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ABSTRACT Sharpening filters are used to highlight fine image details, including object edges. However,
sharpening filters are very specific to different types of images as they may create undesired edge effects,
over-highlight fine details, or emphasize noise. Laplacian, Laplacian of Gaussian, high-boost, unsharp
masking filters, and their extended algorithms are among most widely used sharpening spatial filters. This
paper introduces a method that integrates anisotropic averaging with the Laplacian kernels for grayscale
image sharpening. The proposedmethodology is based on the concept of kriging computation in geostatistics
for determining optimal interpolation weights in spatial domain. The convolution of kriging and Laplacian
kernels is then carried out for image sharpening. Experimental results suggest certain advantages of the
proposed linear convolution model for image sharpening over the Laplacian, Laplacian of Gaussian, high-
boost, unsharp masking, and anisotropic diffusion methods in terms of the balance of sharpness and natural
visualization. Another advantage of the proposed method is that it does not require any input statistical
parameters.

INDEX TERMS Image sharpening, convolution, Laplacian operators, geostatistics, ordinary kriging.

I. INTRODUCTION
Sharpened images produced by Laplacian, Laplacian of
Gaussian (LoG), unsharp masking, and high-boost filters are
based on linear convolution kernels. Image convolution is
the process of adding values of a pixel and its neighbors
linearlyweighted by a filter kernel to every pixel. The purpose
of convolution is to modify the spatial characteristics of an
image, resulting in, such as smoothing, sharpening, enhanc-
ing, or edge highlighting to suit various applications [1]–[4].
In general, the convolution of a kernel k and an image f (x, y)
can be expressed as

g(x, y) = k ~ f (x, y) =
a∑

m=−a

b∑
n=−b

k(m, n)f (x − m, y− n),

(1)

where g(x, y) is the output image, and ~ denotes the convo-
lution operator.

Laplacian filter-based kernels [5], which are
edge-sharpening filters, have been utilized in several appli-
cations [6]–[15]. The Laplacian operator takes partial deriva-
tives along the two spatial axes of an image f (x, y) and is
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defined as [5]

O2f (x, y) =
∂2f (x, y)
∂x2

+
∂2f (x, y)
∂y2

= f (x + 1, y)+ f (x − 1, y)+ f (x, y+ 1)

+ f (x, y− 1)− 4f (x, y), (2)

which highlights sharp intensity transitions and reduces the
effect of regions having slowly varying gray levels, resulting
in the following 3× 3 Laplacian filters0 1 0

1 −4 1

0 1 0

 ,
1 1 1

1 −8 1

1 1 1

 ,
where the left matrix is based on Eq. 2, and the right is an
extension of Eq. 2 to include the diagonal elements.
To rectify the effect of featureless image background while

sharpness is still reserved can be obtained by subtracting the
Laplacian image from the original, giving [5]

f ∗(x, y) = f (x, y)− O2f (x, y)

= f (x, y)− [f (x + 1, y)+ f (x − 1, y)

+ f (x, y+ 1)+ f (x, y− 1)− 4f (x, y)],
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= 5f (x, y)− [f (x + 1, y)+ f (x − 1, y)

+ f (x, y+ 1)+ f (x, y− 1)], (3)

which results in a 3× 3 composite sharpening kernel and its
extended version, respectively, as

L1 =

 0 −1 0

−1 5 −1

0 −1 0

 , L2 =

−1 −1 1−

−1 9 −1

−1 −1 −1

 .
Because L1 and L2 are derived from the second deriva-

tive of an image, which highlights regions of rapid intensity
change, both kernels are sensitive to noise. To address this
issue, it is suggested to Gaussian-smooth the image before
applying the Laplacian. This procedure is known as the LoG,
which is defined as [16], [17]

O2G(x, y) =
1
πσ 4

(
1−

x2 + y2

2σ 2

)
exp

(
−
x2 + y2

2σ 2

)
, (4)

where σ is the standard deviation,
All L1, L2, and LoG kernels yield isotropic results. Because

an isotropic operator applies the rate of change equally in
all directions of an image, it carries no particular sensitivity
or bias toward different spatial orientations. An anisotropic
topography has directional attributes that may be different
at all points or directions of an image. Effort was spent on
addressing this issue by minimizing the overall anisotropy
produced by Laplacian kernels [18], or using local Laplacian
kernels [6], [15].

A high-pass filtered (sharpened) image, denoted as
fHP(x, y), can be obtained as

fHP(x, y) = f (x, y)− fLP(x, y), (5)

where f (x, y) and fLP(x, y) are original and low-pass filtered
(blurred or unsharp) images, respectively. Because of the use
of an unsharp image, this process is also known as unsharp
masking (UM) [5].

A high-boost filtered image, denoted as fHB(x, y),
is defined as

fHB(x, y) = αf (x, y)− fLP(x, y), (6)

= (α − 1)f (x, y)+ f (x, y)− fLP(x, y), (7)

= (α − 1)f (x, y)+ fHP(x, y), (8)

wkere α ≥ 1 is a scaling factor.
If the Laplacian image is used as fHP(x, y), then fHB(x, y)

is defined as

fHB(x, y) = αf (x, y)− O2f (x, y), (9)

which gives the following sharpening second-order derivative
kernels:

H1 =

 0 −1 0

−1 α + 4 −1

0 −1 0

 , H2 =

−1 −1 −1−1 α + 8 −1

−1 −1 −1

 .

If α = 1, both high-boost kernels H1 and H2 become
Laplacian L1 and L2, respectively.

Laplacian, LoG, unsharp masking, and high-boost
filters, which are benchmark methods for comparing
image-sharpening algorithms [19], have been presented
herein. Several other methods developed for image sharp-
ening are such as the anisotropic diffusion (AD) filter [20],
[21], which iteratively selected the AD coefficient to allow
various degrees of smoothing within different image regions
and maintain sharpness between region boundaries; the class
of iterative morphological operators, which were based on
a Laplacian function, was proposed for grayscale image
sharpening [22]; fuzzy morphology for enhancing details
in historical images [23]. Because wavelet coefficients can
reveal high frequency components of an image at multiple
resolutions, a wavelet-based algorithm was developed for
image sharpening [24]. Histogram equalization [25], which
aimed to improve contrast by considering changes in pixel
values according to the intensity distribution of the input
image, was utilized for sharpening images. The Sobolev
isotropic diffusion [26] was developed for image sharpen-
ing. This method applied the Sobolev gradients to compute
the partial differential equations for image diffusion and
sharpening.

Some other methods for image sharpening developed in
the past decade include a method using a multi-scale scheme
and wavelet discrete transform, where the initial result was
processed by unsharp masking filters and the final image pro-
duced using a wavelet fusion scheme [27]. Locally adaptive
techniques for image sharpening were introduced to achieve
‘‘pleasant’’ visualization when smoothing parameters can be
appropriately chosen [28]. An approach for adjusting image
sharpness was recently proposed by constructing the binding
filter, which is based on the Gaussian distribution, to define
the kernel weights for combining with the high-boost filter,
and the results achieved having properties of both Gaus-
sian smoothing and high-boost filtering [29]. Another recent
work [30] implemented the anisotropic diffusion filter [20]
with twenty iterations for image smoothing and then used the
unsharp masking for image sharpening.

As an attempt to consider anisotropic properties of an
image to be convolved with Laplacian kernels, this paper
introduces the use of kriging weights as a secondary ker-
nel whose derivation is based on statistical properties of
experimental anisotropic semivariograms. Unlike having
fixed values of kernel coefficients, the kriging weights vary
according to changes in image semivariograms, giving dif-
ferent convolution results in images of different spatial
statistics.

The rest of this paper is organized as follows.
Section II presents mathematical derivations of the proposed
kriging-weighted Laplacian operators. Section III shows sev-
eral examples to illustrate, compare, and discuss the results
obtained from the kriging-weighted Laplacian method with
those produced from other image-sharpeningmodels. Finally,
Section IV is the conclusion of findings, including remarks
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FIGURE 1. A 3× 3 window and spatial locations of pixels for computing
kriging estimate of pixel at center.

on some limitations of the proposed method and suggestions
of issues for future research.

II. KRIGING-WEIGHTED LAPLACIAN OPERATORS
Let z(a) be a random function of spatial location a,
the ordinary kriging holds the following intrinsic hypothe-
sis [31]:

E[z(a)] = µ. (10a)

Var[z(a)− z(a+ h)] = E
[
{z(a)− z(a+ h)}2

]
(10b)

= 2γ (h), (10c)

where E[·], µ, and γ (·) denote expected value, mean, and
semivariogram of the random function, respectively; and a
and a+ h are any two spatial locations separated by distance
h.

Let z(ai) and z(aj) be the values of two data points at two
spatial locations ai and aj, respectively. It was shown that [32]

γ (ai − aj) = γ (ai − a)+ γ (aj − a)

−Cov[z(ai)− z(a), z(aj)− z(a)]. (11)

To derive kriging weights in the setting of the Laplacian
operators, let a0 be the location of f (x, y), a1 of f (x−1, y−1),
a2 of f (x, y− 1), a3 of f (x+ 1, y− 1), a4 of f (x− 1, y), a5 of
f (x + 1, y), a6 of f (x − 1, y+ 1), a7 of f (x, y+ 1), and a8 of
f (x + 1, y+ 1), which are shown in Fig. 1.

The value of f (a0) can be predicted using the best linear
unbiased estimator of ordinary kriging as [32]

f̂ (a0) =
8∑
i=1

wif (ai), (12)

where wi, i = 1, . . . , 8 are kriging weights that can be
optimally determined by minimizing the estimation variance
σ 2(a0):

σ 2(a0) = Var[f̂ (a0)− f (a0)]. (13)

Using Eq. 12, the estimate is done via the following con-
strained optimization

σ 2(a0) = Var

[
8∑
i=1

wi(f (ai)− f (a0))

]
, (14)

which is subject to
∑8

i=1 wi = 1. Based on the following
proof [32]

Var

[∑
i

wiz(ai)

]
=

∑
i

∑
j

wiwjCov[z(ai), z(aj)], (15)

Eq. 14 can be rewritten as

σ 2(a0)=
8∑
i=1

8∑
j=1

wiwjCov[f (ai)−f (a0), f (aj)−f (a0)]. (16)

Using Eq. 11,

σ 2(a0) =
8∑
i=1

8∑
j=1

wiwj[γ (ai − a0)

+ γ (aj − a0)− γ (ai − aj)] (17a)

=

8∑
i=1

wiγ (ai − a0)+
8∑
j=1

wjγ (aj − a0)

−

8∑
i=1

8∑
j=1

wiwjγ (ai − aj) (17b)

= 2
8∑
i=1

wiγ (ai − a0)−
8∑
i=1

8∑
j=1

wiwjγ (ai − aj).

(17c)

The Lagrangian function for ordinary kriging estimate of
f (a0) can be constructed as

L(w1, . . . ,w8; λ) = σ2(a0)+ 2λ

(
8∑
i=1

wi − 1

)
, (18)

where λ is a Lagrange multiplier.
Let γ (ai − aj) now be denoted as γi,j. To minimize the

variance of estimation, all first derivatives of the Lagrangian
function with respect to wi, i = 1, . . . , 8, and λ must be set
to zero, which are

∂L(w1, . . . ,w8; λ)
∂wi

= 2γi,0 − 2γi,j + 2λ = 0 (19a)

∂L(w1, . . . ,w8; λ)
∂λ

=

8∑
i=1

wi − 1 = 0 (19b)

The above Lagrangian method results in the determination
of unique kriging weights by solving the following set of
simultaneous equations:

∑8

i=1
wiγ1,i − λ = γ1,0∑8

i=1
wiγ2,i − λ = γ2,0

. . .∑8

i=1
wiγ8,i − λ = γ8,0∑8

i=1
wi = 1

(20)

57096 VOLUME 10, 2022



T. D. Pham: Kriging-Weighted Laplacian Kernels for Grayscale Image Sharpening

TABLE 1. Derivation of a 3 × 3 anisotropic kriging-weighted kernel.

FIGURE 2. Graphical procedure for grayscale image sharpening using kriging-weighted Laplacian method.

To consider anisotropy in the semivariogram model, the
experimental semivariogram measured in the horizontal
direction of an image can be expressed as

γ (1x) =
1

2N (1x)

∑
1x

[f (x, y)− f (x +1x, y)]2, (21)

where N (1x) is the number of pixel pairs separated by 1x.
Likewise, for the vertical direction, the experimental semi-

variogram can be defined as

γ (1y) =
1

2N (1y)

∑
1y

[f (x, y)− f (x, y+1y)]2, (22)

where N (1y) is the number of pixel pairs separated by 1y.
For a matrix, the main diagonal is the line of elements

running from the top-left to bottom-right corners; whereas
the antidiagonal is the line of elements running from the
top-right to bottom-left corners. Let 1D+ and 1D− indicate
(1x,1y) measured in the directions of the main diagonal
and antidiagonal of an image, respectively. The experimental
semivariograms measured in the main diagonal and antidiag-
onal directions can be obtained, respectively, as

γ (1D+) =
1

2N (1D+)

∑
1D+

[f (x, y)−f (x+1x, y+1y)]2,

(23)

where N (1D+) is the number of pixel pairs separated by
(1x,1y) in the main-diagonal direction, and

γ (1D−) =
1

2N (1D−)

∑
1D−

[f (x, y)−f (x−1x, y+1y)]2,

(24)

where N (1D−) is the number of pixel pairs separated by
(1x,1y) in the antidiagonal direction.
Using the form of Eq. 20, the kriging weights can be

determined by solving forw in the following ordinary kriging
system represented in matrix form as

Aw = b, (25)

where A, w, and b are given in Table 1. It can be seen
that A and b consist of statistical distances that incorporate
anisotropy, spatial correlation, and clustering information;
and therefore provide the set of weights in terms of spatial
continuity [33].

As a result, the 3 × 3 kriging-weighted kernel for Lapla-
cian filter L2 is of variable coefficients, depending on the
anisotropic semivariogram of an image, where, being similar
to the Laplacian kernel, the weight at the kernel center is set to
-1 to impose that the sum of all elements of the kernel is zero
so that the convolution of a homogeneous region is zero. Like-
wise, the kriging-weighted kernel for Laplacian filter L1 can
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TABLE 2. Measures of image sharpness and visual quality of ‘‘Moon’’, ‘‘Lena’’, ‘‘Bridge’’, and ‘‘Nature’’ images.

be constructed by considering only f (a2), f (a4), f (a5), and
f (a7) for the estimate of f (a0) to compute corresponding w∗1,
w∗2, w

∗

3, and w
∗

4, respectively,
∑4

i=1 w
∗
i = 1; whereas weights

for the diagonal elements are set to zero. The corresponding
kriging system yields A∗, w∗, and b∗ of size 5×5, 5×1, and
5×1, respectively. Thus, kriging-weighted kernels for L1 and
L2 are defined, respectively, as

K1 =

 0 w∗1 0
w∗2 −1 w

∗

3
0 w∗4 0

 , K2 =

w1 w2 w3
w4 −1 w5
w6 w7 w8

 .
Because convolution is commutative: α~ β = β ~ α, and

associative: α ~ (β ~ κ) = (α ~ β) ~ κ , where α, β, and
κ are kernels, multistage filtering therefore can be performed

in a single operation. Instead of having an image convolved
with a Laplacian kernel first, then the result convolved with
the kriging-weighted kernel, the convolution of an imagewith
the kriging-weighted Laplacian kernel can be carried out as

g(x, y) = ωi ~ f (x, y), (26)

where ωi is a hybrid filter or kriging-weighted Laplacian
kernel that is defined as

ωi = Ki ~ Li, i = 1, 2. (27)

Fig. 2 graphically shows the procedure for sharpening a
grayscale image using the proposed kriging-weighted Lapla-
cian method.
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TABLE 3. Measures of image sharpness and visual quality of ‘‘Albert Einstein’’ and ‘‘Bow’’ images.

III. RESULTS
Fig. 3 shows the ‘‘Moon’’ image of size 537 × 358, and its
sharpened versions obtained from the Laplacian (L1 and L2),
LoG, high-boost (H1 and H2), kriging-weighted Lapla-
cian (ω1 and ω2), unsharp marking (UM1 and UM2), and
anisotropic diffusion-based unsharp masking or, for short
notation, anisotropic diffusion (AD1 and AD2) filters. For the
LoG, σ = 0.5 and the filter size is 5 × 5. For the high-boost
filtering, α = 1.5 was selected. For the unsharp marking, the
standard deviation of the Gaussian low-pass filter was chosen
as 1 (UM1) and 3 (UM2). For the anisotropic diffusion,
AD1 and AD2 indicate the implementation of the unsharp
masking with the standard deviation of the Gaussian low-pass
filter = 1 and 3, respectively. The Laplacian, LoG, high-
boost, and unsharp masking filters were computed using the
R2022a Matlab Image Processing Toolbox. The anisotropic
diffusion filter was computed using public Matlab codes [34]
provided by authors of the work [30].

Here, a measure of sharpness in grayscale images using
gradients [35] was adopted to evaluate the performance of
different methods for image sharpening. The absolute relative
difference in sharpness between the original and a filtered
image is defined as |1r | = |f − f ∗| /f , where f and f ∗ are
original and filtered images, respectively. While the sharp-
ened images given by the Laplacian, LoG, kriging-weighted
Laplacian, unsharp masking, and anisotropic diffusion fil-
ters have similar visualizations (measures of sharpness were
between 3.68 (L1) and 7.50 (L2)); the high-boost operators
amplified the average gray levels of the original image, result-
ing in significantly brightened images (measures of sharpness
obtained by H1 = 8.82 and H2 = 14.30).
To observe more distinct differences in image sharpening

using the six filters, Figs. 4, 5, and 6 show the 225 × 225
‘‘Lena’’, 195 × 259 ‘‘Bridge’’, and 182 × 278 ‘‘Nature’’

images, respectively. Figs. 4, 5, and 6 also show images
filtered by the Laplacian, LoG, high-boost, unsharp masking,
anisotropic diffusion, and kriging-weighted Laplacian mod-
els, where the same filter parameters described earlier were
used for the four applicable models.

For the ‘‘Lena’’ image, it can be seen that while L1, L2,
LoG,H1 andH2 sharpened the image (measures of sharpness
were between 15.96 given by L1 and 43.81 given by H2) but
also highlighted pixels of high changes in intensity, yielding
undesirable visual effects such as pixels of the eyes and
hair; on the other hand, both unsharp masking (sharpness
measures of UM1 and UM2 = 15.90 and 15.81, respec-
tively) and anisotropic diffusion (sharpness measures of AD1
and AD2 = 16.53 and 16.89, respectively) filters tended to
suppress some highlights of the outer region of the hair;
however, ω1 (sharpness= 20.45) and ω2 (sharpness= 20.11)
kernels provided a sharpened image with a much better visual
appearance.

For the ‘‘Bridge’’ image, the high-boost filters amplified
the image contrast, yielding almost a white background for
the sky and brightened water; L1, L2 and LoG produced
the least sharpened versions, in which the suspension cable
was invisible; UM1, UM2, AD1, AD2, ω1, and ω2 provided
similar sharpened versions of the original image (measures of
sharpness were between 7.56 (AD1) and 9.77 (ω2)). AD2 can
be noticed to yield some highlighted distortion of the vertical
cables. The sharpened outputs of ω1 and ω2 were balanced
between those of the other 5 methods.

For the ‘‘Nature’’ image, L2 (measure of sharpness =
13.72), and H2 (measure of sharpness = 50.44) kernels
yielded most dominantly noise-sensitive results; LoG (mea-
sure of sharpness = 15.58) and ω1 (measure of sharp-
ness = 15.60) provided similar visualizations. UM1, UM2,
AD1, AD2, ω1, and ω2 provided similar sharpened images
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FIGURE 3. ‘‘Moon’’ image and its sharpened versions provided by Laplacian (L1 and L2), LoG, high-boost (H1 and H2), unsharp marking (UM1 and UM2),
anisotropic diffusion (AD1 and AD2), and kriging-weighted Laplacian kernels (ω1 and ω2).

(measures of sharpness were between 11.12 and 15.60).
While some noise effect was emphasized by AD2, it can
be observed that the ω2 kernel could balance both sharp-
ness and noise suppression. Similar to the visual effect

of the ‘‘Moon’’ image sharpened by H1 and H2, two
high-boost filtered ‘‘Nature’’ images show much higher con-
trasts, where dark pixels of low frequencies were significantly
lightened.
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FIGURE 4. Original and sharpened images of ‘‘Lena’’, using Laplacian (L1 and L2), LoG, high-boost (H1 and H2), unsharp marking (UM1 and UM2),
anisotropic diffusion (AD1 and AD2), and kriging-weighted Laplacian kernels (ω1 and ω2).

Table 2 shows the measures of sharpness and rela-
tive sharpness of the ‘‘Moon’’, ‘‘Lena’’, ‘‘Bridge’’, and
‘‘Nature’’ images obtained from the Laplacian, LoG,
high boost, unsharp masking, anisotropic diffusion, and
kriging-weighted Laplacian methods. It was apparent that
the high-boost filters provided the sharpest visualization
by highlighting the bright pixels of the images, whereas
the kriging-weighted Laplacian filters gave results balanced
between the Laplacian and LoG filters. All filtered images
increased the sharpness of the original images. While being
able to increase sharpness in images, bothω1 andω2 provided
results that have the most similar naturally visual appearance
to the original images by avoiding over-highlighting fine
details with a sharp discontinuity. H2 yielded highest mea-
sures of image sharpness but resulted in the most unnatural
visual expression. The LoG filter highlighted the fine details
with a lesser degree than the Laplacian filters.

Figs. 7 and 8 show the 182 × 276 image of ‘‘Albert
Einstein’’ and 800× 1200 image of a bow (with surrounding

landscape) and their sharpened images filtered by different
techniques for image sharpening. Because the final result of
the anisotropic diffusion (AD1 and AD2) is based on the
use of the unsharp masking, the kriging-weighted Lapla-
cian kernel ω1 was also applied to be further filtered by
unsharp masking operators UM1 and UM2, denoted as
ω1-UM1 and ω1-UM2, for the purpose of comparison of
the performance between the two anisotropic methods. Fil-
ters L1, L2, LoG, H1, and H2 produced similar sharpened
‘‘Albert Einstein’’ and ‘‘Bow’’ results as previously dis-
cussed for the other four images. In particular, amplification
of the image contrast yielded by H1 and H2, and unnatu-
ral hair as well as facial effects of the ‘‘Albert Einstein’’
output from AD2 can be clearly observed. Combined fil-
ters ω1-UM1 and ω1-UM2 resulted in the highest measures
of sharpness (20.63 and 22.71 respectively for the ‘‘Albert
Einstein’’ image, and 28.04 and 30.41 respectively for the
‘‘Bow’’ image) among other filters UM1, UM2, AD1, and
AD2. Table 3 shows the measures of sharpness and relative
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FIGURE 5. Original and sharpened images of ‘‘Bridge’’, using Laplacian (L1 and L2), LoG, high-boost (H1 and H2), unsharp marking (UM1 and UM2),
anisotropic diffusion (AD1 and AD2), and kriging-weighted Laplacian kernels (ω1 and ω2).

FIGURE 6. Original and sharpened images of ‘‘Nature’’, using Laplacian (L1 and L2), LoG, high-boost (H1 and H2), unsharp marking (UM1 and UM2),
anisotropic diffusion (AD1 and AD2), and kriging-weighted Laplacian kernels (ω1 and ω2).

sharpness of these two images obtained from the Laplacian,
LoG, high boost, unsharp masking, anisotropic diffusion, and
kriging-weighted Laplacian methods.

There are two types of approaches to measure the quality
of an image: no-reference quality metrics and full-reference
quality metrics. No-reference quality methods compute
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FIGURE 7. ‘‘Albert Einstein’’ image and its sharpened versions provided by Laplacian (L1 and L2), LoG, high-boost (H1 and H2), anisotropic diffusion
(AD1 and AD2), unsharp marking (UM1 and UM2), and combined kriging-weighted Laplacian kernel and unsharp masking (ω1-UM1 and ω1-UM2).

FIGURE 8. ‘‘Bow’’ image and its sharpened versions provided by Laplacian (L1 and L2), LoG, high-boost (H1 and H2), anisotropic diffusion (AD1 and
AD2), unsharp marking (UM1 and UM2), and combined kriging-weighted Laplacian kernel and unsharp masking (ω1-UM1 and ω1-UM2).

statistical features of an input (either original or filtered)
image to assess the image quality. Full-reference algorithms
compare the quality between the original and a filtered image.
The perception-based image quality evaluator (PIQE) [36],
which is a no-reference image-quality metric, were used to

evaluate quality of the images filtered by the Laplacian, LoG,
high-boost, and kriging-weighted Laplacian filters. The PIQE
score is inversely correlated to the perceptual quality of an
image in the range [0, 100]. A lower score indicates higher
perceptual image quality.
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FIGURE 9. Computational speeds for sharpening the ‘‘Bow’’ image vs. different resolutions required by various operators: Laplacian, Laplacian of
Gaussian (LoG), high boost (HB), unsharp masking (UM), anisotropic diffusion (AD), and kriging-weighted Laplacian (KL) filters.

The mean-squared error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity (SSIM) were used as
full-reference quality metrics to evaluate the sharpened
images. Because the MSE computes the average squared
difference between original and filtered pixel values and the
PSNR is derived from the MSE, these two measures may not
agree well with the human perception of quality. Because the
SSIMmetric [37] considers local pixel intensities, luminance,
and contrast to compute a single local quality score, the SSIM
measure is more in alignment with human-based quality scor-
ing. For the SSIMmeasure, a value closer to 1 indicates better
image quality.

Table 2 shows the no-reference and full-reference quality
metrics for the ‘‘Moon’’, ‘‘Lena’’, ‘‘Bridge’’, and ‘‘Nature’’
images, and Table 3 shows the no-reference and full-reference
quality metrics for the ‘‘Albert Einstein’’ and ‘‘Bow’’ images.

For the ‘‘Moon’’ image, AD2 has the highest (63.67) and
L1 has the lowest (19.90) PIQE scores. The PIQE scores of
both ω1 and ω2 are between the highest and lowest values,
suggesting the balance of visual effect in image sharpness
provided by the kriging-weighted Laplacian kernels. For
the ‘‘Lena’’, L2 and AD2 obtained the highest (59.50) and
lowest (46.33) PIQE scores, respectively. For the ‘‘Bridge’’,
L2 and L1 have the highest (72.00) and lowest (43.52)
PIQE scores, respectively. For the ‘‘Nature’’, both H1 and
H2 have the highest PIQE score (67.10), and L1 has the lowest
PIQE score (41.10). Similarly, for the ‘‘Albert Einstein’’ and
‘‘Bow’’ images, both H1 and H2 have the highest PIQE
score and L1 has the lowest. Similar observations about the
two kriging-weighted Laplacian kernels apply to the other
5 images (‘‘Lena’’, ‘‘Bridge’’, ‘‘Nature’’, ‘‘Albert Einstein’’
and ‘‘Bow’’ images).

Regarding the MSE and PSNR, both H1 and H2 have the
highest values, whereas ω1, ω2, UM1, UM2, AD1, and AD2
likely have the lowest values for all six images as shown in
Figs. 3 – 8.

By means of the SSIM, UM1 has the highest score (0.98)
for the ‘‘Moon’’, whereas the score for ω1 (0.91) is also close
to 1; both UM1 and ω1 have the highest score (0.96) for the
‘‘Lena’’; ω1 have the highest score (0.98) for the ‘‘Bridge’’,
whereas ω2 and UM1 have the second highest value (0.96);
for the ‘‘Nature’’, ω2 has the highest score (0.98); UM1 and
ω1-UM1 have the highest scores for both ‘‘Albert Einstein’’
(0.98) and ‘‘Bow’’ (0.97) images. Both H1 and H2 have the
lowest SSIM scores (0.00), except for the ‘‘Moon’’ image,
H1 scores 0.67. Such results suggest the combination of the
kriging-weighted Laplacian and unsharp marking is more
favorable than the anisotropic diffusion-based unsharp mask-
ing.

The main computational cost for the proposed method is
the solving of a system of simultaneous linear equations with
either 5 or 9 variables and their associated semivariogram
values using either L1 or L2, respectively. Such a cost is not
high because the computation is done only once, and the times
taken for the kriging-weighted Laplacian filter were about
0.03 sec, 0.02 sec, and 0.01 sec longer than the conventional
Laplacian, HBF, and LoG filters, respectively, for the images
shown in Figs. 4–6, obtained from the central processing
unit (CPU) of Intel(R) Core(TM) i7-6500U CPU@2.50GHz.
Fig. 9 displays the plot of computational times required
by the Laplacian (L1), HBF (H1), LoG, unsharp masking
(UM1), anisotropic diffusion (AD1), and kriging-weighted
Laplacian (ω1) methods against different resolutions of the
‘‘Bow’’ image performed on the same mentioned computer
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hardware, showing the anisotropic diffusion required longest
computational time, and the speed for the kriging-weighted
Laplacian slowly increased with higher image resolutions.

Edge-sharpening kernels aim to increase the contrast on
image edges, that is the darker side of the edge becomes
darker and the brighter side brighter; therefore, contrast of the
whole image is not affected. As a result, the filtering may lead
to edge degradation and other traces such as halos or white
artifacts [38] because of sharp transitions in signals. The high-
boost filtering raises the high-frequency components of an
image by addingmore weight to the masked pixels, and there-
fore can effectively enhance image-shading effects; however,
in many cases, it can be very sensitive to noise and magnify
unwanted image details. While the Laplacian filtering can
restore fine image details, its second-order derivative tend to
amplify noise. The LoG is a combination of Laplacian and
Gaussian filters, which tries to smooth the original image
before applying the Laplacian filter for image sharpening;
thus, in some cases, it fails to pick up fine characteristics
of an image to a satisfactory level. Results obtained from
the unsharp masking and anisotropic diffusion-based unsharp
masking can preserve the sharpness of edges better than
the Laplacian and LoG methods, but largely depend on the
selection of the standard deviation of the Gaussian low-pass
filter that may adversely affect the image sharpening if not
appropriately selected.

Based on the spatial-statistics properties of an image
on its vertical, horizontal, and diagonal directions, the
kriging-weighted Laplacian filter derives and convolves the
kriging weights with a kernel of second-order derivative for
image sharpening. For an isotropic and homogeneous image,
it may provide an output similar to the LoG (as in the case
of the ‘‘Moon’’ image). For an image of anisotropic con-
tent, the kriging-weighted Laplacian filter is able to suppress
unwanted details (Lena’s hair streaks and ‘‘Nature’’ image),
or provide a balanced result between Laplacian, LoG, and
high-boost filtering methods (‘‘Bridge’’ image). For sharpen-
ing images of textural content such as the ‘‘Lena’’ and ‘‘Albert
Einstein’’ images, the kriging-weighted Laplacian method
can provide sharper and more natural visualization than the
unsharp masking and anisotropic diffusion-based unsharp
masking. Another advantage of the kriging-weighted Lapla-
cian method over the LoG, high-boost, unsharp masking, and
anisotropic diffusion filters is that the proposed method is
free from statistical parameter specification, which plays a
sensitive role to the other models.

IV. CONCLUDING REMARKS
Kriging, which is a geostatistical approach, has been applied
to image and signal processing [39]–[44]. An image sharp-
ening filter that incorporates anisotropic information cap-
tured by ordinary kriging into the Laplacian filters has been
presented. Values of the kriging-weighted kernels are esti-
mated from a spatial variance of an image under study, whose
directions of intensity distribution can be of either isotropy or
anisotropy.

Results obtained from the foregoing examples have illus-
trated certain advantages of the kriging-weighted Lapla-
cian method: It is capable of producing filtered images that
have sharper visualization than the Laplacian, LoG, unsharp
masking, and anisotropic diffusion filters, and less effect
of unwanted-detail highlights than the Laplacian, LoG, and
high-boost filters. The proposed method can provide results
that are of better balance between image sharpness and sub-
jective image quality than the Laplacian, LoG, high-boost,
unsharp masking, and anisotropic diffusion filters. In addi-
tion, kriging-based kernels of difference sizes can be derived
for convolving with other types of filters to suit various
applications in image processing. Kriging-based filtering can
also be used as adaptive kernels that consider local semivari-
ograms of an image to result in different levels of filtering for
modeling structural variability of the image continuity.

Some current limitations of the kriging-weighted Lapla-
cian method are that the computation of the kriging sys-
tem to determine the optimal kriging weights is based on
the experimental anisotropic semi-variograms and applies to
only grayscale images. A feasible future work for improving
the proposed method would be the consideration of min-
imization of errors between the experimental anisotropic
semivariogram and several theoretical anisotropic semivar-
iogram models for kriging interpolation developed in geo-
statistics [45] to construct better spatial correlations among
intensities and spatial patterns of pixels. Another future work
is the extension of the kriging-weighted Laplacian kernels
for color-image sharpening, which can be readily derived by
the incorporation of the multivariable semi-variogram [46]
to compute kriging weights of color images. Furthermore,
for processing a large number of high-resolution images, the
computing speed of the proposed method can be potentially
enhanced by considering a parallel strategy for optimizing
the running time of the Laplacian-based sharpening approach
using graphic processing units [47].

CODE AVAILABILITY
MATLAB codes implemented in this study are available at:
https://sites.google.com/view/tuan-d-pham/codes, under the
name ‘‘Kriging-weighted Laplacian kernels’’.
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