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ABSTRACT Controlling the network of underactuated Euler–Lagrange (EL) systems is challenging
because of their coupled inertia matrices and time-variant control input matrices. We present generalized
multi-coordinates transformation that renders the network of underactuated Euler-Lagrange dynamics
in particular forms, whose mechanical properties should be preserved. The network of N nonidentical
Euler–Lagrange EL-systems is modeled as a weighted interconnection graph where each EL-system is a
node, and the control action at each node is a function of its state and the states of its neighbors. Second,
we propose an online optimally centralized control mechanism with the prime objective of energy efficiency.
The result is applied to the network of underactuated vertical takeoff and landing aircraft with strong input
coupling, including the effect of the weight of the rotors into the dynamical system models. In this regard,
we obtain very simple and powerful state-feedback solutions.

INDEX TERMS Aerospace, generalized multi-coordinates transformation, network control systems,
underactuated Euler–Lagrange systems.

I. INTRODUCTION
The control of large-scale nonlinear dynamical systems
described by Euler–Lagrange (EL) equations is challenging
due to the high degree of freedom in such distributed
systems [1]. The relevant published works on this domain can
roughly be categorized into twomajor classes: (A) centralized
approaches assuming complete information and focusing
on precision and efficiency [2], [3] and (B) decentralized
approaches assuming only partial observability and focusing
on simple reactive and behavior-based control [4], [5].
While both concepts are commonly justified, the centralized
method may be unavoidable for specific tasks. Here,
we investigate a control problem in underactuated EL systems
with low-cost sensors. The reason flows from the fact that,
in diverse applications, including aerospace and robotics,
safety requirements in combination with low-cost sensors
are increasing. These systems have fewer control inputs
than degrees of freedom, and hence, they are underactuated
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mechanical systems. In the case of satellite formation [5],
some tasks may not be feasible and able to guarantee the
required level of performance relying on a decentralized
approach. The advantage of having simple hardware is,
in turn, that possibly systems can form a large-scale system
with high redundancy. The control mission can be considered
of as macroscopic control of a ‘cloud of EL systems’ defined
by a specific distribution [6]. The controller’s input can be, for
example, the states of all EL systems. The output is a global
control that is communicated with a central unit to all agents.

This paper focuses on an optimal energy-efficient control
mechanism for the efficiency of EL systems formations
where the cost function and constraints couple the motion
behavior of individual underactuated systems. In particular,
our work starts by showing that it is possible to obtain
mathematically a mapping such that underactuated EL
equations of motion take partial forms. However, due to the
complexity of the dynamics (coupling of the inertia matrix),
it is not straightforward to design a nonlinear controller.
Another challenge is the control input matrix G(q) ∈
Rm×n that is a transformation matrix and time-variant. The
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fundamental work of [7]–[9] in this field discusses the input
matrix to be in the form of G = [Im 0s]>. It should
be underscored that, all these previous results deal with
simple class of underactuated EL-systems. This manuscript
covers the case where G(q) = [Gu(q)Ga(q)]> ∈ Rm×n

has a general form. Therefore, we relax this assumption on
the input matrix G differently from what is done in [4],
[10], [11], and [12]. This paper proposes a new generalized
multi-coordinates transformation to decouple the network of
EL systems. The proposed multi-decoupling methodology
eases the development of an optimal control mechanism with
the prime objective of energy efficiency. From a control
engineering perspective, several techniques exist to design
optimal control laws [13]. Among the existing approaches,
the state-dependent Riccati equation (SDRE) [14] does not
cancel nonlinear terms, which is promising because canceling
such nonlinearities would significantly increase the control
effort signals [15]. In addition, SDRE characterizes the
system to a state-dependent coefficient (SDC) which is not
unique and can be used to enhance performance or effect
trade-offs between performance, optimality, stability, and
robustness.

The result is applied to the network of a new underactuated
vertical take-off and landing (VTOL) aircraft. The VTOL is
modeled by (conceptually) breaking it up into its components
and then developing a mechanical model as a system of
particles considering the effect of the main body and rotors
into the dynamical system model. The simulation results
show the effectiveness of the controller in keeping the
formation flight at a reasonable combustible cost.
Notation: In is the n × n identity matrix and 0n×s is an

n × s matrix of zeros, and 0n is an n–dimensional column
vector of zeros. For any matrix A ∈ Rn×n, (A)i ∈ Rn

denotes the i–th column, (A)i the i–th row and (A)ij the
ij–th element. We denote the weighted–norm ‖x‖S := x>Sx.
The state variables are a function of time, e.g., x = x(t).
The first and second derivative with respect to time of a state
space variable x are denoted respectively with ẋ, and ẍ. Given
ai ∈ R, i ∈ N̄ := {1, . . . ,N}, we denote N is the number
of agents. The subscript of functions and agents coordinates
are in the set N̄ , unless stated otherwise, this clarification is
omitted for brevity.

II. NETWORK OF EULER-LAGRANGE DYNAMICS
The considered network is consists of N nonidentical
underactuated EL-systems which can be written as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +∇Vi(qi) = Gi(qi)ui, (1)

where qi ∈ Rn are the configuration variables, ui ∈ Rm

are the control signals, Mi(qi) > 0 is the generalized
inertia matrix,Ci(qi, q̇i) represent the Coriolis and centrifugal
forces, Vi(qi) is the systems potential energy, andGi(qi) is the
input matrix of the i-th agent.
Now, the following assumptions hold:

A 1: There exist invertible mappings 8i : Rn
→ Rn, such

that

∇qi8i(qi) = T−1i (qi). (2)

is invertible for all qi.
Lemma 1: Consider mappings 8i : Rn

→ Rn that
satisfies A.1 and define the generalised multi-coordinates
transformation as follows

qi = 8i(qi). (3)

Therefore, the network of nonidentical EL-systems (1) can
be written as follows

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +∇Vi(qi) = Gi(qi)ui, (4)

where

q̇i := T−1i (qi)q̇i (5)

Mi(qi) := T>i (qi)Mi(qi)Ti(qi)
∣∣∣
qi=8

−1
i (qi)

(6)

Vi(qi) := Vi(qi)
∣∣∣
qi=8

−1
i (qi)

(7)

Gi := T>i (qi)Gi(qi)
∣∣∣
qi=8

−1
i (qi)

(8)

and Ci(qi, q̇i)q̇i are the Coriolis and centrifugal forces
associated to the inertia matrix Mi(qi), and i ∈ N̄ , which
can be computed as follows

Ci(qi, q̇i)q̇i =
[
∇qi [Mi(qi)q̇i]−

1
2
∇q>i

[Mi(qi)q̇i]
]
q̇i. (9)

The Lagrangian in the new generalised multi-coordinates
is

Li(qi, q̇i) =
1
2
q̇i>Mi(qi)q̇i − Vi(qi). (10)

Proof: The proof follows from the calculation comput-
ing the derivative of the multi-coordinates transformation and
using original dynamical system models.
Remark 1: It should be noted that the matrix Ti(.) can be

used to shape the inertia matrixMi(.) in the new generalized
multi-coordinates. However, we consider all invertible matri-
ces Ti(.) that satisfy the integrability assumption A.1. Given
an invertible matrix Ti(.), then there exist invertible mappings
8i : Rn

→ Rn that satisfy

8̇(qi) = Ti(qi)q̇i.

Now, we consider a network ofN nonidentical EL-systems
of the form (1) with an input matrix of the general form

Gi(qi) =
[
Gui (qi)
Gai (qi)

]
, (11)

where rankGi(qi) = m < n, and Gai (qi) is an
invertible m × m matrix. Gui (qi) and Gai (qi) are the
underactuated and actuated elements of Gi(qi), respectively.
The network of N nonidentical EL-systems (1) is coupled
when Gui (qi) 6≡ 0. For the sake of exposition simplicity,
we partition the generalizedmulti-coordinates and velocity as
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qi = col(qui , qai ), q̇i = col(q̇ui , q̇ai ) with qai , q̇ai ∈ Rm and
qui , q̇ui ∈ Rs, where s := n− m, and partition the inertia and
Coriolis matrices as

Mi(qi) =
[
muui (qi) m>aui (qi)
maui (qi) maai (qi)

]
, (12)

Ci(qi, q̇i) =
[
cuui (qi) cuai (qi)
caui (qi) caai (qi)

]
, (13)

where maai : Rn
→ Rm×m, maui : Rn

→ Rs×m, muu : Rn
→

Rs×s, caai : Rn
× Rn

→ Rm×m, caui : Rn
× Rn

→ Rs×m,
cuai : Rn

× Rn
→ Rm×s, cuui : Rn

→ Rs×s.
We now impose some assumptions for each agent to

show particular forms of the network of N nonidentical
EL-systems (1) under generalized multi-coordinates transfor-
mation.
A 2: There exist functions 8ai : Rm

→ Rs, such that

8̇ai (qai ) = m−1uuim
>
aui q̇ai . (14)

A 3: The inertia matrix depends only on the actuated
variables qai , i.e., Mi(qi) = Mi(qai ).
A 4: The sub-block matrix muui of the inertia matrix is

constant.
A 5: The potential energy can be written as

Vi(qi) = Vai (qai )+ Vui (qui ).

Proposition 1: The network of N nonidentical
EL-systems (1), under assumption A.2 and using the
generalised coordinates qi = col(qi1 , qi2 ) = 8i(qi), can be
written as follows

muui q̈i1 +
[
∇qi1

(muui q̇i1 )−
1
2
∇
>
qi1
(msuui q̇i1 )

]
q̇i1

+

[
∇qi2

(msuui q̇i2 )−
1
2
∇
>
qi1
(maai q̇i2 )

]
q̇i2

+∇qi1
Vi(qi) = Gui (qi)ui (15)

msaai q̈i2 +
[
∇qi1

(msaai q̇i2 )−
1
2
∇
>
qi2
(muui q̇i1 )

]
q̇i1

+

[
∇qi2

(msaai q̇i2 )−
1
2
∇
>
qi2
(msaai q̇i2 )

]
q̇i2

+∇qi2
Vi(q) =

[
Gai (qi)− Gui (qi)mauim

−1
uui

]
ui,

(16)

where[
qi1
qi2

]
=

[
qui +8ai (qai )

qai

]
, (17)

msaai (q) = maai (qi) (18)

−maui (qi)m
−1
uui (qi)m

>
aui (qi)

∣∣∣
qi=8

−1
i (qi)

, (19)

muui (qi) = muui (qi)
∣∣∣
qi=8

−1
i (qi)

, (20)

maui (q) = maui (qi)
∣∣∣
qi=8

−1
i (qi)

. (21)

Proof: Under assumption A.2, the multi-coordinates
transformation (17) satisfies assumption A.1 with

Ti(qi) =
[

Iis −m−1uuim
>
aui

0im×s Iim

]
. (22)

Then, from Lemma (1) we obtain that the network of N
nonidentical EL-systems can be written in the form (4) with[

q̇i1
q̇i2

]
=

[
Iis m−1uuim

>
aui

0im×s Iim

] [
q̇ui
q̇ai

]
(23)

and Lagrangian

Li(qi, q̇i) =
1
2

[
q̇>i1 q̇

>
i2

] [ muui 0is×m
0im×s m

s
aai

] [
q̇i1
q̇i2

]
−Vi(qi).. (24)

�
Corollary 1: The network of nonidentical EL-systems (1)

satisfying A.2 can be written as in the EL form as follows

muui (qai )q̈i1 +∇qi1Vi(qi1 , qai ) = Gui (qi)u, (25)

msaai q̈ai +
[
∇qai

[msaai (qai )q̇ai ]−
1
2
∇
>
qai
[msaai (qai )q̇ai ]

]
q̇ai

+∇qai
Vi(qi1 , qai ) =

[
Gai (qi)− Gui (qi)mauim

−1
uui

]
ui,

(26)

Furthermore, if assumption A.3—A.5 also holds, then the
network of EL dynamics (25)-(26) can be written as follows

muui q̈i1 +∇quiVui
∣∣∣
qui=qi1−8ai (qai )

= Gui (qi)ui, (27)

msaai q̈ai +
[
∇qai

[msaai q̇ai ]−
1
2
∇qai

[msaai q̇ai ]
]
q̇ai

+∇qai
Vai − mauimuui∇quiVui

∣∣∣
qui=qi1−8ai (qai )

=

[
Gai (qi)− Gui (qi)mauim

−1
uui

]
ui. (28)

Proof: The proof follows from Proposition 1 and
A.1-A.3 by setting in (15)-(16) the following conditions:
qi1 = qui + 8ai (qai ), qi2 = qai , muui is a constant matrix,
and msaai (q) = msaai (qai ). The second part follows from the
fact that, under assumption A.5, the potential function is
Vi(qi) = Vai (qai )+ Vui (qi1 −8ai (qai )). �
Remark 2: By defining x̄i = (qi1 , q̇ii , qai , q̇ai ) ∈ Rn, ui ∈

Rm and x = [x̄>1 , . . . , x̄
>

N]
>
∈ RnN, u = [u>1 , . . . , u

>

N]
>
∈

RmN, the network of underactuated dynamics (27)-(28) can
be written as an autonomous, nonlinear in the state, and
affine in the input, represented in the form

ẋ = Aa(x)x+ Ba(x)u,

x(0) = x0 , [x>10, . . . , x
>

N0]
> (29)

with

Aa(x) =


A1(x̄1) 0 0 0

0 A2(x̄2) 0 0

0 0
. . . 0

0 0 0 AN (x̄N )

, (30)
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Ba(x) =


B1(x̄1) 0 0 0

0 B2(x̄2) 0 0

0 0
. . . 0

0 0 0 BN (x̄N )

. (31)

III. CENTRALISED CONTROL PROBLEM
In this section, we present a centralized optimal control for
a network of N nonidentical underactuated EL-systems for
the form (29) where the cost function couples the dynamic
behavior of each underactuated agent as (32).

J (u, x0) =
∫
∞

0

( N∑
i=1

N∑
i6=j

(x̄i − x̄j)>Qij(x̄i − x̄j)

+

N∑
i=1

(x̄>i Qii(x̄i)x̄i + u
>
i R(x̄i)ui)

)
dt, (32)

with the design parameters satisfy

Qii(x̄i) = Q>ii (x̄i) ≥ 0,Rii(x̄i) = R>ii (x̄i) > 0 ∀i (33a)

Qij = Q>ij ≥ 0 ∀i 6= j. (33b)

Remark 3: The considered cost function (32) is non-
quadratic in x̄i but quadratic in ui. The state and input
weighting matrices of each agent are state-dependent.

In addition, it is possible to write the cost function (32)
using the more compact notation as

J (u, x0) =
∫
∞

0

(
x>Q̃(x)x+ u>R̃(x)u

)
dt (34)

where thematrices Q̃(x) and R̃(x) have the following structure

Q̃(x) =

Q̃11(x̄1) Q̃12 . . . Q̃1N
...

. . . . . .
...

Q̃N1 . . . . . . Q̃NN(x̄N)

 (35)

R̃(x) =

R(x̄1) 0 . . . 0
...

. . .
...

...

0 . . . . . . R(x̄N)

 (36)

with

Q̃ii(x̄i) = Qii(x̄i)+
N∑
k=1

Qik , i = 1, . . . ,N

Q̃ij = −Qij, i, j = 1, . . . ,N, i 6= j. (37)

(38)

Remark 4: The coupled functional (34) is particularly
useful in formation flight for underactuated autonomous
aerial vehicles like an aircraft [16], or a helicopter with a
load stabilizer [17]–[19].

A. SDRE CONTROLLER
Consider the following optimization problem:

min
u
J (u, x0) subj. to ẋ = Aa(x)x+ Ba(x)u x(0) = x0.

(39)

FIGURE 1. VTOL aircraft as a system of particles.

We seek a nonlinear state-feedback controller that stabilizes
solutions to the problem (39). It is clear that

u(x) = −R̃−1(x)B>a (x)Pa(x)x (40)

where Pa(x) is the unique, symmetric, positive-definite
solution of the algebraic State-Dependent Riccati Equation
(SDRE):

Pa(x)Aa(x)+ A>a (x)Pa(x)

−Pa(x)Ba(x)R̃−1(x)B>a (x)Pa(x)+ Q̃(x) = 0. (41)

B. STABILITY ANALYSIS
Throughout the paper, the following conditions are required
so that the stabilizing solution that is unique to the
problem (39) exists (see [14]):
Hypotheses 1: Matrices Aa(x), Ba(x), Q̃(x), and R̃(x) are

C1(RnN×nN).
Hypotheses 2: The pairs {Aa(x),Ba(x)} and
{Aa(x), Q̃

1
2 (x)} are pointwise stabilizable and detectable of

the underactuated network (29) for all x.
A consequence of Hypotheses 1 is to check that the

following controllability matrix

C =
[
Ba(x) | Aa(x)Ba(x) | . . . | AnN−1a (x)Ba(x)

]
,

(42)

has rank(C) = nN ∀x ∈ RnN. Also, for the observability
matrix

O =
[
Q̃

1
2 (x) | Q̃

1
2 (x)Aa(x) | . . . | Q̃

1
2 (x)AnN−1a (x)

]
,

(43)

that has rank(O) = nN ∀x ∈ RnN. This is true since Q̃(x) is
positive-definite ∀x ∈ RnN.
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IV. APPLICATION: NETWORK OF UNDERACTUATED VTOL
AIRCRAFT
In this section, we apply the preceding design methodology
to the problem of arbitrary formation flight of the network
of underactuated VTOL aircraft with the effect of the weight
of the rotors into the dynamical system model of each agent.
Each VTOL acts as an independent agent in the formation,
and its dynamical system model is considered using Euler-
Lagrange equations.

A. SYSTEM DYNAMICS OF VTOL AIRCRAFT
We consider a VTOL aircraft with masses m1, m2 and m3,
as shown in Fig. 1 that are rigidly fastened to the mass-less
shaft and are free to fly in the forward flight fashion with
the gravity acceleration g. We now set up the equation of
motion of the VTOL using convenient coordinates q =
[q1, q2, q3]> = [x1, y1, θ]>. An external thrust vector f1 is
applied to m1 in the direction of −x1 and y1 respectively,
and f3 to m3 in the direction of −x3 and y3 respectively. For
simplicity, we assume that all representative particle masses
are the same (e.g., mk = m for k = 1, . . . , 3). Applying
Euler-Lagrange equations, it follows that

L =
1
2
q̇>

 3m 0 − 3Lm sin(q3)
0 3m 3Lm cos(q3)

−3Lm sin(q3) 3Lm cos(q3) 5L2m

 q̇
(44)

where (x1, y1) is placed at the center of the first mass particle,
L is the distance between each mass, and q3 = θ is the
rotation angle (see Fig. 1). The equations of motion can be
written in compact form as

M (q)q̈+ C(q, q̇)q̇+∇V (q) = G(q)u, (45)

where M (q) is the generalized inertia matrix

M (q)=

 3m 0 −3Lm sin(q3)
0 3m 3Lm cos(q3)

−3Lm sin(q3) 3Lm cos(q3) 5L2m

.
(46)

C(q, q̇) is the Coriolis matrix

C(q, q̇)

=

 0 0 −3Lθ̇m cos(q3)
0 0 −3Lθ̇m sin(q3)

3Lq̇3m cos(q3)
2

3Lq̇3m sin(q3)
2

c?

,
(47)

with

c? = −
3Lm(q̇1 cos(q3)+ q̇2 sin(q3))

2
. (48)

and V (q) the systems potential energy

V (q) = 3gm(q2 + L sin(q3)). (49)

FIGURE 2. Hysteresis-based controller of the swarm of VTOLs preserving
the formation and collision avoidance.

The elements of the partitioned form of the inertia matrix are
given by

muu = 3m,

mau = m>au =
[
0 −3Lm sin(q3)

]
,

maa =
[

3m 3Lm cos(q3a)
3Lm cos(q3) 5L2m

]
. (50)

The variation of the work δW associated with the applied
thrusts f1 and f3, can be computed to be

δW =

−(f1 + f3) sin(q3)δq1+(f1 + f3) cos(q3)δq2
2Lf3δq3

. (51)

The derivation of (51) is given in appendix. Finally, G(q) can
be written as

G(q) =

−sin(q3) 0
cos(q3) 0

0 1

, (52)

with u = [u1, u2]> = [f1 + f3, 2Lf3]>.Therefore,

Gu(q) =
[
−sin(q3) 0

]
and Ga(q) =

[
cos(q3) 0

0 1

]
. Note that

Ga(q) is an invertible 2× 2 matrix.

B. MECHANICAL PROPERTIES OF THE VTOL AIRCRAFT
The VTOL aircraft has several fundamental mechanical
properties, in which the preceding design methodology can
be used.
P 1: The inertia matrix M (q) in (45) is a positive definite

matrix.
P 2: The inertia matrix depends only on the actuated

variables qa, i.e., M (q) = M (qa).
P 3: The sub-block matrix muu of the VTOL is constant.
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FIGURE 3. Snapshots of formation flight simulation in the network of N = 5 underactuated VTOL agents where each agent is described
by (54)-(56).

P 4: N = Ṁ (q)− 2C(q, q̇) is a skew-symmetric matrix

N =
0 0

9Lq̇3m cos(q3)
2

0 0
9Lq̇3m sin(q3)

2
−
9Lq̇3m cos(q3)

2
−

9Lq̇3m sin(q3)
2

0

,
(53)

therefore q>Nq = 0 ∀ q ∈ R3.
P 5: The potential energy of the VTOL can be written as

V (q) = Va(qa)+ Vu(qu) = 3gmq2 + 3gmL sin(q3).
Remark 5: The VTOL has three degrees of freedom

and only two actuators, and therefore, the aircraft is an
underactuated mechanical system. The system is a highly
nonlinear, constrained multi-variable character. The VTOL
translates and rotates by the thrust and torque that make
up the movement in the environment. We have nonlinearities
because the generalized inertia matrix is off-diagonal, and
the input matrix is highly coupled. Due to the lack of
actuators, the exact feedback linearization can not be
applied.

C. NETWORK OF N NONIDENTICAL VTOL SYSTEMS
Given the properties P. 1—P. 5, we apply the generalized
multi-coordinates transformation based on Proposition 1 to
obtain the partial form of the network.
Proposition 2: Considering the network ofN nonidentical

VTOL of the form (1), the nonlinear dynamics (1) can be
written

q̈i1 = −
0.3333 ui1 sin(qi3 )

mi
, (54)

q̈i2 = −1.0002(g− q̇
2
i3L sin(qi3 ))

+ 0.8335
ui1 cos(qi3 )

mi
− 0.5001

ui2 cos(qi3 )
Limi

, (55)

q̈i3 = −
1

2L2i mi
ui1 +

1

2L2i mi
ui2 . (56)

Proof: Applying Proposition 1 the result follows. �
Results presented in Section IV are illustrated through a

simulation of nonidentical underactuated multi-agent VTOL
aircraft using the centralized SDRE.

Our proposed methodology in total consists of (1) apply-
ing the generalized multi-coordinates transformation and
(2) proposing and analyzing the centralized optimal control
mechanism to steer each agent to the desired position with the
stable Euler angle of the network of underactuated systems.
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FIGURE 4. Evolution of the positions qi1
= xi ,qi = yi , velocities q̇i1

= ẋi , q̇i2
= ẏi , Euler angles qi3

= θi and the rate of
change of Euler angles q̇i3

= θ̇i .

Algorithm 1 Hybrid Formation Flight and Collision
Avoidance
Require: Partitioned generalized coordinates of the network
qi = col(qui , qai ), q̇i = col(q̇ui , q̇ai ). Invertible mappings
8̇(qi) = Ti(qi)q̇i and the EL form of the network using
Proposition 1. Knowledge of network: initial x0 and target
x∗ states.
loop

if ‖x̄i − x̄j‖ ≥ dsafe then
0← e = ‖x̄i − x̄j‖ − dsafe

end if
Apply the control law (40) to the underactuated

network of VTOLs to the desired formation flight
end loop

D. SAFETY OF THE NETWORK
Another challenge concerning the formation flight of the
network is accurate navigation with collision avoidance capa-
bility in which VTOLs can fulfill and accomplish any given
task safely. We adopt the hysteresis-based controller shown
in Algorithm. 1 to fulfill the formation flight and collision
avoidance. Such a mechanism controls the formation flight
but switches to ensuring collision avoidance between any
VTOL pair in a formation flight if the safety distance dsafe
based on the relative distance between the vehicles exceeds.
The error e = ‖x̄i − x̄j‖ − dsafe is reduced to zero, then
control again regulates the formation flight and the hysteresis
mechanism [20] avoids rapid switching (oscillating) between
control modes.

V. SIMULATIONS
The centralized control designed in the previous sections will
be applied to the network of nonidentical VTOLs in which

each agent is tilted by an angle qi3 = θi concerning the local
q1-axis. The simulation model is a system of particles with
three bodies (a central body and two propellers groups), and
the simulation results are done in the Python framework. As a
proof of concept, two flying scenarios are defined: a lined-up
formation and a comparison with the proposed centralized
scheme over the decentralized approach.

A. LINED UP FORMATION
We consider a network of N = 5 whose interconnection
structure is represented by the complete graph. The problem
setup is defined by assigning the complete graph shown in
Fig. 3 to the five VTOLs that are located in different locations
in the search space. The automatic control objective is to steer
safely each agent to a desired position with the stable Euler
angle ( lim

t→∞
qi3 = θi = 0 ) corresponding to its location in the

pre-specified lined up formation, which has equal separation
distances defined between each neighbor. The network is
composed of five different VTOLs. The physical parameters
are: m1 = 1 kg, and L1 = 0.2 m, for Agent 1; m2 = 1.5 kg,
L2 = 0.25 m, for Agent 2; m3 = 2 kg, L3 = 0.3 m,
for Agent 3; m4 = 0.5 kg, L4 = 0.1 m, for Agent 4;
m5 = 0.8 kg, L5 = 0.18 m, for Agent 5. The centralized
scheme (39)–(41) is applied to the problem using a sampling
time of ts = 0.05 s with the total time of flight that is set
to Tf = 14 s. The design parameters of absolute and relative
state information concerning the defined cost function in (32)
are in the following

Qii(x̄i) = (1+ (x̄i − x̄∗i )
2)I6, Qij = I6 ∀i 6= j, (57)

where x̄∗i is the desired state in the considered lined up
formation flight. The weight matrix related to the control
effort was kept constant for each agent in the simulation
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FIGURE 5. Error performance for the Centralized scheme over the
decentralized approach.

Rii = I2. Fig. 3 and Fig. 4 represent the simulation results
for the formation flight scenario under the initial conditions

x0 = [−2, 0,−1.3, 0, 0, 0,−3, 0,−1, 0, 0, 0,−5, 0,

1, 0, 0, 0,−4, 0,−3, 0, 0, 0,−4, 0, 3, 0, 0, 0]>,

(58)

and the desired states

x∗ = [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0,

6, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0]>. (59)

It is worth mentioning that Euler angles qi3 = θi in Fig. 4
represent the inclination that a vectored thrust VTOL would
have to reach to guarantee the formation flight. Fig. 4 shows
that, after a transient phase, the velocities remain bounded.
The simulation demonstrates that the performance of the
considered centralized control design in formation flight
is independent of the SDRE weighting matrices selection
Qii(x̄i), Qij and Rii(x̄i). Therefore, this can be selected freely
to achieve the global performance objective of the network.
The results indicate that the proposed methodology can
be applied successfully and effectively to the network of
underactuated VTOL aircraft formation control problem. The
hysteresis-based controller for collision avoidance leads to
a simplified control law, which enables the utilization of
a sophisticated centralized control mechanism and provides
excellent performance.

B. CENTRALIZED SCHEME OVER THE DECENTRALIZED
APPROACH
To show the potentiality of the proposed method, we analyze
the achieved performance over the decentralized approach.
We consider two VTOL aircraft systems with the same
physical properties, e.g. m = 1 kg, and L = 0.8 m, for
both agents.The formation flight is the same as the previous
scenario with the initial and final states of

x0 = [−2, 0,−1.3, 0, 0, 0,−3, 0,−1, 0, 0, 0]>,

and the desired states

x∗ = [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0]>.

Fig. 5 shows the performance of the proposed centralized
scheme over the decentralized methodology. Overall it can
be seen that our framework provides better performance with
smoother trajectories due to the less attenuated oscillations in
the rotational angle q3 = θ .
Remark 6: The proposed centralized approach can fulfill

both optimality and the minimum safety distance of the
network during the mission flight due to the access to the hole
information of the network.

VI. CONCLUSION
We have proposed a simple centralized control for a class
of nonidentical underactuated Euler–Lagrange systems based
on generalized change of coordinates. We transform the
mechanical systems to the partial form that can facilitate the
design of the centralized control. The network is modeled as
a weighted interconnection graph where each EL-system is
a node, and the control action at each node is a function of
absolute and relative state information. At the cost of centrally
tracking all agents, we gain the benefit of energy-efficient
and keeping safety distances between individual VTOLs
in the task of formation flight. In particular, we present
simulations for the network of five VTOLs aircraft including
the effect of the weight of the rotors into their dynamical
system models that ensure the convergence performance of
the closed-loop system to an arbitrary formation flight for
each VTOL with zero Euler angle and zero speed. In future
work, we plan to study and analyze keeping minimum and
smooth safe distance without oscillation in the transition
phase of the network with dynamic obstacle avoidance.
Another interesting question involves the robustness of the
network navigation based on the available states information,
i.e., if the state information of an agent is not available for
feedback, how to reconstruct and save an agent based on the
available data. This issue leads to the decomposition of state
estimation into several local estimators.

APPENDIX
DERIVATION OF THE VARIATION OF THE WORK δW
In this Appendix, the virtual of the work is derived. Let us
consider the positions of the mass particles

x = x1 + L cos(θ),

y = y1 + L sin(θ),

x3 = x1 + 2L cos(θ ),

y3 = y1 + 2L sin(θ ).

Now talking variations[
−f1 sin(θ )
f1 cos(θ )

]
δ

[
x1
y1

]
=

[
−f1 sin(θ )δx1
f1 cos(θ)δy1

]
, (60)

and[
−f3 sin(θ )
f3 cos(θ)

]
δ

[
x3
y3

]
=

[
−f3 sin(θ )(δx1 − 2L sin(θ ))δθ
f3 cos(θ)(δy1 + 2L cos(θ )δθ)

]
.

58318 VOLUME 10, 2022



B. Salamat, G. Elsbacher: Centralized Control in Networks of Underactuated Nonidentical EL Systems

Collecting terms, we have

δW =
[
−f1 sin(θ )δx1 − f3 sin(θ)δx1 + f3 sin2(θ )2Lδθ
f1 cos(θ )δy1 + f3 cos(θ )δy1 + f3 cos2(θ )2Lδθ

]

=

−(f1 + f3) sin(θ)δx1+(f1 + f3) cos(θ)δy1
2Lf3δθ

. (61)
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