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ABSTRACT Outlier detection in vibration signals can play an important role in addressing the issue
of structural or environmental changes during vibration testing. In this study, a transformer-based model
for outlier detection is proposed. Unlike previous statistical and regression outlier detection methods, the
proposed model can identify the outlier location in a high dimensional observation space using the self-
attention mechanism. The location of outliers within the vibration observation is marked by a combination
of a spatial label and a temporal label. The outlier detection performance of the model is verified by a
numerical study of the plane wave and an experimental study of the vibrating plate. These two studies show
that the proposed model has good label prediction accuracies (all above 85%) toward the outlier location
within the plane wave and vibrating plate observations.

INDEX TERMS Outlier detection, transformer network, vibration testing.

I. INTRODUCTION
Outlier analysis of vibration signals has been studied bymany
researchers to identify novel data caused by environmental
or structural variability [1]–[3]. The measured data can
deviate from its normal conditionwhen the vibration response
carries information about the structural changes or the
environmental factor such as temperature and load. Both
types of deviation need to be handled very carefully, lest they
lead to false alarms. Therefore, analysis of structural-induced
or environmental-induced outliers is of interest because it
facilitates valid variation detection in measured responses
before using any further data processing techniques for
revealing the structural condition.

Detecting outliers in multivariate vibration observations
often proves to be more difficult than in univariate data
because of the additional dimensionality [4]. Several attempts
have been made to extract outliers concealed in the vibra-
tion observation. The most commonly used outlier detec-
tion method is the Mahalanobis squared-distance (MSD)
[5]–[7] which characterises the normal vibration observation

The associate editor coordinating the review of this manuscript and

approving it for publication was Qichun Zhang .

as a mean vector and a covariance matrix. A discordance
test follows to evaluate whether a new observation has
outliers. Despite the accessibility of MSD, there remains
a paucity of evidence on its performance over inclusive
data (the data with outliers). Furthermore, [8] proposed
minimum volume enclosing ellipsoid (MVEE) and minimum
covariance determinant (MCD) method to improve the
detection of the inclusive outlier. Another outlier detection
method is dimension reduction [9]. Typically, principal
component analysis (PCA) [10] is used to retain information
related to outliers. By substituting a group of correlated
variables into a new smaller group of principal components,
PCA can find the component relevant to the variability caused
by outliers. In addition, the regression method also achieved
notable results in outlier analysis. Unlike the statistical
or dimension reduction method, the regression method [3]
focuses on predicting the next time step of the measured
response. By discriminating outliers from the reference
regression model, the regression method is advantageous
for online monitoring. However, the above conventional
methods have some disadvantages in detecting outliers in
high dimensional space. For example, in statistical method,
the masking or swamping effects [11] due to the dominant
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normal component of the high dimensional data can make
the variation contributed by outliers invisible. Moreover,
if observations that represent the normal condition are
inconsistent, they will become dispersed across the feature
space. As a result, dimension reduction techniques like PCA
may be infeasible for outlier detection due to the masking
effects caused by normal variation components. Regarding
regression methods, few studies have been able to draw on
any systematic research into the correlation of data points
within the high dimensional observation, which may carry
the high dimensional feature related to the outlier. In short,
detecting outliers becomes challenging as the dimensionality
of the observation space increases.

More recently, artificial neural network (ANN) [12] is
utilized for outlier detection on account of its nonlinear
approximation capability. ANN can approximate nonlinear
features or classify groups of features divided by nonlinear
boundaries. Multilayer perceptron, convolutional and recur-
rent neural networks (MLP, CNN, RNN) [13]–[15] are the
most popular ANNs for outlier detection. [16] proposed a
CNN-based model to identify or eliminate abnormal data.
The CNN is used to extract temporal features in the vibration
time series for abnormal data classification. But the outliers
discussed in this paper fairly exceed the mean and variance
of the normal vibration observations. Accordingly, the outlier
approximation potential of the model in this paper is not fully
investigated. [7] proposed an RNN model with long short-
term memory (LSTM) cells to approximate the Mahalanobis
distances of normal conditions. By subtracting the predicted
distances from that of the measured observations, one can
monitor the variation caused by outliers. However, the
approximation performance of this model is limited by
the statistical distance metrics it applies. So far, there has
been little discussion about exploiting ANN capacity for
locating outliers. CNN uses convolution windows or filters to
transform data into feature maps and RNN relies on recurrent
cells for sequential feature extraction. CNN has shown state-
of-the-art performance in local feature extraction but remains
highly sensitive to adversarial noise. For outlier analysis,
this means that the CNN-based model has weak robustness
against inconsistent normal conditions. Furthermore, RNN
has been firmly established as the dominant approach in
sequence modelling and prediction. The sequence processing
mechanism of RNN based model is inherently sensitive to
the input sequence order, which makes the generalization
task of outliers at random sequential positions difficult
to achieve. Although ANN-based model has achieved
significant improvements in approximation capability for
outlier features, the challenge of outlier detection in high
dimensional space and the fundamental constraint of CNN
and RNN architecture remains.

Transformer architectures, in recent work, have demon-
strated impressive performance in the fields of natural
language processing and computer vision [17], [18]. This
type of architecture relies entirely on an attention mechanism
to draw global dependencies between input and output.

FIGURE 1. The input of the transformer network.

Previous research has shown that transformer architecture
is highly robust to severe occlusions, perturbations, and
domain shifts in images [19]. In terms of outlier analysis,
the transformer network is considered as the promising
ANN candidate for outlier detection in high dimensional
space. It has the potential of revealing the location of
outliers within a vibration observation with the help of
positional embedding and attention mechanism. In this study,
we tried to address the challenges of locating outliers in
high dimensional space through a transformer-based machine
learning model. The proposed model shows notable outlier
detection performance in both a numerical study of plane
wave propagation and an experimental study of a vibrating
plate. The main contributions of this paper are:

1. A novel transformer-based model for outlier detection is
proposed.

2. A multi-output layer is implemented in the proposed
model to smooth the outlier location labelling in high
dimensional space and exploit the learning capacity of the
transformer.

3. Numerical and experimental studies are presented to
showcase the performance of the proposed model on outlier
detection.

The remainder of this paper is organized as follows.
Section II introduces the fundamentals of the transformer
architecture. In Section III, the outlier labelling and simu-
lation process, as well as model training and evaluation are
described. The numerical and experimental studies of the
proposed model are presented in Section IV. Finally, the
conclusions are given in Section V.

II. RELATED WORK
In this study, a machine learning model based on a
transformer architecture is proposed for outlier detection in
high dimensional space. Specifically, the proposed model
uses the transformer encoder to replace conventional outlier
detection procedures to directly identify outlier features from
vibration observations. Assuming the input of the transformer
network consists of patches of flattened representations of the
vibration observation at each time step (Fig. 1). The input is
first processed by adding position tokens to flattened vectors
of each time frame using the positional embedding layer.
The embedded input is then fed into the transformer encoder.
Finally, the features extracted by the encoder are processed
by a multi-output classification layer to perform outlier
identification. The overview of the transformer network is
shown in Fig. 2.
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FIGURE 2. The overview of the transformer network.

A. POSITIONAL EMBEDDING LAYER
The positional embedding layer plays an important role in
retaining the positional information of the input. In this study,
the learned 1-dimensional positional embedding method is
adopted, which means the weights of the embedding layer
are trainable and the dimensionality of embeddings added to
the initial vector representation is 1-dimensional. The shift
of the vector representation provides necessary information
for the following transformer encoder to identify the order
of input patches representing different time steps. Details of
the embedding process are shown in Fig. 3 and the number
and size of embeddings are determined by the number of
flattened patches and the size of each patch. For input of
size (m, n), the embedding layer would generate m unique
positional tokens of size (1, n) where m is the number of time
steps of the vibration observation and n is the flattened patch
size of each time step. The weights of tokens are updated
by backpropagation [20] during model training. More details
about positional embedding or encoding can be found
in [21], [22].

B. TRANSFORMER ENCODER
In this section, we discuss the fundamentals of the
transformer encoder consisting of a self-attention module,
a feed-forward layer, normalization layers, and residual
connections [23]. The self-attention module (Fig. 4) has
three input layers, namely, the query, key, and value layer.
These three layers are linear layers that project each group
of embedded vectors into the query, key, and value matrix
respectively. The weights of each input layer are updated
independently and the projection process can be formulated
as:

Q = XWq (1)

K = XWk (2)

FIGURE 3. The positional embedding process.

FIGURE 4. The architecture of the self-attention module.

V = XWv (3)

where X ∈ Rm×n is the input for all three input layers of the
self-attention module, Q,K ,V ∈ Rm×l are the query, key,
and value matrix, Wq,Wk ,Wv ∈ Rn×l are the query, key,
and value projection weights for X. Usually, the size m × l
would be smaller than m× n to reduce the computation cost.
Moreover, an activation function is applied to the scaled dot
product ofQ and K to obtain weights on V . The output of the
self-attention module is computed by:

Att(Q,K ,V ) = softmax(
QKT
√
ml

)V (4)
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where Att is the self-attention function and softmax is
the activation function [24]. In addition, the multi-head
self-attention mechanism is implemented by concatenating
outputs of several self-attention modules, which can be
expressed as:

MH (Q,K ,V ) = WmC(Att1,Att2, . . . ,Atth) (5)

where MH is the multi-head self-attention function with an
output of size hm× l,C refers to concatenate, h is the number
of heads, and Wm ∈ Rm×hm is the projection matrix for the
concatenated outputs of self-attention functions.

In terms of the feed-forward layer, it provides similar
projection functionalities as the input layer in the self-
attention module. The major difference between the input
layer and the feed-forward layer is that the input layer
has no activation function applied while the feed-forward
network has ReLU [25] activation functions in its hidden
layer. More specifically, the feed-forward network is fully
connected network and consists of projection layers with
several hidden layers in between. Furthermore, there are
two residual connections (also known as shortcut connec-
tions). One connection is between the input layer and
the normalization layer after the self-attention module,
and the other connection is between the normalization
layer after the self-attention module and the normalization
layer after the feed-forward layer. These residual connec-
tions are implemented to optimize the mapping process
of both the self-attention module and the feed-forward
network.

III. METHODOLOGY
A. ARCHITECTURE OF THE PROPOSED MODEL
In this study, a transformer-based supervised learning model
is designed for outlier detection in high dimensional vibration
observations. The architecture of the proposed model is
shown in Fig 5. It mainly consists of two parts: a transformer
encoder and a multi-branch output layer. Among these, the
transformer encoder performs location feature extraction of
outliers, and the multi-branch output layer performs the
classification of both the spatial location and the temporal
location of the detected outlier in the high dimensional
vibration measurement.

B. TRAINING LABEL
According to [26], previous works on object detection usually
takes a classifier for the target and evaluates it at various
locations and scales in the observation space. By sliding the
classification window in the observation space or using the
divide and conquer strategy to decompose the observation
space [27], [28], these detection methods can accomplish the
object detection task at the cost of time and optimization
difficulty. Conversely, you only look once (YOLO) system
reframes object detection as a single regression problem
to speed up the detection process. YOLO divides the
2-dimensional input data into grids and predicts the bounding
box of each grid as well as the existence of the target in that

FIGURE 5. The architecture of the proposed model.

FIGURE 6. The labelling process.

box. The label for the object in one grid is a combination of
the bounding box label with 5 predictions and the conditional
class label with 1 prediction. Although YOLO has advantages
in model training speed and can reasons globally about the
input data when making predictions, the labelling process for
training and testing samples is tedious.

Inspired by the above works, this study proposed an
efficient labelling method for outlier detection. The desired
output of the proposed model is the spatial and temporal
labels of outliers within vibration observations. In this study,
it is assumed that outliers occur in certain areas of the
testing points and at a certain period of time throughout
one observation. One high dimensional vibration observation
with outliers can be represented as an H × W × N tensor.
For illustration, the vibration observation is divided into 2 ×
2 areas of size H

2 ×W ×
N
2 as shown in Fig 6. Consequently,

the related spatial and temporal labels according to one-hot
labelling would be: test point area I([1, 0]) and time period
I([1, 0]); test point area I([1, 0]) and time period II([0, 1]);
test point area II([0, 1]) and time period I([1, 0]); test point
area II([0, 1]) and time period II([0, 1]).

C. SIMULATION OF OUTLIERS
Previous studies mostly defined an outlier as a data point that
falls far away from the overall points from a statistical point
of view. However, in this study, the outlier is specified as the
data deviate from its normal conditions, namely the sampling
point strays away from the vibrating behaviour. A deviation
ratio is implemented to introduce outliers in the labelled
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area or subset of high dimensional vibration measurement.
This is achieved by multiplying a percentage of randomly
selected vibration vectors in the labelled area by the following
deviation ratio:

g ∼ U{0, 3} (6)

ri = s ∗ (gi + 1) (7)

where s = 0.1 is the scaling constant, ri is the ith element
of r and the deviation ratio for the ith element of the selected
vibration vector, and g is the probability vector of the same
length as r following the discrete uniform distribution.

D. MULTI-OUTPUT LAYER IN THE MODEL
The proposed model has two output branches after the
transformer encoder (Fig 5). One is for spatial label
learning, and the other is for temporal label learning. This
multi-output architecture forces the transformer encoder
above to maintain both spatial and temporal information in
the encoded feature. During the training process, pooling
layers are employed on these two branches to extract the
spatial and temporal location of outliers respectively from
the encoded feature produced by the transformer encoder.
There are, of course, many other pooling configurations for
the multi-output layer (e.g., max-pooling/average-pooling,
average-pooling/max-pooling). Validating these configura-
tions is essential to quantify how the pooling configuration
of the multi-output layer influences the model prediction.
In section IV, a detailed discussion about the configuration of
the multi-output layer is presented. After the pooling layer in
each branch, the learned feature from prior layers is flattened
into a 1-dimensional tensor and passed into a fully-connected
classification layer for the final prediction. The architecture
of FC layers in the two branches is two stacked dense layers.
The upper layer has ten neurons and the lower has four
neurons.

E. LOSS FUNCTION IN THE MODEL
Both output branches utilize the categorical crossentropy [29]
function as the loss function, which can be formulated
as:

Ls = −
1
n

∑
(gs ln(ps)+ (1− gs) ln(1− ps)) (8)

Lt = −
1
n

∑
(gt ln(pt )+ (1− gt ) ln(1− pt )) (9)

where Ls and Lt are losses of the spatial label branch and the
temporal label branch respectively, n represents the number
of training samples, gs and gt represent the ground truth
spatial and temporal location of outliers within the training
sample, ps is the spatial label branch prediction of the sample
and pt is the temporal label branch prediction of the sample.
In addition, two output branches have the same loss weights,
which means the contribution of Ls and Lt to the loss of the
model is balanced.

F. TRAINING AND EVALUATION
According to the area division of the input data,
as described in section III-B, a possible outlier location in
high-dimensional space is represented by a combination of a
spatial label and a temporal label. Samples with simulated
outliers are fed into the proposed model for training and
a fraction of samples is used as validation data, which
would be used for the evaluation at the end of each epoch.
By monitoring the evaluation result of each epoch, the model
that reaches the best evaluation performance during training
is selected as the best model.

The evaluation metric for the proposed model is cate-
gorical accuracy. This metric computes the frequency with
which the ground truth of the input matches the predicted
label pair or probability pair. If the index of a maximal
ground truth value is equal to the index of a maximal
predicted value, it is counted as a successful prediction
for the model being evaluated. In order to evaluate the
proposedmulti-output model, the categorical accuracymetric
is applied to both output branches and the categorical
accuracy of a single branch represents the performance of
the corresponding outlier detection task. Additionally, the
optimizer used for model training is adaptive moment esti-
mation (Adam) and the loss weights of the two branches are
0.5 and 0.5.

IV. RESULTS AND DISCUSSION
The proposed model is validated with a numerical study
and an experimental study: the 2-dimensional plane wave
and the plate structure. The vibration data from both studies
can be represented in 3-dimensional form with two spatial
dimensions and one temporal dimension. Moreover, there is
a notable difference between the vibration pattern of a plane
wave and a plate, which helps to verify whether the proposed
model is capable of detecting outliers within different
vibration patterns. The plane wave vibration involves no
shear force and its vibrational behaviour is predictable.
Conversely, the composite plate has nonlinear characteristics
(the discontinuity of mass) and can not be described using the
analytic method. Tensorflow is used in the implementation
of the proposed model. The detailed software environment is
as follows: Tensorflow-gpu 1.14.0, CUDA 10.0, cuDNN 7.4,
Keras 2.2.5, Python 3.7.3.

A. OUTLIER DETECTION IN PLANE WAVE
The governing equation of the 2-dimensional plane wave [30]
is

F(x, y, t) = A(ω0)ei(kxx+kyy−ω0t) (10)

where F(x, y, t) is the value of the plane wave field at time t
and location (x, y), A(ω0) = 1 is the amplitude of the wave
at frequency ω0, kx = 1 is the wave number along the
x axis, and ky = 1 is the wave number along the y axis.
F within the observation space of size 20 × 20 is calculated
in the range of 0 to 1s at a sampling frequency of 20Hz.
Consequently, the observation of the plane wave has a
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TABLE 1. The categorical accuracy of the model for plane wave outlier
detection using different pooling configurations (S/T accuracy: the
categorical accuracy of the spatial/temporal label branch; MAX:
max-pooling; AVG: average-pooling).

TABLE 2. The categorical accuracy of the MAX/AVG model for plane wave
outlier detection using different self-attention head numbers (S/T
accuracy: the categorical accuracy of the spatial/temporal label branch).

size of 20 × 20 × 20. This vibration observation was
divided into 4 × 4 areas as described in section III-B for
outlier location labelling. The vibration sequences within
labelled area are modified by the deviation ratio mentioned
in section III-C. With outlier simulation, 800 plane wave
samples were generated for model training and 160 samples
were generated for model evaluation. Both training and eval-
uation datasets have balanced outlier locations (50/10 sam-
ples for each possible location in the training/evaluation
dataset)

The performances of the proposed model under different
pooling configurations are compared. Table 1 provides the
corresponding prediction result of each configuration and the
transformer encoder in this comparison uses only one self-
attention head.

Although the MAX/AVG configuration achieves the
best overall performance, no evidence suggests that this
configuration is optimal for the spatial and temporal label
output branch. For example, the AVG/MAX configuration
has better temporal label prediction accuracy than that
of the MAX/AVG configuration. One possible implication
of this is that the encoded feature from the single head
transformer is insufficient for the following label prediction
tasks. Therefore, the influence of the self-attention head
number was investigated as well. The performance of the
proposed model using different numbers of self-attention
head is tabulated in table 2 and the MAX/AVG configuration
was adopted by the model. The model attains reasonably
good S and T accuracy (all above 85%) by increasing
the self-attention head number to 6. However, as the self-
attention head number reaches 8, prediction accuracies of
the model drops below 80%. A likely explanation is that
the deterioration of the model performance is caused by
the overcomplicated features from the 8 head transformer
encoder.

In summary, it has been shown in this numerical study
that the proposed model is capable of the outlier detection

FIGURE 7. The vibration observation of the plate.

TABLE 3. The categorical accuracy of the model for vibrating plate outlier
detection using different pooling configurations (S/T accuracy: the
categorical accuracy of the spatial/temporal label branch; MAX:
max-pooling; AVG: average-pooling).

TABLE 4. The categorical accuracy of the MAX/MAX model for vibrating
plate outlier detection using different self-attention head numbers (S/T
accuracy: the categorical accuracy of the spatial/temporal label
branch).

task in the simulated plane wave observation. Additionally,
it is evident that better prediction accuracy of the model can
be achieved through the tuning of pooling configuration of
the multi-output layer and self-attention head number of the
transformer encoder.

B. OUTLIER DETECTION IN VIBRATING PLATE
As shown in Fig. 7, the vibration observation of the plate
was collected from the measurement area. There are 10 ×
10 testing points within this area and the interval between
every two points is 10mm. The plate was excited by a
hand-held exciter (B&K type 5961) at the excitation point
and the vibration signal of each testing points was collected
by an accelerometer (B&K type 8309). In this experimental
study, the vibration data of size (10× 10× 100) was divided
into 4 × 4 areas for the simulation of outliers at different
locations. Moreover, 50 training samples and 10 evalu-
ation samples were prepared for every possible outlier
location.

Like the previous numerical study, the outlier detection
performance of the proposed model in this experimental
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study was examined by 4 pooling configurations. The
prediction accuracy of the single self-attention head model
is shown in Table 3. The AVG/AVG configuration brings
the most biased and the best overall prediction performance
is achieved using MAX/MAX configuration. According to
the numerical study, it seems that the self-attention head
number has positive impact on the prediction accuracy of
the proposed model under certain conditions. Therefore, it is
expected to obtain a further performance improvement of
the MAX/MAX model by increasing its self-attention head
number. However, as shown in Table 4, the increase of
the self-attention head number not necessarily improve the
prediction result. This inconsistency may be caused by the
change of the vibration pattern of the model input. Never-
theless, the proposed model achieves good outlier detection
performance usingMAX/MAX configuration and 6 attention
heads.

V. CONCLUSION
This study proposes a transformer based model for outlier
detection. The multi-output layer in the model relieves the
outlier labelling complexity in high dimensional space by
separating spatial and temporal labels of outliers apart.
During model training, this multi-output layer urges the
transformer encoder to enclose the necessary spatial and
temporal location of outliers in its encoded output for
the following prediction tasks. The proposed model can
locate outliers within pre-divided areas of simulated plane
wave and vibrating plate observations with accuracies up
to 85.6%/93.1% and 99.9%/99.9% respectively. A limi-
tation of the proposed model is that the resolution of
the outlier location is fixed, which hinders its application
in detecting outliers with irregular distribution. A further
study on improving the resolution of the outlier loca-
tion prediction together with outliers clustering will be
considered.
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