear speed and steering angle are within the saturation
limits. Here, oscillations were also observed at the beginning
of the movement. Figure 7 shows that the tracking error
converges to zero when the reference trajectory is inside the
desired region and is different from zero when it is outside
the desired region.

Furthermore, to show the effect of the feasibility of
the desired trajectory, Figures 8 and 9 show the track-
ing performance for two different cases: the desired trajec-
tory is feasible and completely inside the restricted region
(R = 1m). In the second case, the desired trajectory is unfea-
sible and completely outside the restricted region (R = 3m),

FIGURE 5. Tracking performance for the second scenario.

FIGURE 6. Optimal control signals.

FIGURE 7. Tracking performances in Cartesian coordinates.

but the state constraints are satisfied. Figure 8 shows that
the equilibrium point is the origin, and the tracking error is
zero (e∗ = 0), whereas in Figure 9, the equilibrium point is
different from zero (e∗ 6=0).

B. EXECUTION TIME COMPARISON
The proposed NMPC formulation based on the approxima-
tion of NMPC (ANMPC) was compared with the processing
time of the NLP formulation (4) and the algorithm that uses
the CasADI tool to accelerate the operation of NMPC [40].
The NLP problem, termed by NMPC in this comparison part,
is solved using MATLAB ‘‘fmincon’’ solver with SQP.
To perform a valid comparison, we used three algorithms

with the same sampling time, prediction horizon, and control
parameters. Furthermore, the regulation for the same target
in free space was conducted for t ∈ [0, 2s]. During the
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FIGURE 8. The desired trajectory is inside the restricted region.

FIGURE 9. The desired trajectory is outside the restricted region.

FIGURE 10. Computation time analysis of the three algorithms.

simulation, we noticed that the initial guess of the algorithm
affected the processing time in the first steps of the simula-
tion. To this end, a Monte Carlo simulation was utilized in
these simulations with ten different runs. The initial vector
estimate was sampled from the normal distribution N(0, 1).

The simulation results are shown in Figure 10. As clearly
shown the proposed algorithm (ANMPC) achieves a better
processing time (2.9 ms) per iteration.

Table 1 summarizes the mean and standard deviation of the
processing time per iteration for the three algorithms. This
comparison demonstrates that the ANMPC-based approach

TABLE 1. The mean and standard deviation of the execution time per
iteration.

FIGURE 11. Khepera III mobile robot.

is an attractive alternative for efficiently solving the NMPC
problem.

C. EXPERIMENTAL RESULTS
In the second part, we consider the real-time implementa-
tion of the proposed algorithm on a real mobile robot plat-
form. The experiment was conducted using the TOSHIBA
laptop with Intel Core i7 processors. The platform was the
mobile robot Khepera III (Figure 11), which is a differential
drive mobile robot [39]. The Khepera platform is an auto-
mated differential-drive guided mobile robot designed and
equipped for performing autonomous tasks. It is equipped
with infrared, and ultrasonic sensors for navigation, and
encoders for localization. The distance between the left and
right wheels is equal to L = 88.4mm. The diameter of the
wheels is 41mm. The connection between the platform and
the laptop was established using Bluetooth communication
technology. The MATLAB software was also used to imple-
ment the proposed algorithm because MATLAB functions
support communication with devices via Bluetooth.

A scenario of tracking a circular trajectory in constrained
space was adopted in this experiment. The reference trajec-
tory was the same as that used in the simulation, with the
following parameters:

xc = 0; yc = 0; Ro = 650 mm, ωo = 2 ∗ pi/35;

t ∈ [0s , 146s] .

Constraints on control signals are:

vmax=300
mm
s
; vmin=0; ωmax=5

rad
s
; ωmin=−5

rad
s
.

Space constraints are formulated as follows:

FR =
{
Pxy(t) ∈ R2

; − 580 mm ≤ x(t)
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FIGURE 12. Trajectory tracking performance in the constrained square.

≤ 580 mm and − 580 mm ≤ y(t)

≤ 580 mm, t ∈ [0s , 146s]
}

Because of the presence of noisy measurements, and the inac-
curacies that arise from residual errors (quantization of the
velocity controls), the constrained space used by the control
algorithm is diminished with regard to the real constrained
region (hard constraints). Consequently, to increase safety,
the soft constraints used in the algorithm are as follows:

FsR =
{
Pxy(t) ∈ R2

;−550 mm ≤ x(t) ≤ 550 mm

× and − 550 mm≤y(t)≤550 mm, t ∈ [0s , 146s]
}

where FsR⊂ Fr .

The robot starts from the feasible region, which is given
by the position:

[
x(0) y(0) θ (0)

]
=

[
0 0 0

]T and the
desired trajectory (also feasible) starts at

[
xref (0) = 650 mm

yref (0) = 0mm θref (0) = 0o
]T . The numerical values of the

control parameters for this experiment are as follows:

Q = 103I3; R = 10−3I2; h = 0.1s;

d = 80 mm; m = 4; T = 0.4s

Figures 12-14 show the experimental results obtained by
solving the constrained quadratic optimization problem given
by (12).

Figure 12 shows the desired trajectory (circle), restricted
space region (square), and the trajectory of the mobile robot.
The tracking of the reference trajectory inside the restricted
space is accurate and when the desired trajectory is outside
the restricted space, the mobile robot remains close to the
border of the square.

Figure 13 shows the solution obtained from the constrained
optimization problem. The control signals, linear velocity,
and steering velocity were within the saturation limits.

The command signals sent to the WMR are the velocities
of the right and left wheels(vR, vL), which are deduced from

FIGURE 13. Linear velocity and angular velocity.

FIGURE 14. The current evolution of the WMR along x-y axes.

the following equation

[
v(t)
ω(t)

]
=


1
2
(vR(t)+ vL(t))

1
L
(vR(t)− vL(t))

⇒ [
vR(t)
vL(t)

]
= T

[
v(t)
ω(t)

]
,

Figure 14 illustrates the Cartesian positions of the mobile
robot along the x-axis and y-axis. It is clear that the mobile
robot navigates practically inside the restricted region and
that the constrained optimization problem has forced the
mobile robot to move inside the tolerated space, which is a
square in this case.

Finally, we note that the main drawback of the proposed
control algorithm is finding adequate tuning control param-
eters (h, Q, R, etc.) that satisfy the desired tracking perfor-
mance for different tracking trajectories.

VI. CONCLUSION
In this study, an approximated nonlinear model predictive
control was applied to the autonomous navigation of a
differential-drive mobile robot in a constrained region. Euler
approximation was used to overcome the nonconvex and
nonlinear optimization problem in the control design. The
stability of the closed-loop system is determined using the
Lyapunov method. The autonomous navigation of the mobile
robot in the constrained region was formulated as a quadratic
optimization problem or QP where both physical constraints
(control vector) and space constraints were included in the
design of the controller. Therefore, all the constraints are
explicitly included in the optimization problem. Thus, the
obtained constrained optimization problem is convex with a
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fast update and many numerical solutions exist that can effi-
ciently solve this type of optimization problem. It was proven
that the solution is feasible and that the trajectory tracking
error is bounded and may converge to the origin when the
desired trajectory navigates inside the feasible region.

The proposed method offers many advantages over exist-
ing nonlinear methods, including simplicity, fast computa-
tion, and the ability to include different constraints in the
controller design.

Simulations and experimental results demonstrated the
effectiveness of the proposed control algorithm and good
tracking performance was achieved.

Future work will focus on the application of the pro-
posed approach to three-dimensional vehicles, such as aerial
unmanned vehicles.

APPENDIX
PROOF OF THEOREM 1
Let the initial solution U∗(t) be feasible, and let the equiv-
alent optimal cost function (9) be given in the form of
J (t, e(t),U∗(t), h) at time t . For the next step, we have

J (t + h, e (t + h) , ˜U (t + h), h)− J
(
t, e(t), U∗(t), h

)
where

U∗(t)=
[
u∗(t) u∗(t + h) · · · u∗(t + (m− 1)h)

]T
Ũ (t + h)=

[
u ∗ (t + h) · · · u ∗ (t + (m−1)h) uF (t+mh)

]T
J
(
t + h, e (t + h) , Ũ (t + h), h

)
− J

(
t, e(t), U∗(t), h

)
= −L

(
e(t), u∗(t)

)
+ PT (t,m)

PT (t,m) = L (e (t + mh) , uF (t + mh))+ e (t + h+ mh)T

×Pe (t + mh+ h)− e (t + mh)TPe (t + mh) ,

which can be transformed into the quadratic form using the
terminal controller

PT (t,m) = e(t + mh)T
{
Q− 2Q G

(
GTQG

)−1
GTP

+Q G(GTQG)−1
(
R
h2
+ GTPG

)
(
GTQG

)−1
GTQ

}
e (t + mh)

= e (t + mh)T
∏

e(t + mh)

The following equality is obtained

GT
∏

G = GTQG− GTPG+
R
h2

From the definition (1), the following inequality is obtained

u < 0 ⇐⇒ GTQG− GTPG+
R
h2
< 0,

Consequently, function PT (t,m)is negative. This inequality
can be simplified if we take diagonal matrices as P =
p I3;Q = q I3, and R = r I2, then the previous inequality
becomes:

p > q+
r

h2(d2 + 1)
.

The cost J
(
t + h, e (t + h) , Ũ (t + h), h

)
is feasible and not

necessarily optimal, and we have

J
(
t + h, e (t + h) , U∗(t + h), h

)
< J

(
t + h, e (t + h) , Ũ (t + h) , h

)
Thus, the optical cost (6) is decreasing since

J
(
t + h, e (t + h) , U∗(t + h), h

)
−J

(
t, e(t), U∗(t), h

)
<0

Further, all sublevel sets of the optimal cost are bounded.
Consequently, the optimal cost function is a Lyapunov
function [41].
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