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ABSTRACT Image enhancement methods can be formulated as global transformations, local transfor-
mations, pixel-wise processing, or a mixture of these operations. Global transformations are limited in
enhancing local image regions. Existing local and pixel-wise methods mitigate this issue, but give rise to
the additional challenge of limited interpretability. Bridging the gap between global and local methods,
we propose a local tone mapping network (LTMNet) that learns a grid of tone curves to locally enhance
an image. Tone curves are commonly used by photo-editing software and offer an intuitive representation
to photographers, facilitating subsequent customization of the image. Tone curves are also widely used in
image signal processors (ISPs), making our method easy to deploy on cameras. Because existing datasets
contain image enhancement and photofinishing beyond global and local tone mapping, we also propose
a new dataset representative of local tone mapping—the LTM dataset. We evaluate our method on this
new dataset as well as MIT-Adobe and HDR+ datasets. We show that the proposed LTMNet outperforms
existing methods in local tone mapping while achieving competitive performance modeling additional
photofinishing. Furthermore, we show that our method can be assistive in user-interactive photo-editing
tools. Our code, model, and data will be released publicly at https://github.com/SamsungLabs/ltmnet.

INDEX TERMS Deep learning, image enhancement, local tone mapping, tone curves.

I. INTRODUCTION
Cameras capture valuable moments in our daily life in the
form of photographs. Most cameras use dedicated image
signal processors (ISPs) to process the captured sensor image
into the final output image. ISPs apply several steps in a
pipeline fashion to process images. One of the key operations
is tone mapping. Tone mapping is an essential step in the
photo enhancement stages of ISPs and has a major impact
on the quality of the final image by enhancing the contrast
and color tones of the image.

A tone map converts an input pixel intensity to a new
output intensity. Generally, the same or different tone maps
are applied to the R, G, and B channels of a color image. This
operation is efficient to perform in hardware using a lookup
table (LUT). Tone maps are often called by other names:
for example, tone curve, transfer function, and 1D LUT.
Tone mapping is widely used in dynamic range compression
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(e.g., [3], [4], [5]), reducing a high dynamic range (HDR)
image to a lower dynamic range (LDR) while preserving
an aesthetically pleasing appearance. In this paper, how-
ever, we place our focus on transformations within the same
dynamic range, rather than HDR to LDR. Tone mapping
can be applied in two manners, global and local. Global
tone mapping (GTM) maps each pixel value to another value
regardless of pixel location. For a typical real-world ISP,
GTM alone is rarely sufficient to adequately enhance an
image. In particular, GTM lacks flexibility and produces
over/under-enhanced local regions, as shown in Fig. 1-(B).
Local tone mapping (LTM), on the other hand, spatially
adjusts image regions using different tone curves based on
local characteristics. LTM offers more fine-grained control
and helps bring out highlights. As shown in Fig. 1-(D), our
LTM method provides transformations tailored to a local
region—for example, increasing the visibility of regions
of dense content (the bushes), and increasing contrast
of the shadow regions to provide more vibrant imagery
effects.
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FIGURE 1. An example comparing our method to two state-of-the-art
enhancement methods. (A) Input image. (B) CSRNet [1] uses a multi-layer
perceptron as a global transfer function. (C) CURL [2] uses pixel-wise
processing and global transfer functions. (D) Our LTMNet uses local tone
curves that produce better local contrast than CSRNet (see the more
visible bushes on the left of the image), while avoiding color shifts
produced by CURL (see the sky region). Green and gray arrows point to
areas of notable differences.

Many existing methods either perform GTM only
(e.g., [1], [6]), or perform pixel-wise enhancements
(e.g., [2], [7]), which output an enhanced image rather than
transfer functions. Little work focuses on explicitly learning
local tone curves, which can be efficiently integrated into
existing ISPs as 1D LUTs, making them more convenient
than pixel-wise processing and more powerful than GTM.

Contribution We propose a deep-learning approach to
local image enhancement that estimates local tone curves.
Unlike existing methods, our approach is trained to output
a grid of local tone curves instead of pixel-wise processing.
Tone curves are more intuitive for post-processing editing
and implementation in hardware. Because tone curves can
be applied to images of any size, our method is not limited
to a specific resolution. We also introduce a new image
dataset representative of local tone mapping, consisting of
tone-mapped and non-tone-mapped image pairs. In addition,
we provide a tool for interactive LTM manipulation that
can be used to manually fine-tune the tone curves predicted
automatically by our method.

II. RELATED WORK
There is a large body of work on image enhancement; only
representative works are presented here. We divide these
methods into three main categories based on the way they
process the image: (1) methods that apply global transfer
functions or LUTs to the whole image; (2) methods that apply
local enhancement to local image regions; (3) methods that
apply pixel-level mapping from input to enhanced image.
Some methods may combine two or more of global, local,
and pixel-wise processing.

A. GLOBAL ENHANCEMENT
Traditional image enhancement methods apply pre-defined
global transfer functions, such as gamma correction, or a
transfer function estimated from the intensity distribution,
such as histogram equalization [8] and its extensions:
contrast-limited histogram equalization (CLHE) [9] and his-
togram modification framework (HMF) [10].

Recent methods use neural networks to predict global
transformations. For example, the method in [11] proposes a
neural network to implement CLHE and HMF. SpliNet [12]
performs personalized enhancements using a learned global
tone curve. The method in [6] learns a 3D lookup table
to achieve fast and robust enhancement. White Box [13]
selects the best sequence of global enhancement operations
from a pre-defined set based on deep reinforcement learn-
ing (RL) guided by generative adversarial networks (GANs).
Distort-and-recover [14] also uses RL to explicitly model
the step-wise nature of the human retouching process. Simi-
larly, [15] uses RL and unpaired images.

As mentioned in the introduction, global transformations
can under- or over-enhance local image content, thus leading
to the need for local enhancement methods.

B. LOCAL ENHANCEMENT
Many methods extend histogram equalization techniques
to be locally adaptive [16]–[19]. One prominent example
is adaptive histogram equalization (AHE) [20], [21] which
involves equalizing a set of histograms computed from local
image regions, typically a grid of patches. One further
extension is contrast-limited AHE (CLAHE) [9], where the
contrast amplification is limited by clipping the computed
histograms. CLAHE is an industry standard adopted by many
camera ISPs and typically used as a local tone mapping
operator; however, it requires careful parameter tuning.

Some methods perform color transformations for local
image enhancement. Color palette-based methods [22], [23]
interpolate colors based on a sparse set of colors in the palette.
However, updating the palette requires user interaction or
example images. Representative color transform (RCT) [24]
learns and transforms a set of representative colors in the
image, globally and locally. HDRNet [25] learns a bilateral
grid [26] of 3 × 4 affine transformation matrices from a
down-sampled image. Each matrix maps an input color to
an output color. These affine coefficients are then applied
to the full-resolution input image through bilateral guided
upsampling [27]. HDRNet is expressive at modeling com-
plex transformations. However, the matrices are difficult to
visualize and interpret. In contrast, our method learns a grid
of 1D curves, which are intuitive to photographers, easy to
interpret and edit. StarEnhancer [28] also learns a set of
curves that transform an image based on both intensity values
and pixel location. The curves can be manually fine-tuned,
but it is difficult to pinpoint adjustments to a specific spatial
coordinate. Our method, in comparison, explicitly maps each
curve to a local region.
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FIGURE 2. Overview of our local image enhancement pipeline. We first learn a grid of tone curves using a neural network. Each predicted tone curve
corresponds to one patch of the input image. The predicted tone curves are then applied to each patch with tile-based interpolation.

C. PIXEL-WISE ENHANCEMENT
Traditional pixel-wise methods perform base-detail layer
decomposition to enhance an image’s high-frequency details.
These methods include bilateral filtering [29], Laplacian
operators [30], guided filtering [31], and just-noticeable-
difference (JND) transform [32]. Numerous recent meth-
ods use convolutional neural networks (CNNs), especially
encoder-decoder architectures [33]. The method in [34] maps
input images to enhanced images using per-pixel quadratic
color transforms. Work by [35] maps low-quality smartphone
images to corresponding DSLR high-quality images. Some
methods employ GANs, such as WESPE [36] and deep
photo enhancer (DPE) [37]. EnhanceGAN [38] applies weak
supervision using binary labels of image aesthetic quality to
estimate piece-wise transfer functions on the CIELab color
space. PieNet [39] incorporates user preferences by inject-
ing a preference vector into its base network. CSRNet [1]
processes pixels independently using a multi-layer percep-
tron (MLP) modulated by a global feature vector extracted
from a condition network. Neural curve layers (CURL) [2]
predicts a sequence of global transfer functions applied in
different color spaces while using a backbone CNN for local
enhancement. Both [7] and [40] learn global tone curves and
a pixel-wise residual map for local enhancement. IceNet [41]
personalizes local contrast enhancement by predicting per-
pixel gamma-correction values based on a global brightness
parameter and a scribble map, both interactively provided by
the user. Our method combines automatic image enhance-
ment with the option of manual post-editing to minimize user
efforts while allowing interactivity.

Pixel-wise methods are less explainable as it is difficult to
identify what operations are performed on the input image,
whereas our method explicitly specifies the transformations.

D. OTHER METHODS
Another set of methods addresses underexposure enhance-
ment, such as DeepUPE [42], DRHT [43], and [44]. Simi-
larly, other methods focus on low-light image enhancement,

such as [45]–[47]. Zero-reference deep curve estimation
(Zero-DCE) [48] is a pixel-wise curve-based method that
targets low-light images without reference images. Some
methods rely on physical models of image formation
(e.g., the Retinex theory of color vision [49]). Such meth-
ods include exposure correction methods based on separa-
tion of scene reflectance and illumination [50], illumination
estimation [42], [51], and modeling of camera response
functions [52].

As an alternative to CNNs, STAR [53] is a fast and
lightweight backbone network for multiple image enhance-
ment tasks, such as white-balancing, low light image
enhancement, and photofinishing.

Global transformations may not be sufficient to estimate
highly non-linear mapping between low-quality and high-
quality images. Methods based on pixel-wise processing usu-
ally are hard to interpret, fine-tune, or integrate into ISPs
or photo-editing software. Our method is based on learning
local tone curves for local image regions; this makes it more
flexible than global enhancement methods. Also, tone curves
are well understood, interpretable, and widely used in many
camera ISPs and photo-editing software. To the best of our
knowledge, our method is the first to introduce learning local
tone mapping automatically in a data-driven manner instead
of manual tuning.

III. LTMNet
Our method, illustrated in Fig. 2, aims to perform local image
enhancement through learning a grid of local tone maps,
inspired by the well-established CLAHE algorithm [9]. Given
an input image x ∈ RH×W×C , we use a neural network
LTMNet to predict a set of local tone maps (LTMs) T ∈
RM×N×C×L from an input image:

T = LTMNet(x), (1)

where H , W , and C are image height, width, and number of
channels, respectively. M and N are the height and width,
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respectively, of a grid of image patches. L is the number of
intensity levels, typically 256 for 8-bit integer images.

LTMNet layers serve two purposes: feature extraction and
tone curve prediction. For feature extraction, a wide range of
architectures can be used, as long as the receptive fields of the
output neurons composing the tone curves cover the image
patches on which they are applied. A tone curve prediction
head can be stacked on top of the feature extraction layers to
ensure tone curve entries are in the desired shape and range
(i.e., M × N × C × L). For efficiency, we design LTMNet
such that the input image is always resized to a fixed input
size (e.g., 512× 512).

A. LOCAL TONE CURVES
The output of LTMNet, T , represents a set of transfer func-
tions (i.e., tone curves) that are applied to the input image
to adjust its local contrast, brightness, and colors. LTMNet
predicts a number of tone curves or 1D lookup tables (LUTs)
for each image patch in anM×N grid. For a typical standard
RGB (sRGB) image, three 1D LUTs are predicted for each
patch, one for each R, G, and B channel:

T = {tm,n,c} (2)

where m ∈ {0, . . . ,M − 1}, n ∈ {0, . . . ,N − 1}, and c ∈
{0, 1, 2}. Thus,M ×N × 3 tone curves are predicted in total.
Each tone curve is represented by a 1DLUT that has L entries,
t ∈ RL . Each entry maps an input pixel intensity to an output
enhanced intensity.

The application of the predicted local tone curves on the
input image is performed using bilinear interpolation between
each set of local tone curves in order to produce a smooth and
artifact-free locally tone-mapped image ŷ ∈ RH×W×C :

ŷ = Interp(x, T ). (3)

B. LOCAL TONE CURVE INTERPOLATION
A predicted tone curve tm,n is most appropriate for the center
pixel of patch (m, n) in the M × N grid. Intuitively, all
other pixels in the patch are influenced by the tone curves
of neighbouring patches by varying degrees, according to
the distance of the pixel to the neighbouring patch centers.
This way, the tone curve for each pixel smoothly transitions
to another, resulting in a continuous output image free of
boundary artifacts.

Our tone curve interpolation module, Interp, transforms
all non-center pixels by a combination of neighboring tone
curves whose patch centers are closest to it, as shown in
Fig. 3. Pixels in the center region of the image are bilinearly
interpolated, combining the influence of the four neighboring
tone curves.

Specifically, suppose (i1, j1), (i2, j1), (i1, j2), (i2, j2) are the
(x, y) coordinates of the four patch centers closest to location
(i, j) of input image x, in the order of top left, top right,
bottom left, and bottom right respectively. Moreover, suppose
t1, t2, t3, t4 are the predicted tone curves of the four patch
centers in the same order. The interpolated pixel value at (i, j)

is given by Equation 4:

ŷ(i, j) ← (i2 − i)(j2 − j)t1([x(i, j) · (L − 1)])

+(i− i1)(j2 − j)t2([x(i, j) · (L − 1)])

+(i2 − i)(j− j1)t3([x(i, j) · (L − 1)])

+(i− i1)(j− j1)t4([x(i, j) · (L − 1)])

ŷ(i, j) ← ŷ(i, j)/(i2 − i1)(j2 − j1) (4)

where x(i, j) ∈ [0, 1], and [·] indicates rounding to the nearest
integer. L is the number of intensity levels, typically 256 for
8-bit integer images.

Similarly, pixels in the border region are linearly inter-
polated. Take a location (i, j) in the top or bottom border
region as an example; suppose (i1, j1) and (i2, j1) are the (x, y)
coordinates of the two patch centers closest to location (i, j),
in the order from left to right. Moreover, suppose t1 and t2 are
the predicted tone curves of the two patch centers in the same
order. The interpolated pixel value at (i, j) is given by:

ŷ(i, j) ← (i2 − i)t1([x(i, j) · (L − 1)])

+ (i− i1)t2([x(i, j) · (L − 1)])

ŷ(i, j) ← ŷ(i, j)/(i2 − i1) (5)

Finally, pixels in the four corner regions are not interpo-
lated. Suppose t is the predicted tone curve of the patch center
closest to a position (i, j) in one of the corner regions; the
tone-mapped pixel value at (i, j) is given by:

ŷ(i, j) = t([x(i, j) · (L − 1)]) (6)

The input image to both the tone curve prediction network
LTMNet and the interpolation module Interp can take on any
shape because the application of tone curves only transforms
pixel values and is independent of the image’s spatial dimen-
sions. The final output is a continuous locally tone-mapped
image ŷ, with the same resolution as the input image x.

C. TONE CURVE CONSTRAINTS
For each image patch in the M × N grid, its corresponding
lookup table maps each pixel value to some other value
according to the table entries. The entries in the lookup
table are enforced to be non-decreasing to maintain inten-
sity rank consistency. Furthermore, maximum intensity is
kept unchanged in the LUT to preserve information in the
overexposed regions. The tone curve constraints are imple-
mented through integrating and normalizing non-negative
output neurons:

tl =
1∑L−1
i=0 t̂i

l∑
i=0

t̂i, (7)

where t̂ is one output neuron from the last layer of the
neural network, which is followed by a sigmoid activation
to constrain the neurons such that t̂ ∈ [0, 1]. Integration of t̂
enables tl , an entry in tone curve t, to be non-decreasing over
the range l ∈ [0,L − 1].
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FIGURE 3. Illustration of interpolation of tone curves for a 2× 2 grid.
pm, pb, and pc are input pixels located in the center, border, and corner
regions respectively. p̂m, p̂b, and p̂c are output pixels resulting from the
corresponding input pixels being transformed by the tone curves and
interpolated. t1 to t4 are the predicted tone curves (LUTs) of the four
patch centers. tk (pk ) indicates looking up pixel value pk in tk . For center
regions, bilinear interpolation is performed between the four neighbor
tone curves. For border regions, linear interpolation is performed
between the two neighbor tone curves. For corner regions, the corner
tone curve is applied directly.

D. LOSS FUNCTIONS
We use two loss functions to drive model training: L1 and
perceptual loss [54]. L1 loss minimizes the fidelity differ-
ence between the predicted image ŷ and its correspond-
ing ground-truth image y. For perceptual loss, we use the
initial two layers of VGG19 [55] (block1_conv1 and
block2_conv1), which is trained on ImageNet [56] to
minimize squared L2 distance between the features of pre-
dicted and target images. Since the predicted and target
images differ only in terms of low-level features, such as
brightness, contrast, and color, only layers of the initial two
VGG blocks are used for the loss function. Deeper VGG
layers are not used because they primarily encode high-
level information, such as object shape and spatial arrange-
ment [57], which are already identical between our paired
images. Our loss function is

L = λl1‖ŷ− y‖1 + λp
∑
k=1,2

‖φk
(
ŷ
)
− φk

(
y
)
‖
2
2, (8)

where φk indicates VGG19 features from the first convolu-
tional layer in the k th block. We empirically set the L1 loss
weight λl1 to 3.0 and the perceptual loss weight λp to 10−4.

E. NETWORK ARCHITECTURE
The architecture of LTMNet is shown in Fig. 4. The first layer
size is 512×512×4, followed by a sequence of convolutional,
non-linear activation [58], and max pooling layers. Either the
number of layers or the pool size of the last pooling layer can
be adjusted such that the output shape is consistent with the
shape of the tone curves T .

FIGURE 4. Example network architecture of our LTMNet. M = N = 8.
L = 256. The first layer size is 512× 512× 4, followed by a sequence of
convolutional, non-linear activation [58], and max pooling layers. The
number of layers is adjusted such that the output shape is consistent
with the shape of the predicted tone curves T .

FIGURE 5. Illustration of a typical camera pipeline. Our LTM dataset
targets the tone mapping stage only. Input and output image pairs are
extracted immediately before and after tone mapping, respectively.

IV. DATASETS
A. EXISTING DATASETS
Two commonly used datasets in image enhancement are
MIT-Adobe FiveK [59] and HDR+ [60]. MIT-Adobe FiveK
contains 5,000 pairs of input and enhanced images retouched
by five professional experts. However, this dataset involves
mostly global tone mapping among other photo retouching
operations [61].

The HDR+ dataset consists of 3,640 image bursts, which
make up 28,461 images in total. Each burst is processed into
a merged, aligned, and enhanced single output high dynamic
range (HDR) image. This dataset includes strong local tone
mapping and is more suitable for evaluating our method.
However, it also includes other photofinishing operations,
such as sharpening and hue/saturation adjustment.

For evaluation on the HDR+ dataset, we prepare image
pairs as follows. We process the raw-RGBmerged frame into
a gamma-corrected sRGB image using a simulated image
signal processor (ISP) [62] and use it as input.We use the final
photofinished JPEG image as output. We prepared around
2,000 image pairs.

B. OUR LTM DATASET
As illustrated in Fig. 5, in a typical ISP, tone mapping and
other photofinishing operations, such as color manipulation,
are often performed in separate stages. To the best of our
knowledge, there is no image dataset involving local tone
mapping only; existing datasets include global tone map-
ping or local tone mapping mixed with other photofinishing
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FIGURE 6. Example of all 15 versions of an image enhanced by CLAHE [9].
The version with the highest NIMA [63] score is highlighted in red.

operations. To overcome this issue, we used CLAHE [9],
a widely adopted industry standard for local tone mapping in
ISPs, to generate a dataset of image pairs. Each pair consists
of an sRGB image with global gamma correction and the
corresponding locally tone-mapped image using CLAHE.
We used MIT-Adobe FiveK to generate our dataset. A major
limitation of CLAHE is that it requires manual tuning of its
parameters, the grid size and the contrast limit. Instead of
manually tuning these parameters for each image, we perform
a grid search on the parameters for each image and automat-
ically select the parameter values that produce an image with
the highest non-reference image qualitymetric.We use neural
image assessment (NIMA) [63] as the non-reference metric
as it corresponds well with human perception. Specifically,
out of all versions of an enhanced image, NIMA is able to
select one without artifacts. Appendix A provides further
justifications for our choice of NIMA. Fig. 6 showcases
examples of grid-searched images over 15 parameter combi-
nations. Although the images selected by NIMA are mostly
artifact-free, some poor-quality ones may still be selected,
which are then manually removed. In the end, we removed
91 images out of 2,500 (< 4%). These 4% are mostly images
with large homogeneous regions (e.g., sky) that may not
require local processing. Finally, we round down our LTM
dataset to consist of 2,000 image pairs.

C. QUANTIFYING LOCAL TONE MAPPING
To estimate the extent of local tone mapping in each dataset,
we perform the following experiment. We compute the root
mean squared error (RMSE) of the best-fit 4-degree polyno-
mial between the input and output image intensities, averaged
over all images in the dataset. This metric gives an indication
of how much the transformation between an image pair devi-
ates from a single global transfer function, and hence, it also

FIGURE 7. Example best-fit 4-degree polynomial transfer functions
between image pairs from MIT-Adobe FiveK, HDR+, and our LTM
datasets. For display purposes, only the green channel’s transfer function
is shown. The MIT-Adobe dataset barely contains local processing. HDR+
contains significant local processing, including local tone mapping. Our
LTM dataset includes local tone mapping only.

indicates howmuch local processing exists in the images. The
RMSEs for MIT-Adobe, HDR+, and our LTM dataset are
0.0229, 0.0483, and 0.0404, respectively. The results indicate
that the MIT-Adobe dataset does not contain much local
processing, while HDR+ contains significant local process-
ing, including local tone mapping. Our LTM dataset contains
noticeable local processing; but unlike the other datasets,
it is restricted only to local tone mapping. Fig. 7 shows an
example of the fitted transfer functions between example
images from the three datasets.

V. EXPERIMENTS
For the following experiments, we use the LTMNet architec-
ture shown in Fig. 4 that contains six convolutional layers and
produces a 3D grid of 8× 8× 3 tone curves of size 256.

A. EVALUATION ON THE LTM DATASET
We evaluated our method on our LTM dataset as it con-
tains local tone mapping only and to avoid the effect of
other photofinishing operations that exist in other datasets.
We compare our method against state-of-the-art (SOTA)
image enhancement methods: CURL [2], Zero-DCE [48],
HDRNet [25], CSRNet [1], and Pix2Pix [64]. We use the
following metrics: peak signal-to-noise ratio (PSNR), struc-
tural similarity (SSIM) [65], and learned perceptual image
patch similarity (LPIPS) [54]. Table 1 shows the performance
of our method and SOTA methods on the LTM dataset. Our
method outperforms all SOTA methods in all metrics. Fig. 8
shows some visual comparisons. Our LTMNet produces visu-
ally enhanced images with vivid local contrast while avoid-
ing structural and color artifacts. CURL and CSRNet seem
to be limited at enhancing local contrast, while Pix2Pix
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FIGURE 8. Visual comparison of our LTMNet against SOTA methods: CURL [2], HDRNet [25], CSRNet [1], Pix2Pix [64], and Zero-DCE [48], on our LTM
dataset. Our LTMNet produces visually enhanced results while avoiding structural and color artifacts.

and HDRNet are prone to structural or color degradations.
Zero-DCE has a relatively low performance because it uses
non-reference loss functions. Additional results are provided
in Appendix B.

B. EVALUATION ON THE HDR+ DATASET
To verify our method’s capability of modeling generic local
tone mapping effects in addition to the CLAHE algorithm,
we also evaluated our method on HDR+ against SOTAmeth-
ods. The quantitative results are shown in Table 1. Visual
comparisons are shown in Fig. 10. Our LTMNet method
yields comparable results to SOTA. LTMNet does not out-
perform SOTAmethods on the HDR+ dataset because such a
dataset contains more processing beyond local tone mapping,
such as sharpening and hue/saturation adjustments, while our
LTMNet is limited to using local tone curves only. Also, other
methods use pixel-wise processing, which is more expressive
in modeling fine local detail enhancement, such as sharpen-
ing. To see if pixel-wise processing can help our LTMNet

in modeling the additional photofinishing in HDR+ images,
we append a small residual network with 1.6K parameters to
LTMNet, naming this model ‘‘LTMNet + Res.’’ This model
closes the gap with SOTA methods in terms of SSIM and
LPIPS, while boosting PSNR by a large margin. This indi-
cates the effectiveness of pixel-wise processing in modeling
additional photofinishing operations. Additional results are
provided in Appendix B.

C. CHOICE OF GRID SIZE
To select the best size for the tone curve grid, we evaluated
multiple grid sizes on our LTM dataset, as shown in Table 2.
Grid size 8× 8 produces the best results for all metrics.

D. CHOICE OF CONTROL POINTS
We performed experiments with smaller numbers of con-
trol points for the LUTs, as shown in Table 5. Control
points are interpolated with monotone cubic splines. Fewer
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TABLE 1. Quantitative comparison between our method and SOTA
methods on our LTM dataset and HDR+ dataset. ↓ means smaller values
indicate better performance and vice versa.

TABLE 2. Ablation studies for grid size on the LTM dataset.

control points produce less optimal performance but use
fewer parameters.

E. TRAINING AND HYPERPARAMETER SETTINGS
For both experiments on the HDR+ dataset and our LTM
dataset, 1,400 images are used for training, 100 used for vali-
dation, and 500 used for testing. All visual results in the paper
are sampled from the test set. For fairness of comparison, all
SOTA methods are re-trained on the two datasets.

For training our model, we use Adam [66] as the opti-
mizer with a learning rate of 0.001. Models are trained for
150 epochs and 250 epochs for the LTM dataset and HDR+
dataset, respectively, both with a batch size of 20. We aug-
ment the input with random flip to generalize the models for
inputs of different orientations.

F. INTERACTIVE EDITING OF TONE CURVES
In addition to automatic local tone mapping, our method can
be used in an interactive setting and integrated with photo-
editing software. Users can apply our method to produce an
automatically enhanced photo, and then manually enhance a
local region of the image by modifying the local tone curve
corresponding to that region. Fig. 9 shows a use case for
integrating our method with interactive editing of local tone
curves. We also prepared a video to show local tone curve
editing: link.

After producing the locally tone-mapped image using our
method, the user selects a point ŷ(i, j) on the image to modify
the patch containing the point. The tone curve applied at

FIGURE 9. A use case of integrating our method with interactive editing
of local tone curves. (Step 1) the user selects a local region in the locally
tone-mapped image; (Step 2) the user selects a preset tone curve to
enhance that region; (Step 3) we use tile-based interpolation to apply the
selected tone curve on the local region while smoothly propagating its
effect to the surrounding regions.

location (i, j) is a weighted average of tone curves predicted at
its closest patch centers. Suppose (i, j) is located in the center
region; the tone curve applied at (i, j) can be computed as
follows:

t̃ij =
4∑

k=1

wijk tk , (9)

where tk is one of the four component tone curves in Equa-
tion 4. wijk represents the weight given to a component tone
curve at location (i, j) that is inversely proportional to its
distance from point (i, j). For example, wij1 =

(i2−i)(j2−j)
(i2−i1)(j2−j1)

,

which corresponds to the first weight term in Equation 4.
Similarly, the interpolated tone curves at the border regions
can be inferred using Equation 5.

Afterwards, the user defines a target tone curve at loca-
tion (i, j). Step 2 in Fig. 9 presents three possible options:
(1) selecting from a set of preset tone curves, (2) using the
cumulative distribution function of the selected region, and
(3) using a self-defined LUT. The target tone curve t∗ can be
treated as a scaled version of t̃:

t∗ij = s� t̃ij, (10)

where elements of s are the scaling factors transforming each
entry in t̃ to the target tone curve entry. Given a target tone
curve, the scaling factors can be computed by element-wise
division of the target tone curve t∗ by the original tone curve t̃.
Next, tone curves predicted at the closest patch centers—

namely, tk , k ∈ {1, . . . , 4}—are modified so that their inter-
polated result matches exactly with the target tone curve. This
can be achieved by simply multiplying the component tone
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FIGURE 10. Visual comparison of our LTMNet against SOTA methods: CURL [2], HDRNet [25], CSRNet [1], Pix2Pix [64], and Zero-DCE [48], on the
HDR+ [60] dataset. Our LTMNet produces visually enhanced results while avoiding structural and color artifacts.

curves by the same scaling factors, such that:

s� t̃ij ≡
4∑

k=1

wijk (s� tk ) (11)

Finally, the edited image ỹ is obtained by applying
Interp(x, T̃ ) to the tone curve set T̃ that contains edited tone
curves.

VI. EVALUATION ON MIT-ADOBE FiveK DATASET
In Section IV, we have discussed the lack of local processing
in the MIT-Adobe FiveK [59] dataset. We provide additional
evidence by comparing our local tone mapping model with
a global tone mapping model trained on MIT-Adobe FiveK.
Results are shown in Table 3. The local tone mapping (LTM)
model has grid size 8 × 8. The global tone mapping (GTM)
model has grid size 1 × 1. The GTM+LTM model predicts
both an 8 × 8 grid of local tone curves and a global tone

FIGURE 11. A failure example. The image contains an object in need of a
significantly different transformation function from its neighbouring
regions.

curve, with the local tone curves applied after the globally
tone-mapped image. The quantitative results indicate that
performance increases when the model architecture enables
more global tone mapping effects, which suggests that the
MIT-Adobe FiveK dataset is better modeled by global, rather
than local, transformations, and thus is unsuitable for our
local tone mapping task.
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FIGURE 12. Visual comparison of our LTMNet against SOTA methods: CURL [2], HDRNet [25], CSRNet [1], Pix2Pix [64], and Zero-DCE [48], on our LTM
dataset. Our LTMNet produces visually enhanced results while avoiding structural and color artifacts.
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FIGURE 13. Visual comparison of our LTMNet against SOTA methods: CURL [2], HDRNet [25], CSRNet [1], and Pix2Pix [64], on the HDR+ dataset.
Our LTMNet produces visually enhanced results while avoiding structural and color artifacts.
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FIGURE 14. Example of all 15 versions of an image enhanced by CLAHE [9]. CLAHE requires careful parameter tuning and not all parameter
combinations produce high-quality results. We use a non-reference metric, NIMA [63], to automatically select the CLAHE parameters that give the
most visually pleasing version of an enhanced image. The version with the highest NIMA score is highlighted in red. NIMA is able to select images
without halo artifacts.
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TABLE 3. Results for global vs. local tone mapping on the MIT-Adobe
FiveK dataset.

TABLE 4. Quantitative comparison between our method (LTMNet) and
SOTA methods on the MIT-Adobe FiveK dataset.

TABLE 5. Ablation studies for using less control points (CPs) on the
MIT-Adobe FiveK dataset. All experiments are performed with grid
size 8× 8.

Despite being not well suited for our task, for com-
pleteness, we still evaluated on MIT-Adobe FiveK and
the results are shown in Table 4. We used 1,000/100/500
images for training/validation/testing. LTMNet with a
1 × 1 grid (i.e., GTM) outperforms other methods; with
a 8 × 8 grid (i.e., LTM), performance on PSNR is worse
because, as mentioned, MIT-Adobe contains mostly GTM
images. However, there is no significant decrease in percep-
tual metrics (a 0.01 difference in SSIM), which indicates that
a finer grid can still model global operations.

VII. LIMITATIONS AND FUTURE WORK
Our method can experience halo artifacts when the input
image has a foreground object that is transformed by a dras-
tically different function from the background scene. This
is a result of pixels close to the object boundaries receiving
influence from two different transfer functions. As illustrated
in Fig. 11, background pixels close to the flower are inter-
polated by both the tone curves predicted for the gray back-
ground and the tone curves predicted for the yellow flower.
Influence from the flower’s tone curves results in a dark halo.
This is a limitation of CLAHE [9] as well, which uses the
same interpolation scheme. This issue may be addressed by
semantic segmentation, which separates prominent objects
in a scene so that each segment has its own transformation
functions, unaffected by neighboring segments. Furthermore,

we may learn different grid sizes for each segment, so that
homogeneous segments are assigned a smaller grid to reduce
the amount of spatial variation, and textured segments are
assigned a larger grid size to leverage more expressive local
enhancements.

Another potential future direction is to condition our net-
work on tunable parameters to allow both automatic enhance-
ments and manual tuning. Although the output images from
our method can be adjusted by post-editing the predicted
tone curves, our network itself is fully automatic. This poses
challenges if the user would like to make customized adapta-
tions to the neural network based on personal preferences—
for example, tuning a few parameters so that the network
consistently produces different styles for different scene cat-
egories. We would like to investigate strategies that tackle
these challenges in our future work.

VIII. CONCLUSION
We proposed LTMNet, a method for local image enhance-
ment that learns a grid of local tone curves. LTMNet enhances
local image regions more effectively compared with global
transformations and offers higher interpretability than pixel-
wise methods. LTMNet outperforms existing methods in
local tone mapping and achieves competitive results in
modeling additional photofinishing operations. In addition,
we proposed a new dataset representative of local tone map-
ping (LTM dataset) that, unlike existing datasets, represents
only global and local tone mapping. Our method is quite
advantageous in that it can be easily integrated into both
camera ISPs and user-interactive image editing tools.

APPENDIX A NIMA FOR LTM DATASET PREPARATION
We performed a user study to compare NIMA [63] with three
other commonly used non-referencemetrics: BRISQUE [67],
NIQE [68], and PIQE [69].We randomly selected 100 images
from our dataset. For each image, we produced 15 CLAHE
versions and selected the best version using all four metrics
(NIMA, BRISQUE, NIQE, and PIQE). We asked 40 users to
select the image they prefer from the four ‘‘best’’ versions.
The average user preference (i.e., the percentage of time
one image version is preferred over the others) is shown in
Table 6. The results are statistically significant; applying the
ANOVA test, we obtain F3,39 = 10.33 and p < 0.0001.
The results indicate that NIMA aligns with user preference
better than other metrics. The NIMA paper and other works
[70], [71] confirm that NIMA aligns with perceptual qual-
ity well. We have obtained informed consent for the user
study.

TABLE 6. Average user preference over 40 users, 100 images. Results are
statistically significant (ANOVA, F3,39 = 10.33, p < 0.0001).
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Fig. 14 provides more qualitative examples of NIMA’s
selection of the best image version over 15 parameter
combinations.

APPENDIX B ADDITIONAL VISUAL COMPARISONS
Fig. 12 and 13 showcase more qualitative comparisons
between our method and SOTAmethods, on our LTM dataset
and the HDR+ dataset [60] respectively.
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