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ABSTRACT Circular statistics has been applied to several areas of knowledge in which the input data
is circular or directional. Noisy measurements are still a problem in circular data applications and, like
non-circular data, second-order statistics have some limitations to deal with non-Gaussian noise. Recently,
a similarity function called correntropy has been successfully employed in applications involving impulsive
noise for being capable of extracting more information than second-order methods. However, correntropy
has not been studied from the perspective of circular data so far. This paper defines a novel statistical measure
called circular correntropy (CC). It uses the von Mises density function in order to redefine correntropy in
this domain. In particular, it is proved analytically that the CC contains information regarding second-order
and higher-order moments, being a generalization of the circular correlation measure. The performance of
this novel similarity measure is evaluated as a cost function in a nonlinear regression problem, where the
signals are contaminated with additive impulsive noise. The simulations demonstrate that the CC is more
robust than circular correlation in impulsive noise environments.

INDEX TERMS Circular correntropy, circular statistics, correntropy, directional statistics.

I. INTRODUCTION
Circular data can be found in nature or produced artificially
by physical devices such as a compass, watch hands, wind-
sock, theodolite, among others. Such signals are commonly
represented as angle values in degrees or radians in relation
to an arbitrary origin in a clockwise or counterclockwise
direction [1]. The fact that the mean direction between 10◦

and 350◦ is 0◦ instead of 180◦ provides an illustration of how
specific statistical methods are required for analyzing angular
data.

Circular statistics is an area of statistics that deals with
periodic data that assume values in an interval from−π to π ,
which can also be represented as points on the circumference
of a unit circle. In this case, the support for circular data is the
unit circle like a real line is the support for linear data [2].

Several works have presented specific concepts for the
representation and analysis of circular data, e.g., circular
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and linear histograms, rose diagrams, data distributions such
as uniform and von Misses distributions, measures of loca-
tion, concentration, dispersion and similarity such as mean,
variance and correlation, among others [2]–[5]. The afore-
mentioned theories are applied in different areas of science
such as meteorology [6], [7], biology [8], animal migra-
tion [9], medicine [10], [11], temporal events [12], [13].
However, these types of applications are not free from noise
degradation [14], [15].

Correntropy is a kernel-based similarity measure capa-
ble of extracting infinite even-order statistical moments
from data, being a generalization of the correlation con-
cept [16]. Another important characteristic of this measure
is that it provides improved performance when compared
with second-order methods when dealing with non-Gaussian
noise such as impulsive noise environments [17]–[26]. Owing
to such characteristics, correntropy has been successfully
applied to many practical problems, e.g., extraction of
higher-order temporal characteristics [27], [28], estimation of
impulsive noise [29] and active noise control [30], [31]–[33],
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Kalman filter [19], [34], compressive sensing problems in
impulsive noise environments [35], [36]. However, the appli-
cation of correntropy to circular data has not yet been
explored or defined.

This paper presents a novel similarity measure applied to
circular data defined as circular correntropy (CC), which is
based on the conventional correntropy definition, but using
the von Mises density function as the kernel function in
the Parzen window estimator. Besides that, it is shown that,
analogously to correntropy, CC has high-order statistical
information, but with a computational burden equivalent to
second-order methods. Furthermore, it is shown that the CC
generalizes the circular correlation concept. This is a signif-
icant result, because it provides an efficient way of analyz-
ing both second-order and higher-order environments with a
computational burden equivalent to that of correlations. Sim-
ulation results demonstrate the advantages of the proposed
measure in non-Gaussian environments when compared with
second-order statistical measures, e.g., circular correlation
and the mean square error (MSE) method, where the impul-
sive noise deteriorates the performance of the algorithms such
as with non-circular data [37].

The remainder of this paper is organized as follows.
Section II introduces circular statistics and highlights impor-
tant concepts and measures. Section III provides a theoretical
background on correntropy. Section IV defines the CC for
circular statistics and shows that it generalizes the circular
correlation. Section V presents the obtained results in order
to analyze the performance of CC in non-Gaussian environ-
ments. Section VI summarizes the main conclusions.

II. CIRCULAR STATISTICS
In circular statistics, which is also referred to as directional
statistics, measures like mean and variance are not as straight-
forward as their counterparts associated with non-circular
statistics [4]. Since values now can wrap around from −π
to π , it is not possible to rely on polynomial moments that
would be sensitive to limits of integration and wrapping
around boundaries. Hence, measures like mean and variance
are defined using circular moments in the form [2], [4]:

m8n = E{ej n8} =
∫ π

−π

ej nφ f8(φ) dφ, (1)

where mn is the n-th circular moment generating func-
tion of the random variable 8, whose distribution is f8(φ).
Besides, it is worth mentioning that mn is a complex number,
while some measures can be defined by such parameter.
Based on this concept, it is possible to define the following
quantities [4], [38]:

µ8 = 6 (m81 ), (2)

R(8) = |m81 |, (3)

where µ8 is the mean direction angle and R(8) is the mean
resultant length, which denotes how concentrated the data
are. Based on this assumption, one can define the variance
as Var(8) = 1− R(8) [4], [5].

A. CIRCULAR PROBABILITY DENSITY FUNCTION
The data involved associated with probability density func-
tions in circular statistics must be limited to the interval −π
to π or 0 to 2π . There are several distributions that can be
used tomeet this criterion. A popular distribution used for this
purpose in the literature is the von Mises distribution, i.e., the
circular normal distribution [38], which is given by

Mσ (φ|µ, σ ) =
eσ cos(φ−µ)

2π I0(σ )
, (4)

where parameterµ is the circularmean of the randomvariable
that has a von Mises distribution, and σ is the parameter
related to the variance of such random variable; I0 is the
modified zero-order Bessel function of the first kind. The von
Mises distribution resembles the Gaussian distribution as σ
tends to zero.

For the von Mises distribution, the variance of the random
variable can be computed as [2], [4]:

Var(8) = 1− E{cos(8− µ)}. (5)

B. CIRCULAR CORRELATION
In circular statistics, correlation is a very important
measure that has been used in several areas of knowledge,
which include biology [39], signal processing [40], neuro-
science [41], among others. It has also been used to measure
the association of two circular random variables. A very
common correlation concept is the Fisher correlation coef-
ficient [42], which is given by

Corr(8,2)

=
E [sin(8− µ8) sin(θ − µθ )]√

E
[
sin(8− µ8)2

]
E
[
sin(θ − µθ )2

]
=

E
[
cos

(
(8−µ8)−(2−µ2)

2

)2
− cos

(
(8−µ8)+(2−µ2)

2

)2]
√
E
[
sin(8− µ8)2

]
E
[
sin(θ − µθ )2

] ,

(6)

where 8 and 2 are random variables defined in the interval
−π to π and µ8 and µ2 are the mean direction angles for8
and 2, respectively.

III. CORRENTROPY
Correntropy is a generalized similarity measure defined
as [16]

Vσ (X ,Y ) = E{κσ (X ,Y )}, (7)

where X and Y are scalar real-valued random variables,
E[ . ] is the expected value operator, and κσ (.) is any
positive-definite kernel with parameter σ . Equation (7) can
also be written in the form:

Vσ (X ,Y ) =
∫∫

κσ (X ,Y )fXY (x, y)dxdy, (8)

where fXY (x, y) is the joint probability density function (PDF)
obtained from X and Y . Selecting the Gaussian kernel as
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κσ (X ,Y ) = Gσ (X ,Y ) leads to

Vσ (X ,Y ) =
∫∫

Gσ (X ,Y )fXY (x, y)dxdy = E{Gσ ′ (X ,Y )},

(9)

where σ ′ =
√
2σ [43].

IV. CIRCULAR CORRENTROPY
Based on the definition of conventional correntropy for planar
statistics in (7), one can define the CC for circular statistics
as:

Cσ (2,8) = E{kσ (2,8)}, (10)

where 2 and 8 are random variables defined in the interval
−π to π and σ is a size parameter for the kernel k .
In equation (10), the kernel must satisfy the same proper-

ties as the conventional correntropy. In order to obtain such
a kernel, let us proceed as in the case of the conventional
correntropy concept and apply the probabilistic interpreta-
tion [37], [44]. A detailed description of this procedure can be
found in Appendix. In this approach, calculating the corren-
tropy between two random variables2 and8 is equivalent to
estimating the probability density of the event 2 = 8 = ψ .

Cσ (2,8) = P̂(2 = 8) =

π∫
−π

f̂ σ28(θ, φ)|θ=φ=ψdψ,

(11)

where P̂(2 = 8) is the estimated probability of the
event 2 = 8.

Then, in order to model the joint PDF f̂ σ28(θ, φ) the
Parzen window method is used with the von Mises density
function as a kernel. In most cases, only a finite number of
samples is available, resulting in:

f̂σ28(θ, φ) =
1
N

N∑
i=1

Mσ (θ − θi)Mσ (φ − φi), (12)

where N is the number of samples.
Substituting the joint probability estimated in (12) in (11)

leads to

Ĉσ (2,8) =

π∫
−π

f̂σ28(ψ,ψ)dψ

=

π∫
−π

1
N

∞∑
i=0

Mσ (ψ − θi)Mσ (ψ − φi)dψ .

(13)

Using equation (4) in (13) gives

Ĉσ (2,8) =
1

4Nπ2I20 (σ )

N∑
i=1

π∫
−π

eσ(cos(ψ−θi)+cos(ψ−φi))dψ.

(14)

The integral in equation (14) can be solved from equations
(15), (16), and (17):

cos(ψ − θi)+ cos(ψ − φi) = Ai cos(ψ + Bi), (15)

Ai =
√
(cos(θi)+ cos(φi))2 + (sin(θi)+ sin(φi))2

= 2

√
1+ cos(θi − φi)

2
= 2 cos

(
θi − φi

2

)
, (16)

Bi = −tan−1
(
sin(θi)+ sin(φi)
cos(θi)+ cos(φi)

)
. (17)

Then, the integral can then be rewritten as

R =

π∫
−π

eσAi cos(ψ+Bi)dψ =

π−Bi∫
−π−Bi

eσAi cos(ψ)dψ, (18)

since the argument of the integrand is periodic with period
2π , equation (18) can be defined as

R =

2π∫
0

eσAi cos(ψ)dψ, (19)

this term can be identified as themodified Bessel function [4],
from which it is possible to write

R = 2π I0

(
2σ cos

(
θi − φi

2

))
, (20)

finally, equation (21) provides an estimator for the CC
defined in (10) for finite samples. Under the condition
of N → ∞, ĈN ,σ (2,8) is an unbiased estimator of
CN ,σ (2,8) and consistent in mean square.

Ĉσ (2,8) =
1
N

N∑
i=1

I0
(
2σ cos

(
θi−φi
2

))
2π I20 (σ )

≈ E{κσ (2,8)},

(21)

where kσ (2,8) is defined as:

kσ (2,8) =
I0
(
2σ cos

(
2−8
2

))
2π I20 (σ )

. (22)

Now, the correntropy concept can be extended to applica-
tions involving circular data.

A. MAXIMUM CIRCULAR CORRENTROPY CRITERION
After defining correntropy for circular data, it is possible to
extend its application to optimization problems. This section
is concerned with the introduction of a novel method for the
maximum circular correntropy criterion, which employs the
CC as a cost function.

Let 2 = {θi}Ni=0 and 0 = {γ i}
N
i=0 be samples from the

random variables 2 and the random vector 0, respectively.
One can now consider the generalized linear regression prob-
lem that can be applied to filtering, prediction, estimation,
among other tasks. In this case,2 and 0 are random variables
measured in some process in which the values of2 depend on
the samples of 0. Thus, the problem is to estimate the values
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of 2 from the 0 samples, defined as 2̂ = wᵀ0, where w is a
vector that weighs the values of each element in the random
vector 0.
As previously defined, Cσ (2,8) estimates the probability

of the variables2 and8 of being similar. Applying this con-
cept to the regression problem defined above and replacing8
with 2̂ gives

JMCCC = E{κσ (2, 2̂)} =
1
N

N∑
i=1

I0
(
2σ cos

(
θi−θ̂i
2

))
2π I20 (σ )

,

(23)

where JMCCC is the cost function for Maximum Circular
Correntropy Criterion

The goal is to determine the optimal values for w that
maximize the probability of the estimated sign θ̂i = wᵀγ i
to be similar to θi.
Analytically, it is hard to find a set of w that maximizes

the cost function JMCCC . Thus, one can use the ascending
gradient method defined by:

wn+1 = wn + µ∇JMCCC = wn + µ
∂Ĉσ (2, 2̂)

∂w
, (24)

where the subscripts n, n + 1 represent the iterations of the
gradient method, and

∂Ĉσ (2, 2̂)
∂w

=
σ

2πNI20 (σ )

N∑
i=1

I1

(
2σ cos

(
θi − θ̂i

2

))

× sin

(
θi − θ̂i

2

)
∂2̂

∂wi
, (25)

where I1 is the modified first-order Bessel function of the first
kind.

Now, this new criterion can be applied to optimization
problems involving circular data. Similarly to the conven-
tional correntropy, the kernel size must be adjusted for each
scenario and the particular characteristics of the kernel size
associated with the CC are discussed in the forthcoming
section.

B. KERNEL ANALYSIS
Analogously to the usual correntropy with Gaussian ker-
nel, the new kernel function presented in the CC is based
on von Mises probability distribution, which under certain
conditions resembles a normal distribution. When the CC is
estimated, the resulting values depend on the selected kernel
size represented by σ .
The possibility of adjusting the kernel size provides an

efficient mechanism that allows eliminating outliers or values
that are too different from the data set statistics. In order to
perform this analysis, let us consider the case for which two
random variables 2 and 8 are compared. In particular, the
kernel size controls the weight that each sample will have in
the underlying estimation of the joint PDF of the data. In order
to illustrate such behavior, the random variable δ = 8−2

2 is

adopted. Thus, it is possible to expand equation (22) in terms
of a Taylor series and rewrite it as

kσ (2,8) = 1+
22σ 2 cos (δ)2

4
+

24σ 4 cos (δ)4

64

+
26σ 6 cos (δ)6

2304
+ . . . . (26)

When the random variable δ has no outliers, it means that
2 and8 are more similar. Then, the cosine function remains
close to one and the Bessel function will be weighted by
higher-order terms in equation (26). In this case, choosing
a small kernel size has little impact on the value of the
kernel function for each sample and the correntropy presents
a second-order behavior. On the other hand, when δ has
outliers, it means that 2 and 8 are in different directions on
the trigonometric circle, resulting in a longer trigonometric
distance given by d(α, β) = 1−cos(α−β) [5]. Thus, it leads
the cosine function to assume small values, while the Bessel
function has low values. In this case, a large value of the
kernel size can be used to minimize the influence of outliers.
In order to illustrate this effect, Figure 1 shows the behavior
of kσ (2,8) as function of δ for three different values of the
kernel size σ (1, 10, and 100).
When σ is high, it can be stated that the outliers, which

correspond to values of |δ|much greater than 0, are weighted
out and do not contribute to the final kernel value. The
dependence of the kernel size on parameter σ has a numer-
ical behavior opposite to that observed in the conventional
correntropy. In other words, as σ increases, the kernel size is
reduced in the case of CC.

C. GENERALIZED CORRELATION FUNCTION
Using the series expansion defined in (26) and considering
a sufficiently small kernel size σ , the high-order terms can
be neglected and the kernel function can be considered pro-
portional to 1 + cos

(
2−8
2

)2
. However, they are not directly

proportional because of the constant term equal to 1 in (26).
For optimization purposes, this constant has no effect, as one
can always bias and rescale the measure to make (26) equal
to a second-order measure according to (27). Therefore, one
can state that, for small values of σ , despite a bias term,
correntropy relates do 2 and 8 approximately like:

Cσ (2,8) ∼ E

{
cos

(
2−8

2

)2
}
. (27)

Equation (27) is related to the variance of the difference
between two variables used in second-order circular statistics
as explained in Section II. Hence, the CC can be regarded as
the generalization of the conventional second-order circular
statistics when the kernel size is small.

In particular, in order to demonstrate that the CC is capable
of generalizing the second-order statistics when σ is suffi-
ciently small, equations (6), (27), and (21) can be used to
determine the correlation among random variables. Let u
consider two variable A and B, where B = A + N (0, η).
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FIGURE 1. Behavior of the kernel function for distinct values of σ .

Figure 2 shows a comparison among the CC for several
values of σ , the simple correlation as defined by Fisher, and
the approximation of the CC given by equation (27). The
noise variance was modified so as to minimize the correlation
between A and B and verify the behavior of the measures.
As expected, the approximation for a small value of σ as
obtained from equation (27), the result provided by equation
(21) for σ = 0.3, and the Fisher correlation present nearly
the same tendency. On the other hand, as σ increases, the
correlation presents a different behavior than the second-
order measures.

In fact, both equations (27) and (6) are similar to each
other when considering only the numerator. As expected, the
results presented in Figure 2 show that the CC generalizes
the circular correlation concept when the kernel size is small
enough.

D. JOINT PROBABILITY SPACE FOR CIRCULAR DATA
As previously mentioned, the correntropy measures the sim-
ilarity between two random variables while estimating the
probability of being equal to each other. This metric can be
well illustrated plotting the PDF f̂28(θ, φ). When two vari-
ables are similar to each other, the higher values of f̂28(θ, φ)
are concentrated around region 2 = 8. As previously men-
tioned, both the CC and conventional correntropy calculate
the integral of the density over this region. On the other
hand, for two random variables with low similarity, the peaks
or high values of f̂28(θ, φ) are scattered outside the region
2 = 8. In the specific case of the CC, the space topology
is no longer a plane. Both 2 and 8 are restricted to interval
[0, 2π), and, besides that, values equal to 0 are considered
neighbors of values equal to 2π , while the space defined by
2 × 8 is a toroid. In this context, 2 = 8 now defines a
region in the toroid that corresponds to an inner ring. Thus,
the CC now estimates the integral of f̂28(θ, φ) along the
ring. In order to illustrate this behavior, let us consider the
relationship between 2 and 8 as 8 = a2 + N (0, 0.05).
Figure 4 shows the joint probability space for two random
variables in terms of the planar and toroidal representations.
Figs. 3a and 3b correspond to two random variables that
are highly similar, where a = 1 and the Figs. 4a and 4b

FIGURE 2. Comparison between correlation and correntropy with a small
kernel size, demonstrating that circular correntropy generalizes
second-order circular statistics. The plots were re-scaled to match the
first and the last values of the correlation to 1 and 0, respectively.

correspond to a = 2, i.e., the variables have low degree of
similarity. The light cyan lines represent the surface 2 = 8.
The first column denotes that the data are distributed around
the line, thus evidencing a high degree of similarity. The data
are not coincident in the second column, thus corresponding
to a low degree of similarity, i.e., the integral of f̂28(θ, φ) has
a low value.

V. RESULTS
This section aims to demonstrate the application of the CC to
two distinct approaches. Firstly, a brief interpretation of the
CC concept involving real data on wind direction measure-
ments is presented. Secondly, some results on linear system
identification are discussed in order to assess the influence
of the kernel size, validate the generalization of the proposed
metric experimentally, and establish a fair comparison with
results provided by second-order statistics.

A. SIMILARITY ANALYSIS
In order to analyze the behavior of the method introduced
in this work, wind direction data measured in the city of
Porto Alegre, Brazil in 2016 were used, which are available
at [45].The data can be represented by a circular random vari-
able 2, being θ1 . . . θn ∈ [0, 2π) and was analyzed in two
scenarios: in the presence of outliers and in an environment
with impulsive noise.

The performance of the new metric was then compared
with that of second-order statistics. The joint probability
space was plotted along a toroid following the same method-
ology employed in Figure 4. The values of2were distributed
along the circular arc generatrix of the toroid, while the
samples of contaminated variable 8 were distributed along
the circumference at the central axis.

1) SIMILARITY ANALYSIS IN PRESENCE OF OUTLIERS
In order to investigate the robustness of the assessed methods,
the data were contaminated with 40% of outliers in direction
π/4, while the new set of samples was defined as belonging
to random variable 8.
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FIGURE 3. Joint probability space for two variables defined as 2 and
8 = a2+ N(0,0.05) for a = 1. The representation is shown in the plane
and in the toroid, respectively.

Figure 5(a) comprises the analysis using the second-order
statistics. It shows that the probability values are strongly
influenced by the presence of outliers since the values at φ =
π/4 are significantly higher than those along the line2 = 8.
On the other hand, Figure 5(b) considers the same scenario
for the application of CC with σ = 50. It is observed that
the probability function is not concentrated around the region
containing outliers, but distributed along the line 2 = 8.
Therefore, it is reasonable to state that the CC is more robust
to outliers with an appropriate kernel size selection.

2) SIMILARITY ANALYSIS FOR ALPHA-STABLE NOISE
ENVIRONMENTS
Moreover, an additional test was performed by contaminating
the samples with an alpha-stable noise comprising a wrapped
Cauchy (WC) distribution [5].

Figure 6(a) shows the behavior of MSE in an impulsive
noise environment, which considers only second-order statis-
tics. One can notice that the probability values are strongly
influenced by the samples outside the line 2 = 8. On the
other hand, Figure 6(b) considers the same scenario using
CC with σ = 50 instead of MSE. It is observed that the
probability function is distributed along the line 2 = 8.

FIGURE 4. Joint probability space for two variables defined as 2 and
8 = a2+ N(0,0.05) for a = 2. The representation is shown in the plane
and in the toroid, respectively.

Thus, is reasonable to state that the CC is more robust to noise
that follows a long tail distribution such as the alpha-stable.

B. CIRCULAR REGRESSION APPLICATION
In order to evaluate the applicability of the CC, let us consider
the example of a regression using different kernel size values.
The goal is to fit the following simple model:

2 = w̄28
2
+ w̄18+ w̄0 + η. (28)

The observations of variables 2 and 8 are defined by θi
and φi, where i = 1, . . . ,N and w̄0, w̄1 and w̄2 are the known
parameters of the model; and η is an additive non-Gaussian
noise signal. Therefore, this procedure aims at determining
values of w0, w1, and w2 for which the estimated model 2̂ =
w28

2
+ w18 + w0 is as close as possible to 2. In order to

achieve this goal using the CC approach, it is necessary to
maximize this statistical measure between the estimation 2̂
and the observations of model 2.

Owing to the oscillatory nature of this cost function, it is
expected to contain the local maximum. Therefore, a little
improvement associated with the gradient rule is required.
In particular, the momentum gradient rule is used in this work
for this purpose [46]. Basically, the cost function is used as the
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FIGURE 5. Joint probability space for θ and 8 with outliers in π/4.
(a) Second-order statistics (b) CC for σ = 50.

gravity, while a friction coefficient, a mass, and an integration
time interval are adopted. Now, it is possible to write the
update rule for parameters wj as:

vj+1 = vj + µm∇JMCCC − βvj,

wj+1 = wj + µvj+1, (29)

where vj and wj are the velocity and position of the parame-
ters, respectively; ∇JMCCC represents a derived cost function
with respect to wj;m, β, and µ are the mass, friction and inte-
gration time interval, respectively as defined in Equation 23.

In this section, simulation results are presented to validate
the theoretical analysis and demonstrate the performance of
the proposed measure. All results are calculated from the
average of 103 Monte Carlo trials. The performance is eval-
uated by the weighted signal-to-noise ratio (WSNR), which
is used to quantify the convergence rate properly in deci-
bels [47], as defined by

WSNRdb = 10 log10

(
w̄ᵀ w̄

(w̄− w)ᵀ(w̄− w)

)
, (30)

where w are the parameter vectors computed by the afore-
mentioned methods and w̄ are the known parameters used in
the tests.

The desired signal is formed by the product of the
proper weights w̄ and the input random variable values as

FIGURE 6. Joint probability space for θ and 8 with alpha stable noise.
(a) Second-order statistics (b) CC for σ = 50.

TABLE 1. Mass and β coefficients used in the simulations for each
assessed algorithm.

defined in equation (28). Then, an impulsive noise signal is
added, whose probability density function is characterized by
0.9N (0, 0.1)+ 0.1N (2, 0.5).
Of course, there are proper sizes of m, β, and σ for each

system. Thus, the performance of the CC was analyzed while
varying m between 0 and 1; varying β between 0 and 0.6;
using three distinct kernel sizes; and calculating the resulting
MSE. Figures 7(a) to 7(d) show the performance of MSE and
CC with kernel sizes of 0.8, 1.5, and 2. All simulations were
performed considering the following parameters: µ = 0.02,
w̄ = {0.3,−1, 1.5}, and w = {0, 0, 0}. Table 1 presents the
best results obtained in the tests.

In order to evaluate the proposed measure, the regression
problem has been considered while using the values of m, β,
and k listed in Table 1.

Figures 8 and 9 compare the WSNR performance for the
MSE and CC using different values of kernel size in the
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FIGURE 7. WSNR as a function of the m and β coefficients for the
following algorithms: (a) MSE, (b), (c) and (d) CC with σ = 0.8, σ = 1.5,
and σ = 2, respectively.

regression problem. In this experiment, it is possible to ana-
lyze the behavior of the CC. It is observed that the proposed
measure performs significantly better than the MSE, while
also generalizing second-order statistics for small values of σ .
The results demonstrate that the CC presents a significant

improvement in terms of theWSNRwhen compared with the

FIGURE 8. Performance comparison of correntropy for different kernel
sizes and MSE in terms of the WSNR.

FIGURE 9. Standard deviation for the WSNR in Figure 8.

MSE when σ = 1 and σ = 1.3. This is due to the high-order
moments that minimize the effects of impulsive noise. In par-
ticular, the CC tends to the second-order statistics for small
kernel sizes as previously mentioned in Section IV-B.

VI. CONCLUSION
This work has presented a novel extension of the corren-
tropy concept to circular data defined as CC. A significant
contribution of this work lies in obtaining the expression for
the CC through a probabilistic interpretation, where the von
Mises density function was applied in the Parzen Window
method to estimate how similar two circular random vari-
ables are. An analytical proof was presented to evidence
that the CC contains information regarding second-order and
higher-order moments, being a generalization of the circular
statistics. A detailed analysis on the use of kernel size was
presented to adjust high-order information, denoting that the
CC tends to the second-order statistics for small values, this
being the opposite behavior observed in the case of the con-
ventional correntropy. The CC was used in computer simu-
lations employing real data on the wind direction, showing
its robustness to impulsive noise. Besides that, the maximum
circular correntropy criterion (MCCC) was introduced and
applied to a nonlinear regression problem, also achieving
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significant performance improvement when compared with a
second-order derived method. Future work includes investi-
gating the application of the introduced measure to other real
problems, e.g., direction of movement of icebergs, propaga-
tion of cracks, and directional phenomena.

APPENDIX
PROBABILISTIC INTERPRETATION
The probabilistic interpretation establishes that it is possible
to estimate the correntropy between two random variables
2 and 8 by calculating the value of the probability density
associated with the event 2 = 8. Let σ be the parameter
that defines the circular kernel widthKσ (8, θ). Thus, making
σ →∞ gives the following relation.

lim
σ→∞

Cσ (2,8) =

π∫
−π

f2,8(θ, φ)|θ=φ=ψdψ = P(2 = 8),

(31)

where f2,8(θ, φ) is the joint probability density func-
tion (PDF) obtained from 2 and 8.

Proof: Starting from the definition of correntropy estab-
lished in (7) and applying the von Mises distribution as a
kernel function, one can obtain:

Cσ (2,8) = E{Mσ (2−8)}

=

π∫
−π

π∫
−π

f2,8(θ, φ)Mσ (2−8)dθdφ. (32)

Since the von Misses distribution tends to a Gaussian
one when σ tends to infinity, the following equality can be
established:

lim
σ→∞

Mσ (θ ) ≡ δ(θ ), (33)

Substituting (33) in (32) gives:

lim
σ→∞

Cσ (2,8) =

π∫
−π

π∫
−π

f2,8(θ, φ)δ(θ − φ)dθdφ, (34)

If 2 = 8 = ψ , one can write the following expression:

lim
σ→∞

Cσ (2,8) =

π∫
−π

f2,8(ψ,ψ)dψ = P(2 = 8). (35)

Thus, it is reasonable to assume that correntropy can
be interpreted as the probability density associated with
event 2 = 8.
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