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ABSTRACT In recent years, there has been an unprecedented growth in computer vision and deep learning
implementation owing to the exponential rise of computation infrastructure. The same was also reflected in
retinal image analysis and successful artificial intelligence models were developed for various retinal disease
diagnoses using a wide variety of visual markers obtained from eye fundus images. This article presents a
comprehensive study of different deep learning strategies employed in recent times for the diagnosis of five
major eye diseases, i.e., Diabetic retinopathy, Glaucoma, age-related macular degeneration, Cataract, and
Retinopathy of prematurity. This article is organized according to the deep learning implementation process
pipeline, where commonly used datasets, evaluation metrics, image pre-processing techniques, and deep
learning backbone models are first illustrated followed by an extensive review of different strategies for
each of the five mentioned retinal diseases is presented. Finally, this article summarizes eight major research
directions available in the field of retinal disease diagnosis and outlines key challenges and future scope for
the present research community.

INDEX TERMS Computer vision, deep learning, fundus image, retinal disease diagnosis, artificial intelli-
gence, diabetic retinopathy, glaucoma, AMD, cataract, ROP.

I. INTRODUCTION
To investigate the human eye, many imaging modalities have
been developed over the years, out of which, ‘Fundus Imag-
ing’ has gained in popularity due to its non-invasive and cost-
effective nature. Fundus photography involves capturing the
projection of the fundus (the rear portion of an eye) onto a
two-dimensional plane using a monocular camera. Several
ocular structures and biomarkers including various abnor-
malities can be identified from a captured 2D fundus image
(Figure 1). Many of these visual markers play an important
role in identifying retinal diseases.

The tiny red dot-like structures, known as Microaneurysms
(MAs), are normally developed due to a lack of oxygen
supply and bulging capillaries. Sometimes, when the supply
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completely shuts down due to certain arteriolar blockages,
white soft patches are formed which are indicated as Soft
Exudates (SEs). Retinal vessels sometimes burst because of
the built-up pressure in arterioles and manifest as dark red
patches, known as Hemorrhages. Hard Exudates (HEs) are
formed when proteins and fat leak from abnormal vessel walls
and appear as hard yellow waxy structures. Examining the
presence of these lesions along with other retinal biomarkers
like an optic disc (OD), optic cup (OC), macular region,
fovea, and blood vessels can provide valuable insights into
some of the major retinal diseases and aid in their diagnosis.

Diabetic retinopathy (DR), Glaucoma, age-related macu-
lar degeneration (AMD), Diabetic macular edema (DME),
retinopathy of prematurity (ROP), and Cataract are some of
the major eye diseases that can cause blindness if not treated
appropriately. The screening process for such retinal diseases
generally requires expert attention and substantial skill [1].
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FIGURE 1. A fundus image with pathologies.

In densely populated countries like India, there is a severe
lack of trained ophthalmologists, who can perform such
time-consuming tasks [2]. Due to recent exponential growth
in digital processors and data-driven technologies, artifi-
cial intelligence (AI) based medical screening systems are
becoming more prevalent and offer feasible and cost-effective
solutions for automatic diagnosis of retinal diseases [3].
In particular, computer vision and deep learning (DL) tech-
niques have shown immense growth and promise in fundus
image analysis.

DL tasks in retinal disease diagnosis mainly fall into two
categories - classification and segmentation tasks. The clas-
sification task refers to a direct classification of input images
into various disease categories. Similarly, identifying impor-
tant biomarkers and crucial lesions through segmentation
tasks from a given fundus image of the patient can reveal
many details about the nature and type of retinal diseases.
Many DL architectures have been developed and tested for
such tasks are well illustrated in [4]. An overall DL frame-
work for retinal disease diagnosis is shown in Figure 2.

The list of abbreviations used in this article are tabluated
in Table 1.

A. FEATURES OF THE PROPOSED REVIEW

The proposed review focuses mainly on providing an in-
depth review of various DL strategies recently implemented
for retinal disease diagnosis using fundus images. This study
also intends to outline possible future directions for new
researchers interested in Al-based retinal disease diagnosis.
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« Moreover, contrary to recently published review arti-
cles on this topic [5]-[9], this article takes a DL pro-
cess pipeline approach to retinal disease diagnosis and
surveys recent articles on a diagnosis of five major
eye diseases, i.e., Diabetic retinopathy, Glaucoma, Age-
related macular degeneration, cataract and Retinopathy
of prematurity.

« It also comprehensively outlines all the datasets avail-
able for the above-mentioned diseases along with their
ground truth descriptions.

o It provides knowledge about widely used image pre-
processing techniques, evaluation metrics, and com-
monly used DL backbone models for retinal disease
diagnosis tasks.

« It also contains an extensive literature study on DL
implementation of five major retinal diseases along with
tabulating their comparative performances.

o It also discusses various research directions currently
available in this field.

The rest of this article is organized as follows.
Section 2 covers datasets and evaluation metrics for reti-
nal disease diagnosis. Commonly used fundus image pre-
processing techniques are illustrated in Section 3. Most
widely used DL strategies along with specific backbone
models for fundus image-based classification tasks and seg-
mentation tasks are outlined in Section 4. Section 5 presents
a literature review along with comparisons of the per-
formance of recent research work on DR, Glaucoma,
AMD, cataract, and ROP diagnoses. Finally, Future research
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FIGURE 2. Overall DL framework for retinal disease diagnosis.

directions and conclusions are presented in Sections 6 and 7,
respectively.

Il. DATASETS AND EVALUATION METRICS FOR

RETINAL DISEASE DIAGNOSIS

Fundus photography is the process of retrieving a
two-dimensional image of the 3D ocular retinal fundus,
using reflected light projected onto an image plane. Table 2
shows an overview of widely used fundus image datasets that
are utilized in DL-based diagnosis for the above-mentioned
retinal diseases. The table lists out datasets, the number
of fundus images it contains, image size, format, and its
ground truth description. Disease diagnosis task utilization
of these datasets is presented through color-coding. For ease
of comprehension and comparative study, all the datasets are
presented in one table.

A. MODEL PERFORMANCE EVALUATION METRICS

Several performance evaluation metrics are used in evalu-
ating the DL model in the retinal disease diagnosis task.
Table 3 lists the most commonly used metrics along with
their description. During the literature review in this paper,
most of these metrics will be used for comparing various DL
architectures. It must be noted that there are slight variances
in the performance evaluation metrics for different retinal
diseases. Metrics like ACC, PR, SE, SP, AUC and F1 are com-
monly used as performance indicators for both classifications
as well as segmentation tasks, whereas additional metrics like
IoU and DSC are used to indicate segmentation performance
involved in retinal disease diagnosis.

Ill. PRE-PROCESSING TECHNIQUES
To improve the training process and build robust prediction
models, fundus images are generally pre-processed before
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the training phase. This is done to compensate for the noise-
induced due to the variety of image capturing hardware used
in varied illumination settings during the imaging. Consider-
ing the complexity of the retinal structure, many important
biomarkers and lesions may not be identified due to the
poor quality of the images, as shown in Figure 3. Apart
from removing unwanted noise, pre-processing techniques
are also used to enhance the fundus image features before
DL model implementation. Some of the widely used pre-
processing techniques on color fundus images for retinal
disease diagnosis are presented in Table 4.

IV. DEEP LEARNING CONCEPTS

Deep learning (DL) is a sub-class of artificial intelligence
methods that are based on artificial neural networks (learning
methods inspired by the biological structure of the human
brain). In the DL process, the latent and intrinsic relation of
the input data is learned automatically through mathemat-
ical representations. Contrary to traditional machine learn-
ing (ML) methods, DL can execute with far less human
guidance, as they directly extract useful features from the data
without depending on hand-crafted features. This makes DL
suitable for medical image analysis, where the features can
be learned automatically from complex visual information.
In the following section, we discuss the architectures of some
of the frequently used backbone models, especially for clas-
sification and segmentation tasks in retinal disease diagnosis.

A. BACKBONE MODELS FOR CLASSIFICATION TASK

1) CONVOLUTION NEURAL NETWORKS (CNNs)

One of the most widely used DL architectures for efficient
training through multiple layers is a convolution neural net-
work (CNN) [45]. Figure 4 depicts the general architecture
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TABLE 1. A list of abbreviations.

Abbreviations
2D Two Dimensional
ACC Accuracy
Al Artificial Intelligence
AMD Age Related Macular Degeneration
AREDS Age-Related Eye Disease Studies
AUC Area Under the Curve
BPF Band Pass Filter
CASA Channel and Spatial Attention
CCS Cross-Connection Subnetwork
CDR Cup To Disc Ratio
CE Contrast Enhancement
CFE Combined Feature Extraction
CGSA Chinese Glaucoma Study Alliance
CLAHE o e Equalisation
CNN Convolution Neural Network
DCNN Deep Convolution Neural Network
DL Deep Learning
DM Dice Metric
DME Diabetic macular edema
DSC Depth-Wise Separable Convolution
DSC Dice Similarity Coefficient
FCN Fully convolution Network
FDS Feature Detection Subnetwork
FN False Negative
FP False Positive
FPR False Positive Rate
GANs Generative Adversarial Networks
GLCM Gray Level Co-occurrence Matrix
GMM Gaussian Mixture Model
HEs Hard Exudates
HSI Hue, Saturation, Intensity
ICDRS glet:?;l;;;ﬁ?,lsg;rjcal Diabetic
IoU Intersection Over Union
ISNT Inferior, Superior, Nasal, Temporal
LoG Laplacian Of Gaussian
LSTM Long Short-Term Memory
MAs Microaneurysms

of CNN. Convolution layers, pooling layers, and fully con-
nected layers are three major components of a CNN. The
training process consists of two stages. The first one is known
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TABLE 1. (Continued.) A list of abbreviations.

Abbreviations
MCA Multiple Correspondence Analysis
MCDR Mean Cup-To-Disk Ratio
MDC Multiple Dilated Convolution
ML Machine Learning
MRCEV  Coied Enropy Vartanee
MSA Multi Scale Weight Shared Attention
nAMD Neovascular AMD
oC Optic Cup
OCT Optical Coherent Tomography
OCT-A OCT Angiography
OD Optic Disc
ONH Optic Nerve Head
PCV Polypoidal Choroidal Vasculopathy
PR Precision
RCGA Real-Coded Genetic Algorithm
RCNN Regions With CNN
REFUGE Retinal Fundus Glaucoma Challenge
ResNet Residual Network
RF Random Forest
RGB Red Green Blue
RNFL Retinal Nerve Fiber Layer
RNN Recurrent Neural Network
ROI Region Of Interest
ROP Retinopathy of Prematurity
SE Sensitivity
SEs Soft Exudates
SLIC Simple Linear Iterative Clustering
SP Specificity
SVM Support Vector Machine
TN True Negative
TP True Positive
TPR True Positive Rate
VGG Visual Geometry Group
YOLO You Only Look Once

as a forward stage where the input image is represented
with appropriate weights and biases in each layer, then the
predicted output is used to measure the loss function by
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TABLE 2. Overview of Fundus image Datasets for retinal disease diagnosis. (DL Tasks: .-Vessel segmentation, .—Exudates Detection, .—MA Detection,

individuals

-OD/0C segmentation, .—HE Detection, BM-DR Diagnosis, /""I-Glaucoma Diagnosis, ".-AMD Diagnosis, ' -Cataract Diagnosis, lll-ROP Diagnosis.)
Number of Image Size Image . Disease diagnosis
LEIEHNE NI Images (in pixels) Format (CLST HETD Task Utilization
DRIVE [10] 40 768 x 584 JPEG 33 - Normal, 7 - Mild early DR [ | |
20 - Blood vessel segmentations annotated,
STARE [11] 400 605 x 700 - 10 - Images, Annotated with pathologies, [ |
10 - Images with Artery/Vein Labels
HRF [12] 45 3504 x 2336 15 - Healthy Images, 15 - DR Images, 15 - Glaucomatous Images [ ] |
CHASE_DBI [13] 28 1280 x 960 TIFF Blood Vessel Demarcation |
DIARETDBO [14] 130 1500 x 1152 PNG 110 - DR signs (EXs, SEs, HEs, Mas and neovascularization), H
20 - Normal Images
DIARETDBI [15] 89 1500 x 1152 PNG 84 - Mild NPDR signs (MAs), 5 - Normal Images [ ] |
RC-RGB-MA [16] 250 2595 x 1944 - MA Annotated-Bounding box [ | |
RC-SLO-MA[16] 58 1024 x 1024 - MA Labels [ ] |
ROC (Retinopathy
online Challenge) 100 - - MA centre location Labels ] |
[17]
2544 x 1696,
E-Optha EX [18] 82 1440 x 960, JPEG 47 - Exudates Marked, 35 -Normal Images [ ] |
2048 x 130
2544 x 169, 148 - MAs or small HEs marked,
Lyt AR L] 2l 1440 x 960  JPEC 233 _ Nommal images L
1440 x 960,
MESSIDOR [19] 1200 2240 x 1488, TIFF - [ | |
2304 x 1536
1440 x 960,
MESSIDOR-2 [20] 1748 2240 x 1488, TIFF - [ |
2304 x 1536
CLEOPATRA [21] 298 - EXs, HEs, MAs Marked ] |
Kaggle/ .
EyePACS [22] 9963 - JPEG 5-Stage DR Grading |
. 81- MA, HE, SE, EX, OD area Marked
IDRiD [23] 516 4288 x 2848 JPEG g1 i ME severity Grades EEEN
13673 - DR severity 5 classes,
LDIBI| P22 572 757 - MA, EX, SE, HE Bounding box annotations ENEE
ONHSD [25] 100 640 x 480 96 - images with ONH Marked
Drishiti-GS [26] 101 2896 x 1944 [ |
SINDI [27] 5783 5670 - Normal Images, 113 - Glaucomatous
2124 x 2056,
REFUGE [28] 1200 1634 % 1634
SEED [29] 235 43 - glaucomatic
DrionsDB [30] 110 600 x 400 Images from glaucoma, eye hypertension Patients
168 - Glaucomatous, 482 - healthy images.
ORIGA [31] 630 3072 x 2048 OD and OC Boundaries, CDR Values u
2240 x 1488,
RIGA [32] 750 Py [ |
RIM-ONE [33] 169 ONH 118 - Normal, 40 - Glaucomatous, 11- Ocular hypertension [ |
ACHIKO-K [34] 258 - 144 - Glaucomatous, 114 - Normal
LAG [35] 11760 3456 x 5184 2392 - Glaucoma [ |
SCES [36] 1676 3072 x 2048 46 - Glaucomatous |
AREDS [37] 206500 [ |
iChallange- . .
AMD [38] 1200 924 - From non-AMD patient, 276 - From AMD Patients L] |
Images from
KORA [39] 2840 7 |

57800

VOLUME 10, 2022



B. Goutam et al.: Comprehensive Review of Deep Learning Strategies in Retinal Disease Diagnosis

IEEE Access

TABLE 3. Performance evaluation metrics.

Metric Formula Description

Sensitivity/Recall/TPR SE = ﬁ Ratio of classified true positives to the actual number of true positives in the ground truth.
o _ TN Ratio of classified true negatives to the actual true negatives in the ground truth.

Specificity/FPR SP = orx+rp) False-positive rate (FPR) = (1-SP)

Precession indicates what proportion of positive findings was actually correct.

. _ TP
Precision = (TP+FP) Higher value of PR, indicates better system Performance.
Accuracy ACC = % Accuracy indicates the ratio of correct predictions to the total number of predictions.
F1 -Score Fl— oTP Represents the harmonic mean of recall value and precision.
(2T P+FP+FN) Higher value of F1-score indicates better system Performance. [40]
AUC ) Indicates the Area under the Receiver Operating Characteristic Curve (AUC)

Higher value of AUC indicates better system Performance.

IoU/ Jaccard similarity index

_ TP
IoU = wprrNTrP)

Intersection-over-union (IoU), widely used measure for understanding how
accurate a proposed image segmentation is, compared to a known/ground-truth.

DSC
(Dice Similarity Coefficient/
Dice Metric)

_ 2T P
DSC = (@TP+FP+FN)

The value of a DSC ranges from O to 1,
0 - indicating no spatial overlap between two sets of binary segmentation results,
and 1- indicating complete overlap

(b)

()

FIGURE 3. Examples of fundus images with the poor quality
a) overexposure, b) underexposure, c) obscure, and d) postoperative.

comparing it with ground truth values. In the second stage,
known as the backward stage, gradients of each parameter
are computed based on the loss function. The parameters are
then updated and initialized for the next forward stage. This
is repeated as multiple iterations until the network presents
accurate classification results.

2) VGGNet

Another commonly used backbone network in retinal dis-
ease classification is VGG Network (VGGNet). This was
proposed by Karen Simonyan and Andrew Zisserman in
2014 [46]. Figure 5 shows the architecture of a VGGNet.
VGG stands for Visual Geometry Group, which released
various versions of Convolution network models for various
image classification tasks starting from VGG-16 to VGG-19.
The original intention behind the development of VGG is
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to research how the depth of CNN impacts the accuracy of
image classification. A small 3 x 3 kernel is used in all
layers of the model to increase the depth of the network while
avoiding too many parameters. In VGGNet, the input is set
to a size of 224 x 224 RGB image. A 3 x 3 filter is used
with a fixed convolution step. There are three fully connected
layers which can vary from VGG-11 to VGG-19 depending
on the total number of convolutions plus fully connected
layers. VGG-11 has eight convolution layers followed by
three fully connected layers. On the other hand, VGG-19 has
sixteen convolution layers and three fully connected layers.
In VGGNet, each convolution layer is not followed by a pool-
ing layer; instead, a total of five pooling layers are distributed
throughout the network as shown in Figure 5.

3) ResNet

Residual network (ResNet) [47] consists of a total of
152 layers, which are built by stacking individual residual
blocks shown in Figure 6 (a) and (b). Each of these residual
blocks consists of two convolution layers (3 x 3). Period-
ically, the number of filters is doubled and down sampled
spatially using a stride of 2. This network employs special
skip connections along with batch normalization after each
convolution layer. Skip connections are used to optimize
such deep models as they take activation from one layer and
directly feed it to another layer. This has the effect of train-
ing deep networks without encountering vanishing gradient
problems. To reduce the number of parameters, ResNet has a
fully connected layer that outputs 1000 classes.

B. BACKBONE MODELS FOR SEGMENTATION IN

FUNDUS IMAGES

1) FULLY CONVOLUTION NETWORKS (FCNs)

Long et al. [48] proposed a modified CNN network,
by replacing fully connected layers with upsampling layers
(shown in Figure 7). The extracted feature maps from initial
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TABLE 4. Commonly used pre-processing techniques for fundus image analysis.

Fundus image
Pre-processing technique

Description

Original Image

After Pre-processing

Contrast enhancement
(Histogram equalization)
[41]

To highlight foreground pixels from the background.

Histogram equalization increases the overall (global)
contrast of the image.

Contrast enhancement
(CLAHE)
[42], [43]

Contrast Limited adaptive histogram (CLAHE) is a
widely used technique, especially for fundus images.

Eliminates the problem of over-amplifying in constant
pixel areas of the image.

Enhances minute lesions and markers like
microaneurysms in fundus images.

Colour space
transformation

In DL model implementation for fundus images,
in certain cases, the model performance maybe

improved by utilizing single color from RGB Channels.

The extraction of green channels from the fundus
images is famous as they offer high contrast images
with rich visual information.

Noise Removal
[44]

Many denoising algorithms like Gaussian filters,
median filters, non-local means denoising, etc.
are utilized for removing unwanted noise.

One tradeoff is, denoising can also blur the image
and degrades by removing fine details of the image

A

Cropping and Extracting
Region of Interest (ROI)

Cropping is done to extract the exact region of
interest from the entire fundus image. For example,
to investigate optic disc size, only that portion of
the image is cropped and utilized as ROI in model
training reducing the unwanted learning burden.

Augmentation

Augmentation techniques like image rotation
(shown here), rescaling, flipping, translation, etc.
are employed to balance the image datasets.

This helps in improving model performance
and robustness.

layers are up-sampled to the equivalent size of the input
image. A fully convolution network (FCN) can perform dense
pixel-wise prediction, making it better suited for segmenta-
tion tasks compared to CNN.

57802

2) U-NET

Ronneberger et al. [49] proposed a network shown in
Figure 8, which has symmetrical encoder and decoder struc-
tures along with several skip connections from the encoding
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FIGURE 5. The architecture of VGGNet.

path to the decoding path. The encoder is responsible for
extracting features from input images while the decoder
reconstructs the images for the final output. The skip con-
nections allow the network to make improved predictions by
directly connecting low-level feature maps from encoder to
decoder.

V. DEEP LEARNING IN RETINAL DISEASE DIAGNOSIS

A. DIABETIC RETINOPATHY (DR) DIAGNOSIS

Diabetic retinopathy is one of the most common retinal dis-
eases that can cause blindness, if not treated in time. This
is a complication seen in one-third of diabetes patients [50].
A survey estimates nearly 93 million people worldwide suffer
from DR [51]. Any diabetes patient can develop DR causing
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vascular disruption in the retina. These numbers are expected
to grow higher considering the rapid growth in the number of
diabetes patients worldwide [52]. International Clinical Dia-
betic Retinopathy scale (ICDRS) has classified the severity of
DR into five categories, namely Class O for No DR, Class 1
for mild DR, Class 2 for moderate DR, Class 3 for Severe
DR ad Class 4 for Proliferated DR. Many DL models were
implemented to design a robust model for DR diagnosis using
fundus images. Recent papers that deal with this are discussed
in the following section. The experimental results are listed
in Table 5.

Wang et al. [53] proposed a network that jointly performs
multiple tasks of increasing image resolution, various DR
lesion segmentation, and DR grading. Their method leverages
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FIGURE 6. a) Residual block, and b) architecture of ResNet.

the fact of high-resolution images are suitable for accurate
grading due to appropriate lesion segmentation. For each of
the tasks, they employed CNN-based methods, where a robust
feedback mechanism is established by utilizing task-aware
loss functions. Li et al. [54] used an ensemble approach for
developing a DR diagnosis method that utilizes enhanced
Inception-V4 on a privately collected dataset which is then
generalized using the Messidor-2 dataset. They investigated
the effects of input image size and its number on model
performance. Automatic DR diagnosis presents the difficult
task of handling fundus images that are captured at different
illuminations.

Kaushik et al. [55] proposed to handle these irregularities
using image desaturation techniques in the pre-processing
stage. They stacked three CNNs for their training process,
where optimum weights from these networks are fused for
classifying fundus images for DR diagnosis. Das et al. [56]
proposed a DL method that examines the branching of reti-
nal blood vessels and abnormal vessel growth to identify
DR from fundus images. After the pre-processing stage,
they used the maximal principal curvature technique for
segmenting blood vessels followed by histogram equaliza-
tion and a morphological operation for further refining the
results. A CNN-based classifier was developed to work on
the segmented blood vessels to classify for DR diagnosis.

57804

Alyoubi et al. [8] presented a method consisting of two DL
models working simultaneously. The first one was based on
CNN which classifies the image into five DR categories and
the second one for detecting DR lesions based on YOLOV3.
Finally, both the models were combined to achieve improved
accuracies. Shankar et al. [57] proposed a method where the
input images are first treated for noise removal followed by
histogram-based segmentation to retrieve salient regions for
DR grading. Then a Synergic DL is employed for classifica-
tion that consists of three sub-modules.

Shankar et al. [58] in their model for DR screening uti-
lized Bayesian optimization for hyperparameter tuning of
the DL architecture based on Inception-V4. First, they pre-
processed the given images for contrast enhancement using
the CLAHE algorithm, and then histogram-based segmenta-
tion was performed to generate suitable input images from
which various features were extracted and utilized for DR
classification. For early diagnosis of non-proliferative DR,
Qiao et al. [59] utilized a CNN-based network along with
the use of various pre-processing techniques like LoG, BPF,
Match filters, and curve transform. They also developed a
microaneurysm detection method based on principal com-
ponent analysis. Wang et al. [60], in their work, developed a
DL framework incorporating multiple tasks for DR diagnosis
(Classification into different severity levels) and DR features
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FIGURE 7. Architecture of an FCN.

simultaneously, which can act as supporting information.
It comprises squeeze and excitation (SE) as the backbone for
feature extraction at higher scales and two heads, one for DR
severity classification and another for DR feature detection.
Aratjo et al. [61] proposed a DR grading system that can
support its decision by providing a grade uncertainty parame-
ter. The network consists of convolutional blocks from which
a lesion map is generated that are indicative of the presence
of a lesion. Multiple instance learning along with gaussian
sampling was utilized for computing grade-wise explanation
maps. For detecting referable DR, Sahlsten et al. [62] devel-
oped a DL framework based on the Inception-V3 model,
which had already been trained on the ImageNet dataset.
High-resolution images were used for the training process,
which tends to yield better results with comparatively smaller
training samples. As training of such high-resolution images
may take a lot of time intervals, they also took an ensemble
approach where six DL networks were working with low-
resolution images and performed comparative analysis.
Qummar ef al. [63] used an ensemble approach for
improving DR severity classification in the early stages.
They utilized five DCNN models for extracting salient fea-
tures and generating probabilities that indicate the image’s
adherence to a particular DR class. The ensemble was
achieved by stacking. Nneji ef al. [64] employed two separate
DL models, Inception-V3 and VGG-16 to work on two
individual channels of input fundus image. One channel
is derived from applying CLAHE and another from the
CECED pre-processing technique. Outputs of both the DL
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models were weighted and merged for final DR classification.
Bora et al. [65] developed two types of DL systems based on
Inception-V3 architecture for predicting the growth of DR
in patients with diabetes. The DL systems were categorized
based on the one-field (primary only) or three-field (primary,
temporal and nasal) fundus images that they take as input.
A five-stage DR classification network was proposed by
Majumder and Kehtarnavaz [66], where they implemented a
multitask model with two separate models. One classification
model with cross-entropy loss function and another was a
regression model with a mean square error loss function.
After training both of them separately, the extracted features
were concatenated and utilized by a final perceptron network
for five-stage DR classification.

1) DR DIAGNOSIS USING MICROANEURYSMS (MAs)
Microaneurysms (MAs) are one of the earliest visual indica-
tions of DR and have gained a lot of research interest in the
field of fundus image analysis. The challenges of automatic
detection and segmentation of MAs are their invariance to
other lesions, their low contrast nature in fundus images, and
extremely low pixel count compared to background pixels.
Recent DL models, that handle the problem of MA seg-
mentation/detection are discussed below. The Performance
comparison is presented in Table 6.

Xia et al. [69] proposed a two-stage network, one for effi-
cient feature extraction that employs residual learning from
multiple scales of input images and the second stage for
filtering out the false-positive patches. Liao et al. [70] used
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FIGURE 8. Architecture of U-Net.

an encoder-decoder network for MA detection by utilizing
the difference between skip connection layers. A customized
loss function was used (smooth dice loss) for allowing the
network to concentrate more on hard samples during the
training process. They also modified the standard activation
function to achieve a very precise probability distribution for
MA detection. Zhang et al. [71] developed training and test
samples consisting of green and blue channels of the original
fundus image and two additional samples, one with enhanced
contrast and another with a suppressed background. These
were then used in a feature transfer network for detecting
MAs, where the optimized weights from the previous phase
were carried forward for the next learning phase.

2) DR DIAGNOSIS USING EXUDATES
Another important biomarker for detecting DR is Exudates.
Hence Hard and Soft Exudates (HEs and SEs) segmentation
is another widely researched area in fundus image analysis.
Some of the recent works in this direction are discussed
below. Table 7 shows the experimental results of different
articles on Exudates segmentation.

Huang ef al. [74] in their work regarding hard exudates
detection first used the Simple Linear Iterative Cluster-
ing (SLIC) algorithm to generate superpixels at each
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input image. Then various pixel and superpixel level features
were derived and training patches were produced from each
feature. These patches were applied to a CNN model to
classify them into HE pixels or background pixels. Many DL
detection/segmentation methods focusing on pixel-by-pixel
annotation often lead to a danger of catastrophic interfer-
ence, where the model abruptly forgets the previously learned
attributes while learning new information. He et al. [75] in
their work used incremental learning to avoid this problem,
where the knowledge of the previous model is utilized to
perfect the present model.

Kurilovd et al. [76] presented a method that utilizes
a machine learning technique for filtering input images
before employing them for the DL task. A Support Vec-
tor Machine (SVM) classifier along with a faster R-CNN
network was used for preliminary scanning of input image
patches. Image patches without exudates were discarded
while others were used for the object detection network.
This helped in improving the speed and detection accuracy.
To deal with the segmentation issues due to class imbalance
and vast size variations in HE lesions, Liu ef al. [77] proposed
a double branch network, where the easy task of large HE
segmentation is performed first and then gradually shifted the
attention to the hard task of small HE segmentation. This is
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TABLE 5. DR diagnosis performance comparison.

References  Dataset ACC PR SE SP AUC F1 Kappa
[53] DDR 0.836  0.831 0.83 0.802
[53] EyePACs 0.869  0.871 0.857  0.852
[54] Private 0.923 0.947 0977
[55] EyePACs 0.979 0.977  1.00
[56] DIARETDB1  0.987 0972 0996 0.982
[8] DDR 0.890 0.890 0973  0.970
[57] MESSIDOR 0.992 0.985  0.993
[58] MESSIDOR 0.994 0.988  0.996
[60] Private 0.808
[61] Kaggle DR 0.740
[62] MESSIDOR 0.896 0.974 0.987
[63] Kaggle DR 0.808  0.638 0.867 0.537
[64] MESSIDOR 0.985 0.989 0.98
[64] Kaggle DR 0.98 0.987 0.978
[66] EyePACS 0.82 0.69 0.64 0.66
[67] Kaggle DR 0.925 0.907 0.968
[68] APTOS 0994 0934 0982 0.995

TABLE 6. MA segmentation performance comparison.

Ref.  Dataset Task ACC SE SP F1
[69] E-Optha MA  Segmentation 0.999 0.705 0.999 0.619
[70] E-Optha-MA  Detection 0.781

ROC Detection 0.559

ROC Detection 0.723  0.983
[71] DIARETDB1  Detection 0.964 1.00

e-Optha -MA  Detection 0911  0.993
[72] E-Optha MA Segmentation  0.997  0.67 0.998
(73] DDR 0.105

E-Optha MA Segmentation  0.168

achieved through carefully guiding the training process by a
customized Dice loss.

Choice of color space of an image can also influence
the accuracy of Exudates detection, as was demonstrated by
Khojasteh et al. [78]. They first applied principal component
analysis on three basic color spaces (RGB, LUV, and HSI)
for contrast enhancement, and then a set of training samples
were generated in all the color spaces to train a CNN for
detecting exudates. Through the study, they also proposed
a new color space named PHS space, for accurate detec-
tion. Kou et al. [79] implemented a modified U-Net structure,
consisting of one encoding path and three decoding paths.
They replaced the general convolutional block of a U-Net
with residual blocks for detailed feature extraction during
the learning process. Zong et al. [80] also proposed a few
modifications to the U-Net network for handling the uneven
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distribution of HE in input image patches. The inception
module replaced the basic convolution blocks for deriving
features from various scales. Also, residual connections were
used for generating the output. For loss function, they used
Focal loss, which suitably tackles the data imbalance prob-
lem. Mohan er al. [81] proposed an exudate detection pro-
cess based on altered KAZE features that effectively extracts
feature points. Machine autoencoders with extreme learning
capability were used for exudate localization.

Liu et al. [82] tackled the extreme size variation and class
imbalance problem in the hard exudate (HE) segmentation
task, through a dual branch network. One for large exudates
and another for small exudates. They also utilized a cus-
tom loss function (dual sampling modulated) for the training
process to segment HEs in different sizes. Mohan et al. [83]
demonstrated a unique feature extraction method based on
Hessian Matrix approximation. The model was tested on
multiple datasets including a privately collected dataset.

3) DR DIAGNOSIS USING HEMORRHAGES
Hemorrhages are one of the visual signs of DR, which
develop due to the burst of retinal blood vessels under extreme
pressure build-up inside the vessels. The hemorrhage seg-
mentation task is another direction taken by many researchers
for DR diagnosis. Some of the recent works are discussed
below and the experimental results are presented in Table 8.
Magsood et al. [84] introduced a method for hemorrhage
detection, where initially, edge details of the input image
are enhanced through contrast modification and then passed
onto a second stage that employs a 3D-CNN for segmenta-
tion. A modified VGG-19-CNN is also used to implement
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a transfer learning strategy for extracting features. Finally,
before sending for feature fusion and classification, MRCEV-
based feature selection is performed to mitigate redundan-
cies. Lahmiri [85] combined CNN with a machine learning
technique for detecting and classifying hemorrhage in fundus
images. The task was performed in three stages, beginning
with a CNN for feature extraction, followed by utilizing a
Student 7-test for further filtering and selecting key features.
In the third stage, the selected features were passed through a
support vector machine classifier for segregating images with
hemorrhage from healthy ones.

4) DIAGNOSIS USING RETINAL VESSEL

Retinal blood vessels serve as a prominent biomarker for
indicating the health of the eye. A variety of geometric char-
acteristics like branch lengths, branch angles, vessel diameter
among others can be derived from the retinal vessel map.
These characteristics are used for the diagnosis of diseases
like DR and Glaucoma. Researchers have concentrated on
retinal vessel segmentation and achieved excellent results.
Some of the Recent articles are discussed in the sections
below. Experimental results of several works on vessel seg-
mentation are presented in Table 9.

Yang et al. [86] proposed a method where initially a sepa-
rate module based on U-Net is used for accurate segmentation
of thin and thick vessels, which uses a common encoder
for feature extraction followed by two decoders that use
corresponding ground truth images of thick and thin vessels
independently. Then a fusion module is employed to combine
the two segmentation results from the previous module. Both
U-Net architectures use additional skip connections to
improve the context information during the training. To min-
imize computational time, Boudegga et al. [87] presented a
new architecture, where the first image patches are extracted
after pre-processing and augmentation before the train-
ing. Their method utilizes a U-shaped structure, imple-
mented through lightweight convolution modules (LCMs).
Segmented image patches were then merged in a post-
processing stage to obtain the final results. Another U-Net-
based DL model was presented by Fukutsu et al. [88] for
vessel segmentation along with arteriovenous classification
using probability maps. In addition to the traditional skip
connections between down sampling and up sampling block,
their network has short connections for minimizing gradi-
ent loss. They also implemented a multiple dilated convo-
lution (MDC) block between encoder-decoder for extracting
global features.

In their architecture for vessel segmentation, Atli and
Gedik [89] modified the conventional encoder-decoder net-
work by first performing up-sampling followed by a down-
sampling operation. Their model attempts to continue
the learning process during the progression of sampling
operations.

For reducing computational complexity and improving
model generalization Gegundez-Arias et al. [90] presented
an altered U-Net model which works on image patches
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derived from fundus images and employs a unique loss func-
tion during the training that considers each pixel distance to
the vascular tree structure. It uses probability-based predic-
tion for vessel segmentation. They also decreased the convo-
lution count in each layer along with overall network depth
for minimizing the model parameters. Building on the base
VGG-16 network, Samuel and Veeramalai [91] proposed a
method that can segment retinal blood vessels from both
fundus images as well as from coronary angiograms. This
architecture consists of two feature extraction layers on top of
the base network. Each of these is responsible for localizing
blood vessels, passing important vessel features through the
intermediate layers, and summing up the feature maps from
earlier stages.

To achieve a satisfactory segmentation from relatively
small datasets Chen et al. [92] developed a method that uses
a semi-supervised learning strategy along with U-Net archi-
tecture. Their encoder-decoder structure first uses a relatively
small number of labeled data for training and later updates
the old dataset using a custom-built strategy. Tian et al. [93]
took a multi-path approach for vessel segmentation. The first
path, consisting of convolution sampling blocks, utilizes the
low-frequency image characteristics for deriving global fea-
tures and the second path, composed of a coding and decod-
ing region, concentrates on high-frequency components to
get local feature details. Final segmentation results were
obtained by fusing both information. Wang et al. [94] used an
attention-driven encoder-multi decoder network for the seg-
mentation task. A basic U-Net structure is first implemented
for generating a rough vessel segmentation map, which is
compared with available ground truth to identify hard and
easy segmentation tasks in the image. This information serves
as a basis for two additional decoders which focus on extract-
ing features for hard and easy regions independently. All three
outputs of the decoders are combined and finally fed into a
light U-Net to yield the final results.

Biswas et al. [95] proposed a model that utilizes a dilated
convolution to increase the receptive fields (amount of input
image visible to the innermost network layer) without stack-
ing the convolution layers linearly. This in turn helped in
providing a better context for the segmentation task, with-
out necessarily increasing the computations. Wang et al. [96]
presented their work, where image patches were generated
after the pre-processing stage and fed into an encoder-decoder
structure, but through two separate paths, one for grabbing
more receptive fields and another for storing spatial infor-
mation. A unique Attention mechanism was employed to
improve the original features, and a Fusion module to merge
the features from the two paths. For accurate segmentation of
capillaries of retinal fundus images, Wu et al. [97] demon-
strated a cascaded deep network. The first network generates
retinal vessel maps (probabilistic) based on the input image
patches. The second network connected in series with the
first one uses these maps to produce refined segmentation
results. For avoiding the loss of information caused by the
downsampling of the maps, skip connections were arranged
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TABLE 7. Exudate segmentation performance comparison.

References  Dataset Lesion ACC SE SP AUC Fl1 IoU
[74] IDRiD HE 0981 0.984 0906 0.967
e-Optha EX HE 0975 0.979 0908 0.968
e-Optha EX HE 1.00 0.947
[76] DiaretDB1 HE 0972  0.881
Messidor HE 0.885
77 DDR HE 40.47
IDRiD HE 61.19
[78] DiaretDB1 + e-Optha  Exudates  0.982  0.99 0.96
[79] DDR Exudates  0.93 0.871 0.926 0.961
e-Optha EX Exudates 0.996 0983 0.976
[80] IDRiD HE 0979 0.963 0.971
TABLE 8. Hemorrhage segmentation performance comparison.
References  Dataset Task ACC SE SP AUC
(84] ﬁllélgs?]}){gl;EDsligzﬁDBO DIARETDB1 WEEE - Wb e
[85] STARE Classification  0.991 0991 0.990 0.973

between the two cascaded networks. In their attempt at
reducing mis-segmentations and computational complexities,
Xiugin et al. [98] combined U-Net with a residual learning
scheme. This enabled them to make the network deeper which
is helpful for accurate segmentation, while the inbuilt residual
module handles the network degradation caused due to the
network depth.

It is difficult to segment retinal vessels in the presence
of lesions or to identify microvessels due to low contrast
in fundus images. Dharmawan et al. [99] presented a hybrid
algorithm for segmentation tasks that involves a contracting
path and an expansive path. Their architecture does not use a
fully connected layer and hence reduces a substantial compu-
tational load. A provision for concatenation operation in their
model helps it to train from both local and global features,
yielding better results.

B. GLAUCOMA DIAGNOSIS

Glaucoma is another leading cause of irreversible blindness
around the world [100]. Like so many other retinal diseases,
researchers have concentrated on developing various DL
models to diagnose glaucoma from fundus images. Recent
developments in this direction are discussed in the following
section. Various experimental results for DL-based glaucoma
diagnosis are presented in Table 10.

Xu et al. [101] developed a DL framework for glaucoma
diagnosis, with a relatively small number of training sam-
ples through the extraction of OD, OC, and retinal nerve
fiber layer (RNFL) characteristics. Their framework consists
of a pre-diagnosis classification phase based on a general
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fundus image (global attributes). In the next phase, the
above-mentioned biomarker segmentation is performed and
ISNT and MCDR scores are calculated. The final diagno-
sis was performed by utilizing all the segmentation results.
Shanmugam et al. [102] used the cup to disc ratio (CDR)
for identifying glaucoma in a fundus image. Primarily, their
method concentrates on accurate segmentation of OC and
OD, which was performed by a modified U-Net. Due to
the addition of adaptive convolution in their framework, the
computational burden was reduced as it used fewer filters
than the standard U-Net. The morphometric attributes derived
from the segmentation results were then utilized by a random
forest classifier for the classification of glaucoma images
from the healthy ones. In another work, Wang et al. [103]
employed a transfer learning approach using VGG-16 and
AlexNet for model training and glaucoma classification.
They collected ONH images from various publicly available
datasets and constructed two sets. One set where various
data augmentation techniques like random scaling, cropping,
rotation, and flipping were performed to expand the dataset.
In another set, three-dimensional topography maps of ONH
were constructed from shading information of 2D images
(SHS method). Both sets, when evaluated for Glaucoma
classification, yielded improved performance than regular
CNN classification models. Gheisari et al. [104] utilized fun-
dus image sequence (video) for extracting temporal features
along with spatial features from static images to improve
glaucoma classification accuracy. They implemented a fusion
method that combines CNN with a Recurrent neural network
(RNN). For CNN, two DL models (ResNet-50 and VGG-16)

57809



IEEE Access

B. Goutam et al.: Comprehensive Review of Deep Learning Strategies in Retinal Disease Diagnosis

TABLE 9. Retinal vessel segmentation performance comparison.

Ref.  Dataset ACC SE Sp AUC Fl1
DRIVE 0.957 0.975 0.829

[86] CHASE_DB1 0.9632 0.977 0.799
STARE 0.962 0.987 0.815
STARE 0.981 0.806  0.992

(871 DRIVE 0.981 0.844  0.99

[88] DRIVE 0.97 0.78 0.99
DRIVE 0.968 0.826  0.982

[89] CHASE_DB1 0.967 0.785  0.984
STARE 0.971 0.677  0.994
DRIVE 0.954 0.983

[90] CHASE_DB1 0.966 0.988
STARE 0.975 0.992
DRIVE 0.962 0.982  0.978

L STARE 0.973 0.981  0.99

[92] DRIVE 0.963 0.976
CHASE_DBI1  0.96 0.877 0968  0.957

53] DRIVE 0.958 0.863 0.969 0.956
DRIVE 0.958 0.799 0981 0982 0.829

[94] CHASE_DB1 0.967 0.823 0981 0987 0.819
STARE 0.967 0.818 0.984 0988 0.837

[95] DRIVE 0.956 0.782 0981 0.979

[9%6] CHASE_DB1  0.970 0.842 0983 0982 0.810
DRIVE 0.956 0.807 0.978 0.98 0.825
DRIVE 0.958 0.799 0981 0.983

[97] CHASE 0.968 0.800 0.988  0.989
STARE 0.967 0.796 0986  0.987

[98] DRIVE 0.965 0.831 0.986 0.981
STARE 0.792  0.982 0.816

5] DRIVE 0.831 0.972 0.823

were implemented and tested. LSTM-based RNN was used
as it can select and retain useful information from the image
sequence. A fully connected layer is established at the end of
the fusion module for enhanced glaucoma classification.

To avoid problems like overfitting and the necessity of
large datasets, Nayak et al. [105] have proposed a network
that utilizes a feature optimization technique based on bio-
logical phenomena, known as a real-coded genetic algorithm
(RCGA). Once the improved features are derived through
this technique, various classifiers are utilized for identifying
glaucoma-based images. RCGA algorithm along with SVM
classifier provided the best results. Li et al. [106] proposed a
CNN-ResNet architecture, with 101 layers that utilize a total
of 26,585 images, for testing and training the model. They
avoided the vanishing gradient problem by applying skip
connections between the layers during the training process.
Hemelings et al. [107] developed a CNN-based method that
combines transfer learning with active learning strategies for
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accurate glaucoma diagnosis. They worked with 8433 fundus
images for developing their classifier. After basic image
pre-processing techniques like ROI extraction and data aug-
mentation, a pre-trained ResNet-50 was utilized for transfer
learning, which consists of 182 layers. ‘Uncertainty sam-
pling’ technique was employed as an active learning method
for the classification system. In addition to this, saliency maps
have been generated that support the model decisions.

Juneja et al. [108] proposed a DL model, where, after cer-
tain pre-processing techniques like image cropping, augmen-
tation and denoising, images were sent into a CNN-based
model (76 Layers deep). To compensate for the loss of data,
they used ‘Add layer’ in every block that combines the pre-
vious block output with the next block. Martins et al. [109]
developed a glaucoma diagnosis pipeline that can be executed
offline on mobile devices. They mainly relied on OD and
OC segmentation (U-shaped model) for generating useful
morphological features which are used by a separate clas-
sification network (based on MobileNet-V2 as the back-
bone). All the results along with morphological calculations
are gathered for constructing a diagnosis pipeline that was
integrated with a mobile application. Liu et al. [110] devel-
oped a DL framework for glaucoma detection by utilizing
241032 images collected from the Chinese glaucoma study
alliance (CGSA). Down sampled images are fed into a CNN
architecture (based on ResNet). For accurate generalization,
a unique ‘online DL system’ was developed where experts
confirm the model classification results and then the con-
firmed samples were utilized for retuning the model before
the next prediction.

Bajwa et al. [111] performed glaucoma classification in
two stages. The first stage utilizes ‘Regions with CNN’
(RCNN) for OD extraction and localization. It also includes
a semi-automatic ground truth generation part, that helps
in creating ground truths containing the location of OD for
training the RCNN. The second stage is composed of four
convolution layers and three fully connected layers and uses
the ROI images (generated after OD extraction) for classifi-
cation. Kim et al. [112] proposed a two-task network that uti-
lizes various CNNs for glaucoma classification and ‘Gradient
weighted class activation mapping’ for localizing most sus-
picious glaucomatous regions for a given fundus image. Out
of various CNN variants, the ResNet-152-M model achieved
the most promising results. As an extension, the authors
also developed a web-based application incorporating the
model in the background, which provides decision, diagnostic
confidence score, and suspicious location for a given input
fundus image. Singh et al. [113] conducted a detailed study
on a variety of DL methods for classifying fundus images
into glaucomatous and normal categories. ORIGA, HRF, and
ACRIMA were used as training and validation datasets. This
study indicates Xception models and Inception-ResNet-V?2
which yield better performance compared to others.

Ovreiu et al. [114] proposed a dense network consist-
ing of 201 layers for improving the performance of glau-
coma classification. Each layer of this network gathers
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additional inputs from all previous layers. In another
work, Saravanan et al. [115] demonstrated an autoencoder
architecture for glaucoma detection along with AVP
recognition; they specifically concentrated on reducing
classification errors through multi-modal learning imple-
mentation. Shoukat ef al. [116] compared the performance
of three pre-trained CNN-based models for early glaucoma
detection. The test was conducted on RIM-ONE, G1020,
and REFUGE datasets. Pretrained- EfficientNet-B7 yielded
the highest accuracy on the G1020 dataset. Islam et al. [117]
compared the performances of different DL models like
DenseNet, MobileNet, EfficientNet, and GoogleNet on a
private dataset consisting of 643 fundus images. The best
performance was achieved by EfficientNet-b3 when cropped
OD and OC images were used for training. As an alternative
to automatic glaucoma detection, they also developed a ves-
sel segmentation model using U-Net architecture. For early
detection of glaucoma, Shoukat ez al. [118] utilized G1020
and DRISHTI-GS datasets for their EfficientNet based model
training. Image enhancement through various pre-processing
techniques was carried out in the initial stage to highlight
crucial features in the fundus image.

1) OD/OC SEGMENTATION

Other important retinal biomarkers used for the diagnosis of
glaucoma are Optic Disc (OD) and Optic Cup (OC). The
cup-to-Disc ratio is calculated from vertical cup diameter
and vertical disc diameter. Hence accurate segmentation of
OD/OC has become crucial for glaucoma diagnosis and a
lot of research has been carried out in this direction. Some
of the recent articles on DL-based OD/OC segmentation are
discussed in the following sections along with experimental
results in Table 11.

Wang et al. [124] developed a DL network, based on the
U-Net framework, consisting of two subnetworks, a feature
detection subnetwork (FDS) and a cross-connection subnet-
work (CCS). The first subnetwork is responsible for extract-
ing desired objects and necessary image features, while the
second subnetwork is used for object segmentation. The
presence of two subnetworks introduced several multiscale
features into both the encoding and decoding process by
element-wise subtraction. This in turn made the model more
sensitive to edge information and played a crucial role in
accurately segmenting the Optic Disc. Veena et al. [125] pro-
posed two individual CNN models for OD and OC segmen-
tation. First, they located the optic nerve region using basic
edge detection methods like ‘Sobel’ and ‘watershed algo-
rithm’, and then the image was cropped to the desired region.
The cropped images were fed for the segmentation task into
two separate CNN models composed of 39 layers each. The
increased number of layers in each CNN model contributed
to the extraction of ample image features and also helped
in retaining the image resolution in the output image which
improved the segmentation results. Kumar and Bindu [126]
presented a U-Net-based architecture consisting of three sub-
sections, namely ‘contraction’, ‘bottleneck’, and ‘expansion’.
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The kernel size in the first subsection starting at 16, got
doubled with each block and reached 256, and this helped the
architecture to learn more complicated features from the input
image. The expansion subsection contains the same number
of blocks as the contraction, and every input is combined with
the feature maps of the subsequent contraction layer. This
approach alleviated the problem of gradient vanishing during
the training of the model.

Natarajan et al. [127] developed a lightweight network
for OD segmentation, where they used a gaussian mixture
model (GMM) superpixel segmentation algorithm followed
by a ‘simple linear iterative clustering’ to extract the region
of interest (Rol) from the fundus image. These ROIs are then
fed into a U-Net architecture for the semantic segmentation
of OD; to smoothen the isolated points and coarse edges of
the output, a regularization term is introduced to the loss
function. This helped in improving the model generalization
for the segmentation task. Panda et al. [128] presented their
work on OD and OC segmentation using a model involving
residual learning built on CNN-based architecture. They car-
ried out several image pre-processing techniques like region
of interest (Rol) selection around the OD center, image nor-
malization, and contrast enhancement. This was followed
by random patch (32 x 32 pixels) extraction from both the
pre-processed images and their corresponding ground truths
as inputs for the training process. The unique combination
of convolutional layers with residual blocks, processed on
patch-level data, allowed the model to focus on localized
structure similarities. This process flow helped in improved
OD and OC segmentation, considering the limited availability
of training samples.

Fu et al. [129] demonstrated a fusion method for OD seg-
mentation to improve model performance and avoid the dis-
traction in images caused by bright lesions and illumination
variations. First, two separate U-nets were used for detect-
ing the OD and retinal blood vessels independently. Hough
transform method is employed to fit the blood vessels by
line segments, and then the joint probability is derived by
combining the OD detection of U-net and probability bub-
bles from the intersection points of hough line segments.
This in turn is used for OD center and radius estimation.
Zhao et al. [130] proposed a model to decrease the compu-
tational load by combining transfer learning with U-Net seg-
mentation architecture. First, the segmentation accuracy was
boosted by utilizing attention gate learning as an intermediate
between the encoder and decoder phase of the classical U-Net
architecture. Then the algorithm was implemented with trans-
fer learning, where the weights were initially trained on a
renowned dataset before they learned from the fundus dataset.
The scarcity of sufficient labeled images was tackled using
the above-mentioned transfer of learning. This approach has
shown a significant reduction in network inference time com-
pared to its contemporaries.

Xiang et al. [131] presented their work on OD and OC
segmentation, concentrating on improving the model per-
formance over multiple datasets. This was achieved by

57811



IEEE Access

B. Goutam et al.: Comprehensive Review of Deep Learning Strategies in Retinal Disease Diagnosis

TABLE 10. Glaucoma diagnosis performance comparison.

References  Dataset ACC SE Sp AUC Fl
[101] Private-Tongren 0.961 0939 0.981
Private -Tibet and Ningxia 0956 0941 0.983
DRIONS-DB, HRF,
[103] 0.943 0907 0979 0.991
RIM-ONE, Drishti-GS1
[104] Private 0.940  0.860
[105] Private- Kasturba Medical College, Manipal 0.980 0974 0.988 0.983
[106] Private 0.953  0.96 0.939  0.994
[107] Private 0.980 0.910 0.995
[108] DRISHTI-GS, RIM-ONE 0975 0987 0.962
[109] Origa, Drishti-GS, iChalenge, RiM-ONE, RIGA  0.870  0.85 0.93
[110] CGSA 0.996 0962 0.977
[111] ORIGA, HRF, OCT & CFI 0.717 0.874
[112] Samsung Medical Centre, Seoul. 0.96 0.95 0.99 0.97
[116] G1020 0992 0.98 0.97
[117] Private Dataset — Bangladesh eye hospital 0.965 0.957 0.951
[118] G1020 0.98 0951 0.94
[119] RIM-ONE 0.852 0.848 0.855 0916
[120] ORIGA 0.92
[121] ORIGA 0.88
[35] LAG 0953 0.954 0.952
[122] Private 0.945
[110] Private 0962 0.977 0.996
[123] ORIGA 0957 0949 0947 0978  0.963

introducing a multi-scale weight shared attention (MSA)
module after the encoder phase which enhances the OD/OC
feature extraction process and a depth-wise separable convo-
lution (DCS) module after the decoder phase that accurately
concentrates on the target features. Model performance was
tested for generalization across five fundus datasets, which
achieved improved results compared to other state-of-the-
art architectures. Jin et al. [132] proposed a method for OD
segmentation that involves a DenseNet-based encoder for
feature extraction, for dealing with small datasets. In the
decoder stage, they used various layers of features to drive
the attention process, and combine feature information from
multiple scales for the upsampling process. At the end of
their network, they combined the cross-entropy and the dice
coefficient to generate an improved loss function for opti-
mizing the model during the training. Bengani et al. [133]
handled the problem of the lack of a large labeled dataset by
using a two-tire approach for the OD segmentation task. First,
a convolution autoencoder was trained on a large number
of unlabelled fundus images, implementing semi-supervised
learning. Later transfer learning was applied to the above-
mentioned pre-trained model with OD ground truth images.
Bhatkalkar et al. [134] proposed an encoder-decoder-based
generic regression model for simultaneous segmentation of
the fovea center and OD. For training of the model, central
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coordinates of fovea and OD from ground truth images were
transformed into heatmaps.

Nazir et al. [135] utilized EfficientNetBO as the base
model to develop a network for glaucoma detection using OD
and OC lesions. First, the relevant features were extracted
using the base network, then a unique bidirectional fea-
ture module was employed to fuse the key points multi-
ple times. And finally, glaucoma localization was achieved
along with class prediction. Xiong ef al. [136] proposed
OD segmentation by leveraging Hough transform annota-
tions. They used a Bayesian U-Net based on weak labels
for the segmentation. A probability-based graphical model
was built and implemented on U-Net. The expectation-
maximization method was used for OD estimation and subse-
quent weight assignment. Hervella ef al. [137] demonstrated
a multi-task architecture that simultaneously performs OD
and OC segmentation along with glaucoma classification.
Both image-level and pixel-level labels were utilized in the
training process. The simultaneous classification and seg-
mentation task increased the number of shared parameters.

C. AMD DIAGNOSIS

Age-related macular degeneration (AMD) is one of the lead-
ing causes of blindness among the elderly population [138].
AMD generally affects the macular region of the retina.
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A study shows that by 2020 the number of patients with AMD
has reached approximately 196 million at the global level and
it is expected to reach 288 million by the year 2040 [139].
In the following section, we discuss various DL-based meth-
ods employed for the automatic diagnosis of AMD in recent
times. Various publicly available datasets utilized for AMD
diagnosis are presented in Table 2. Similarly, experimental
results of recent research work on AMD diagnosis are shown
in Table 12.

Chou et al. [140] utilized a stacking technique for com-
bining a fundus image-based DL model with biomarkers
derived from optical coherence tomography (OCT) for dis-
tinguishing neovascular AMD (nAMD) from polypoidal
choroidal vasculopathy (PCV), as they both manifest sim-
ilar image properties. A novel method called Multiple
Correspondence Analysis (MCA) was introduced for convert-
ing OCT biomarkers into continuous principal components.
EfficientNet-B3 was used for the training and validation
of Fundus images. The ensemble stacking strategy yields
the best mixture from the above two paths, for accurate
predictions on new input images. Yan et al. [141] presented
a framework for predicting late AMD progression using a
modified Deep CNN. Apart from fundus images, their model
also considers genotypes for improving accuracy. A total of
31,262 fundus images from the AREDS dataset were used
for the project. Inception-V3 CNN was used as a base model
for the training process. The extracted features were fed to a
fully connected layer for AMD severity classification. This
severity mixed with 52 genetic variants was again fed into
another FC layer for predicting the probability of late AMD
if it exceeded the inquired years.

Xu et al. [142] proposed a dual deep CNN model which
utilizes fundus and OCT image pairs for categorizing AMD
and PCV. Transfer learning was employed by first utilizing
the weights from ResNet-50 onto two individual models that
separately take OCT images and fundus images as inputs.
After refining the weights on new data, they were trans-
ferred to corresponding convolutional blocks. In the end,
an FC layer was established that classified input pairs into
Wet AMD, Dry AMD, PCV, and nAMD. Another work was
proposed, based on drusen segmentation for AMD detec-
tion, by Pham et al. [143] where they tried to tackle the data
imbalance problem, as the number of non-drusen pixels was
very high compared to drusen pixels. Their model consists
of two networks, one an Image level network that uses a
Deeplabv3+- base architecture to generate drusen probability
maps and a patch-level network that works on corresponding
patch images and their probability maps for final prediction.
The Patch level network employs U-Net-based segmenta-
tion. A total of 775 fundus images from Kangbuk Sam-
sung hospital, were used for training. Model performance
was also tested on the STARE dataset. Vaghefi et al. [144]
introduced a multimodal approach for dry AMD diagnosis,
where the DL model utilizes three modalities - fundus images,
optical coherence tomography (OCT), and OCT angiogra-
phy (OCT-A) for improving accuracy. Input samples from
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75 individuals were collected and grouped into three cate-
gories. Inception-ResNet-V2 based CNN was used as a base
model and further modifications were made to facilitate train-
ing on multiple modalities. It was demonstrated that higher
accuracies can be achieved with DL models through the
suitable utilization of images with different modalities.

Peng et al. [145] presented a two-step DL model frame-
work for accurately estimating the risk of late AMD at the
individual level. Initially, a classification network was imple-
mented and trained over 80,000 manually annotated fundus
images, collected from AREDS and AREDS?2 datasets. The
second part of the architecture, known as the survival model,
was responsible for predicting late AMD progression proba-
bility depending on the grading results or on the extracted fea-
tures of the previous section. This stage also avails an option
for including genotype information. Their model achieved
an accuracy of 0.864 when validated with an independent
test dataset. In another work, Heo et al. [146] developed a
CNN-based classification model, that uses VGG-16 as a base
architecture for classifying dry AMD and Neovascular AMD.
In the pre-processing phase, image cropping was performed
(around the macula center) followed by border adjustments.
Feature maps from the final CNN layer were derived and
weights were computed by a class activation map, for gen-
erating a heatmap. Gonzalez-Gonzalo et al. [147] collected
600 fundus images with AMD and DR from three different
medical centers (Europe) and conducted performance val-
idation of the RetCAD-DL model (commercially available
DL system), for combined detection of AMD and DR from
fundus images. The model was additionally assessed with
AREDS and Messidor datasets to establish further validation.
The RetCAD model executes joint detection by first taking
RGB and Contrast-Enhanced (CE) images of the original fun-
dus input image, and then utilizes two ensembles (each with
three CNN) one for DR and one for AMD. These ensembles
generate DR and AMD scores indicating the probability of
referable DR and AMD.

Bridge et al. [148] developed a prognostic model that pre-
dicts the future progression of AMD based on multiple lon-
gitudinal images (whose timepoints are spared unevenly).
In stage one of this particular method, a CNN (Inception-V3)
was used for generating feature vectors from the input image,
in the next stage, the vectors were merged through interval
scaling which compensates for uneven image time points.
Finally, in the third stage, a recurrent unit provides the
probability of AMD progression by employing the sigmoid
activation function. Another DL. method was proposed by
Yoo et al. [149], which utilizes fundus images and OCT to
diagnose AMD. This multimodal approach improved the
diagnostic results compared to results obtained by using any
one imaging modality. VGG-19, which was pre-trained on
the ImageNet dataset was used for feature extraction from
both OCT and fundus images; later a Random Forest (RF)
model was operated on those features for final classification.
Delong test was performed, which implies that the multi-
modal approach significantly boosted model performance.
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TABLE 11. OD/OC segmentation performance comparison.

References  Dataset OD/OC ACC SE SP AUC IOU DSC
[102] DRISHTI-GS OD 0.99 0.865 0.935
[124] MESSIDOR, ORIGA, REFUGE  OD 0.9744 0.9377
[125] DRISHTI-GS OD - 0932 0.987
[125] DRISHTI-GS oC - 0921 0971
[126] DRIONS-DB OD 0.983
[126] RIM-ONE OD 0.979
[126] IDRiD OD 0.976
[127] RIM-ONEV2 OD 0.995 0.994  0.998 0.997
[129] Kaggle OD 0.977
[129] MESSIDOR OD 0.991
[130] DRISHTI-GS OD 0.997 0.948 0.993
[130] DRISHTI-GS oC 0.995 0.876 0.997
[131] DRISHTI-GS OD 0950 0.974
[131] MESSIDOR OD 0.943  0.970
[131] DRISHTI-GS oC 0.834  0.900
[133] DRISHTI-GS OD 0.995  0.953 0.999 0.967
[133] RIM-ONE OD 0.994  0.873 0.998 0.902
[137] REFUGE OD 0.958
[137] DRISHTI-GS OD 0.971
[137] REFUGE oC 0.882
[137] DRISHTI-GS OoC 0.910

Building on their previous work, Chen et al. [150], uti-
lized DeepSeeNet [151] for developing a classification
network that classifies fundus images into AREDS pre-
scribed Nine-step AMD severity scale. The initial stage con-
tains 10 Inception-V3 blocks for feature extraction, second
stage has an average pooling layer followed by a dense and
a dropout layer. The third stage consists of four layers that
run in parallel (multi-task) for detecting four major AMD
characteristics that are later combined to map the image into
a nine-step severity score. The training was performed using
the AREDS dataset and the model was later evaluated on both
AREDS and AREDS?2.

Pham et al. [152] developed a framework for monitoring
AMD disease progression from early-stage images by syn-
thesizing future AMD images. They utilized a GAN network
with two discriminators for producing realistic future fun-
dus images. In another work, Yellapragada et al. [153] pre-
sented a method for training the model without labeled data.
They first used a self-supervised NPID training technique
on fundus images and then tested its performance using a
classifier (supervised) for grading severity levels of AMD.
Wu et al. [154] presented a comparative study on the per-
formance of a model in predicting AMD progression by uti-
lizing automatic OCT imaging biomarkers versus manually
graded color fundus images. Govindaiah et al. [155] showed
the overall performance of late AMD prediction models may
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improve by adding genetic, clinical, and socio-demographic
data while training the model.

D. CATARACT DIAGNOSIS
Cataracts are among the serious retinal diseases, if not iden-
tified and treated in time, and may lead to irreversible vision
loss [156]. A recent study shows that nearly 33.6 million
cases of blindness (45 percent of global blindness) are due to
cataracts [157]. Recently many attempts have been made to
automatically diagnose cataracts from fundus images. Recent
developments in this direction are discussed below along with
a performance comparison (Table 13) of various DL models.
For reducing training parameters and computational
burden while training the model for cataract detection,
Junayed et al. [158], adjusted the activation function and
loss function of their CNN-based architecture. They also
experimented with three different models which use various
numbers of CNN blocks (3, 4, and 5 number of blocks)
and tested them for detection accuracy. The model with
4 blocks presented optimal results without any overfitting.
Imran et al. [159] proposed a cataract classification model
(severe, moderate, mild, normal) by combining CNN with
recurrent neural network (RNN). After the pre-processing
stage, each fundus image from the dataset was subdivided
into 12 patches and each of these patches was processed
through pre-trained CNN models (GoogleNet, AlexNet,
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TABLE 12. AMD diagnosis performance comparison.

References  Dataset Task Base ACC SE SP AUC Fl DI
Architecture Score
[140] Private AMD and PCV differentiation ' oy 0836 0807 0847 0.885
[141] AREDS Late AMD prediction Inception-V3 0.85
[142] Private AMD classification ResNet-50 0.874 0.888 0.956 0.878
Kangbuk Samsung 1y o Seomentation for AMD ~ DESPIOV3+ 699 905 0992 0.517
Hospital U-Net
[143]
STARE Drusen Segmentation for AMD Deegl_‘;\']’;m’ 0975 0317 0992 0322
. . . Inception-
[144] Private Dry AMD diagnosis ResNet-V2 0.998 1.00 0.992
[145] AREDS, AREDS2 Predicting Risk of late AMD - 0.864
[146] Private-Ulsan Classifying nAMD and JAAMD ~ VGG-16 0913 0879 0.944
University Hospital
[147] Private DR-AMD Detection of referable AMD - 0918 0.875 0.949
[148] AREDS Detection of AMD Progression  Inception-V3 0.878 0.887  0.950
[149] Private AMD Diagnosis VGG-19+RF 0905 0910 0.896 0.969
AMD Classification
[150] AREDS (AREDS 9-step score) - 0.614 0.597
[153] AREDS AMD Classification ReSNet-50 0.958

(Advanced AMD 2- Step)

VGGNet, ResNet) for feature extraction. LSTM (bidirec-
tional) based RNN was utilized to process feature vectors for
cataract classification. To deal with noise-affected fundus
images which are common due to image acquisition com-
plexities, Pratap and Kokil [160] employed two independent
DCNNs for a combined feature extraction (CFE) strategy.
Pre-trained AlexNet was modified and used for implement-
ing CFE. Support vector machine (SVM) classifiers (inde-
pendently trained, at different noise levels) were used and
features extracted in an earlier stage were fed into a specific
classifier by considering the noise level in that particular
image. In another work, Imran et al. [161] also combined an
SVM classifier with several DL models for cataract classi-
fication. After pre-processing phase which involves image
resizing, green channel extraction, and image normalization,
the Transfer Learning mechanism was implemented with pre-
trained ResNet, VGGNet, and AlexNet for the feature extrac-
tion stage. Next, the first fully connected layer was replaced
by a pooling layer (global averaging), and individual SVMs
were employed for the final four-level cataract classification.

Hossain et al. [162] proposed architecture, used ResNet-50
as their base module for the cataract detection task. They
collected fundus images from various sources and utilized a
total of 3048 cataract infected images and 2670 non-cataract
images for their research. Zhang and He [163] used the stack-
ing technique for grading cataracts into six different levels.
This was achieved by employing ResNet-18 for extracting
high-level features combined with manual extraction of tex-
ture features using GLCM (Gray level co-occurrence matrix).
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These two feature sets were fed into two separate SVM
Classifiers to learn the base level probabilities of each input
image, followed by a fully connected neural network for
generating the final cataract classification label.

To overcome some of the shortcomings of standard CNN
architectures like overfitting, high computational burden,
and fading gradient problem, Raza et al. [164] utilized trans-
fer learning based on the Inception-V4 variant to classify
cataracts disease fundus images. Similarly, Khan et al. [165]
utilized a pre-trained VGG-19 for binary classification of
cataract and non-cataract images. To emphasize local image
features for the cataract classification task, Xu et al. [166]
proposed an attention network that focuses on global features
as well as local features before final grading.

E. ROP DIAGNOSIS
Retinopathy of prematurity (ROP) is a retinal disease that
mainly affects the fundus vasculature of infants. With neo-
vascularization, the effect of this disease may present severe
consequences like retinal detachment and complete blindness
among children. For timely treatment, it is important to iden-
tify an early symptom called plus disease-causing morpho-
logical changes to retinal blood vessels of preterm infants.
Recent developments in DL implementation for ROP diagno-
sis and their experimental results are presented in Table 14.
Ramachandran et al. [167] introduced a framework for
identifying ROP by detecting plus disease in infant fun-
dus images. In their semi-supervised approach, the network
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TABLE 13. Cataract detection/classification performance comparison.

Base

References  Dataset Task . ACC SE SP AUC F1 PR
Architecture
HRE, FIRE,
[158] ACHIKO-I, Detection CNN 0.991 0.991 0.990  0.990
IDRiD, DRIVE
Private- Tongren 4 Class
[159] Hospital, China  Classification CNN+RNN 0973 0976 0977 0.975
Private- Tongren 4 Class
[161] Wil @t @nasites fon CNN+SVM 0956 0956 0960 0.974 0956 0.965
Private, HRF, CNN
[162] DRIVE,IDRID, Detection (ResNet-50) 0.957 0944 0980 0.982
STARE
6 Class CNN
[GE] Classification  (ResNet-18) 0029
[166] Private data 2 Class CNN 0.906

Classification

generates bounding boxes around the twisted vessels and the
count of these boxes indicates the presence of plus disease
in the retinal image. This is achieved by employing a fully
convolution neural network (inspired by YOLO architec-
ture) for detecting the twisted vessels. A twofold training
approach has been adopted, where the model is trained with
manually labeled images to generate images with bounding
boxes (pseudo labeled images), then both manually labeled
and pseudo labeled images are used for retraining the model
which is finally used for predicting ROP. For establishing
ROP diagnosis along with an assisted medical follow-up
mechanism, Agrawal et al. [168] developed a network that
uses an ensemble of U-Net and hough transform techniques
to detect various zones (I, II, IIT) in fundus images of infants
(premature). These zones are used to indicate ROP severity
and assist in scheduling the next screening. Two U-Nets are
used for OD and retinal vessel segmentation tasks, from
which the zones can be estimated.

Lei et al. [169] developed an ROP detection network
that also generates supporting evidence about its decision.
Initially, ResNet-50 (backbone network) was modified and
improved by the addition of a Channel and Spatial Atten-
tion (CASA) Module, which extracts ROP lesion features
and subsequently through a fully connected layer detects
ROP in the fundus image. Parallelly, Gradient weighted class
activation mapping is implemented on the extracted features
for visualizing the extracted features and locating the reti-
nal structures that can explain the model decision. To deal
with the relatively high obscurity of ROP features, compared
to other retinal features in fundus images, Chen et al. [170]
proposed a network that learns at multiple instances and
classifies ROP into different stages. A fully convolutional net-
work (FCN) is used for obtaining local features and producing
a spatial score map of ROP lesions. These are again con-
verted into patches to augment the dataset. A separate CNN
network (Multiple instance learning networks) utilizes these
patches for retraining to achieve even better performance.
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Finally, through the attention pooling mechanism, ROP clas-
sification was performed. Yildiz et al. [171] utilized spatial
attention maps, which bring out regions that are crucial
for ROP classification. This helped CNN to concentrate
more on disease-related regions and extract valuable fea-
tures. As opposed to the standard attention learning frame-
work, where the regions are learned using class labels, this
method incorporated specific domain (Structural) informa-
tion to improve the maps. The attention maps also helped
in highlighting the specific areas of the image, which are
utilized for model prediction. Huang et al. [172] tested five
DL models for ROP classification by applying transfer
learning. After applying suitable pre-processing, normaliza-
tion, and augmentation techniques to the dataset, models
were trained with hyperparameter tuning. Out of VGG-16,
VGG-19, MobileNet, Inception-V3, and DenseNet backbone
models, VGG-19 produced the most accurate results for ROP
classification.

Coyner et al. [173] investigated the viability of utilizing
synthetically generated fundus images for the diagno-
sis of plus disease in ROP. Generative adversarial net-
works (GANs) were utilized for fundus image ‘synthesis’.
Pix2pix pipeline method was implemented for realistic image
generation from retinal vessel maps. This work indicates
that GANs can be effectively utilized for dataset augmen-
tation for improved model training in ROP classification
networks. Tan et al. [174] utilized a private dataset consisting
of 6974 fundus images to train an Al model for classify-
ing normal and plus diseased images. Their algorithm also
showed promise in detecting a comparatively less severe pre-
disease stage known as a pre-plus disease from a fundus
image. In another research, Redd et al. [175] assessed a DL
severity screening system developed for ROP. The DL system
was developed to generate a 1-9 scale score which indicates
the severity based on retinal vascular abnormalities, which
in turn was used to predict an overall ROP disease category.
Wang and Chen [176] developed an automated system for
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TABLE 14. ROP diagnosis performance comparison.

References  Dataset Task Base ACC PR SE SP AUC F1
Architecture
[167] IEIrll)Vl:tS_P Plus, disease detection 0.99 0.99 0.98 0.98
[169] Private ROP Detection ResNet-50 0.990 0.948 0994 0993 0.945
[170] Private ROP Classification FCN 0.944 0.927 0942 0972 0922
[171] Private ROP Classification CNN 0.950 0987 0.974
[172] Private ROP Classification VGG-19 0.96 0.966 0952 0.97
[174] Private ROP Classification - 0.973 0.966 0.98 0.993
. Normal and
[41] Private ROP classification ResNet-50 0.927 0.899 0.899
[41] Mild-ROP and Severe- o\ 50 0736 0791 0811

ROP classification

identifying the existence of ROP in fundus images along
with understanding its severity level. They utilized 6030 data
samples for the training process where a median frequency
balancing technique was employed to handle the data imbal-
ance problem.

VI. RESEARCH DIRECTIONS

As discussed in the previous sections, retinal disease diag-
nosis using DL methods has progressed amazingly in terms
of testing and evaluating various network architectures for
retinal disease diagnosis. However, there is a lot of scope and
unexplored areas open for future research. From the review
conducted in this paper, we see the following directions for
future research:

o Weakly supervised learning models: Even though
many fundus image datasets exist in the public domain,
when compared to natural image datasets like ImageNet
which has nearly 14 million images, the availability of
labeled fundus images is quite limited. The available
fundus datasets are also diverse in terms of their ground
truth labeling. Although there are other techniques like
image synthesis, that are parallelly investigated, which
can generate artificial fundus images, researchers can
explore weakly supervised learning models for training
on original fundus images that have different ground
truth labeling. Through weakly supervised training tech-
niques robust model performances can be achieved for
retinal disease diagnosis even with datasets that are par-
tially labeled or inaccurately labeled.

o Fundus image synthesis: Recent popularity of Genera-
tive Adversarial Networks (GANs) has shown potential
in generating synthetic fundus images which can be
used to augment the training dataset. This can effec-
tively eliminate the lack of good quality labeled data and
improve prediction performance. Although some of the
recent research showed the synthesis of images for DR,
glaucoma, and AMD, the field is still relatively new and
presents ample scope for future research.
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Lightweight Network design: Most of the DL models
developed for retinal disease diagnosis perform well
at the expense of high consumption of computational
resources. This is a major hurdle in implementing such
models on portable edge devices. Another open research
direction in this field is developing novel lightweight
models to reduce the computational parameters while
maintaining performance.

Improving generalization: It is observed that due to
the difference in image acquisition settings for different
datasets, DL models showed varied performance across
them, i.e., some models performed well on specific
datasets, whereas they failed on others. Researchers can
focus on improving model generalization performance
by exploring various domain adaption techniques. These
techniques essentially aim to minimize the distribu-
tion difference between target and source data domains.
Several adaption methods are already explored, one
method known as moment matching where distribution
deferences are minimized at the feature space level,
another method utilizes adversarial learning to align
both source and target domains. Considering the com-
plexities in acquiring retinal fundus images, for improv-
ing model generalization the area of domain adaption
presents ample future scope for the researchers.
Implementing federated learning: Due to various data
privacy laws, most hospitals and other research institutes
hesitate in sharing fundus images with others. This adds
up to the data scarcity problem and restricts the model
training to only available public datasets, depriving them
of training on rich and diverse private fundus data avail-
able at the hospitals. Schemes like federated learning can
be explored where the models can be trained on private
data locally and then the learned weights are transferred
to a global model.

Multiple disease diagnosis: Another promising
research direction is simultaneously detecting multi-
ple retinal diseases using DL. This can be helpful for
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clinicians to identify patients with more than one retinal
disease. Although studies have been carried out in this
direction such as simultaneous ‘DME and DR diagno-
sis’, simultaneous ‘AMD, DR and glaucoma diagnosis’,
etc. it is still a relatively less explored area.

« Smartphone-based retinal disease diagnosis: The
majority of current work in this field utilizes fundus
images captured through high-resolution fundoscopy.
There is ample scope for researchers to develop models
that can learn from fundus images captured through
smartphones. This will help in developing a remote eye
screening facility.

« Generating evidence maps: One of the major concerns
of DL implementation for retinal disease diagnosis is
acquiring the approval of professional doctors for the
Al-based model. Very limited research has been carried
out in the direction of making the predictions more inter-
pretable. One possible solution for this could be, gener-
ating evidence maps for the predictions made by the DL
model and showing or highlighting the crucial regions of
the fundus image the deep network used to arrive at the
final decision. Recently some approaches have shown
progress in this direction but there is still vast scope for
research in terms of improving the accuracy of these
evidence maps. For example, DR diagnosis depends on
finding various lesions and markers on fundus image,
so one can perform accurate lesion segmentation and
simultaneously grade DR to generate quality evidence
maps.

VIl. CONCLUSION

There is a pressing need for automated systems for identi-
fying eye-related diseases, considering the lack of medical
experts when compared with the number of patients. A color
fundus image, which contains a wide variety of eye-related
pathologies in image format, opened up a lot of scope for
research in terms of medical image analysis. A wide range of
DL models are being implemented and tested for automatic
disease diagnosis. Sophisticated image processing techniques
can now be utilized for bringing out salient features from a
given fundus image. Lesions like microaneurysms, exudates,
hemorrhages, etc. which constitute significantly a smaller
number of pixels in a fundus image are now utilized to
diagnose diseases from an early stage. This review presented
a process-based approach for understanding the latest DL
approaches in the ophthalmic disease diagnosis process.

As the success of a DL model highly depends on the train-
ing dataset, a consolidation of all publicly available fundus
image datasets is presented along with their ground truth
description. It is observed that many datasets like IDRiD,
Messidor, DRIVE, etc. contain high-quality fundus images,
which are captured in a controlled environment. The models
trained on these datasets may not perform well on other
datasets. On the other hand, datasets like Kaggle, and Eye-
PACS among others. contain images captured in diverse envi-
ronmental conditions. These may not be suitable for efficient
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model training, but as they mimic the real-world scenario,
they can steer the model behavior toward the practical side.
A balanced combination of datasets may help in developing
a robust model which can be implemented clinically.

Most of the studies have shown that the application of
image pre-processing techniques like contrast enhancement,
color space transformation, image augmentation, filtering,
etc. can help the DL model to better extract disease-relevant
features during the training process.

The work published in recent years has used various back-
bone models to build solutions for disease diagnosis. Basic
CNN, VGG, ResNet, Inception, etc. are utilized for clas-
sification tasks, while networks like U-Net, FCNs, Mask
RCNN, Seg-Net, etc. are implemented for segmentation
tasks. In most of the studies, these backbone models have
only served as a base structure. Many learning paradigms
like ensemble learning, transfer learning, multitask learning
active learning, etc. have also been explored to improve
the model performance and provide an accurate diagnosis.
Among all retinal diseases, Diabetic retinopathy has been
widely studied and explored and its actual clinical implemen-
tation has been examined. The current primary research for
DR is now directed toward providing interpretable heatmaps
along with disease classification. Similarly, glaucoma diag-
nosis is also studied considerably but most of them focus on
direct classification or diagnosis based on CDR estimation.
Compared to these two diseases, much less attention has been
paid to AMD and one of the reasons is the lack of large
datasets for AMD diagnosis tasks. Diagnosis of Cataract and
ROP offers plenty of scope for future researchers as relatively
very few studies have been carried out in that direction.

The retinal diseases focused in this review are of crucial
importance as a delay in their treatment may lead to com-
plete vision loss. The interest in implementing DL for retinal
disease diagnosis has grown significantly in past few years.
In some cases, the performance of DL models has surpassed
that of human experts. However, the future scope is still wide
open concerning efficient and effective patient care since DL
systems must evolve and be integrated into clinical practice.
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