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ABSTRACT A key function of modern hearing aids is compression or mapping of sound to the residual
hearing range of those suffering from hearing loss. This paper presents a machine learning approach to
personalize compression in hearing aids in an online manner. The online feature of this approach allows
it to be deployed in the field. The significance of this personalized compression lies in enabling preferred
hearing outcomes relative to the one-size-fits-all prescriptive compression rationales that are currently being
used. This personalization approach utilizes maximum likelihood inverse reinforcement learning to establish
a model of a hearing aid user’s preference based on paired comparisons by the user. The results of the
preference paired comparisons between the personalized and standard prescriptive settings from ten subjects
indicated that personalized settings were preferred about 10 times more than the standard prescriptive
settings. In addition, a word recognition comparison was conducted showing that the personalized settings
had no adverse impact on speech understanding in either quiet or in competing noise conditions.

INDEX TERMS Personalization of compression in hearing aids, hearing aid fitting, maximum likelihood
inverse reinforcement learning.

I. INTRODUCTION
People with normal hearing can hear a wide range of sounds
in terms of sound pressure levels (SPLs) from softest sounds
that are barely audible to loudest sounds that are tolerated
without pain. This range of sound pressure levels is known
as the dynamic range of hearing (∼120 decibels or dB) [1].
In people suffering from hearing loss, this dynamic range
is reduced. To compensate for the reduced dynamic range,
modern hearing aids fit a broad range of sounds into the
residual dynamic range of a hearing impaired person. This
process is referred to as compression.

Compression algorithms amplify soft sounds that are
inaudible but provide less amplification when sound lev-
els exceed a specified threshold called compression thresh-
old (CT) [2]. In this manner, sounds that are below a
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hearing impaired person’s thresholds become audible but
more intense sounds receive less or no amplification to avoid
loudness discomfort. In essence, compression consists of a
gain-frequency response curve at soft, moderate, and loud
SPLs. These curves are typically set by hearing healthcare
professionals using manufacturer’s software during the hear-
ing aid fitting process. After acquiring a person’s lowest
hearing levels across a number of frequency bands, known as
audiogram, a hearing aid is programmed or fitted to provide
gains according to a prescription. The two most widely used
prescriptions are DSL-v5 [3] and NAL-NL2 [4], which are
derived from averages of optimum gain for speech stimuli
from a group of people with similar hearing loss.

In real-world audio environments, however, amplification
needs and hearing preferences of individuals with similar
audiograms can vary considerably from one person to another
[5], [6]. In other words, a prescription derived from the
averages of a group may not be optimal for everyone. In [7],

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58537

https://orcid.org/0000-0002-5277-4847
https://orcid.org/0000-0001-5183-6359
https://orcid.org/0000-0003-0017-1398


S. Akbarzadeh et al.: Online Personalization of Compression in Hearing Aids

it was shown that the preferred gains of more than half of
the subjects who completed the study fell above or below a
6-dBwindow surrounding their NAL-NL1 prescriptive gains.
In general, people’s hearing preferences differ in real-world
audio environments encountered in their daily lives [8]. The
hearing aid fitting process normally takes place in a quiet
office in the absence of real-world audio environments of
particular interest to a hearing aid user. A solution to deal with
real-world audio environments is to personalize the gains for
a hearing aid user based on the user’s hearing preference.

Previous studies have shown that personalization of hear-
ing aid gains can provide preferred hearing relative to stan-
dard prescriptive gains [9]–[16]. In [9], an algorithm was
developed for users to manually adjust the amplification
for several input sound levels and listening situations. The
manual adjustments done in [9] to find the optimal settings
is a non-systematic approach which is time consuming to
conduct. In addition, it is necessary for users to understand,
at least to some degree, how the algorithm works. In many
cases, this is not so easy for users to understand the algorithm
whereas the task of picking the preferred audio in an audio
pair is quite simple and straightforward for users to do. More
recently, machine learningmethods have been used to achieve
personalization settings in a systematic way. For example,
a modified simplex approach was used to find the optimal
hearing aid parameters in [17] and [18]. In a study conducted
by Neuman et al. [19], the modified simplex approach was
found to be more efficient than the two methods of itera-
tive round robin and double elimination. It is to be noted
that the modified simplex method does not work effectively
when the error function possesses multiple peaks. A genetic
algorithm approach was considered in [20] and [21] to tune
the feedback cancellation feature of hearing aids based on
users’ feedback. In [16] and [22], a non-parametric Gaussian
model was trained by carrying out pairwise comparisons of
music clips. The personalization reported in these works did
not include examination of more challenging stimuli such as
speech. Furthermore, a limited number of comparisons done
in these works is often not adequate to model human prefer-
ence in challenging listening environments such as speech in
the presence of background babble noise.

In a previous study by our research team [23], a human-in-
the-loop (HITL) deep reinforcement learning (DRL) frame-
work was developed to personalize compression in hearing
aids. Pairs of noisy speech stimuli compressed by dif-
ferent compression settings were presented to a hearing
aid user to pick the preferred stimulus in a pair. A deep
neural network (DNN) was trained based on the user’s
feedbacks to establish the optimal compression settings
individualized or personalized for that user. It was shown
that the subjects who participated in the study preferred
the personalized settings seven times more than that of
the standard prescriptive settings. In another study [24] by
our research team, it was shown that this human-in-the-
loop personalization did not have any negative impact on
word recognition, and in fact generally produced higher

word recognition scores compared to standard prescriptive
settings.

Whereas the HITL-DRL personalization provided promis-
ing results, the offline training of the DNN limits its deploy-
ment in the field because its training is carried out in an
offline manner and not in an on-the-fly or online manner.
A user’s preference varies depending on the audio environ-
ment encountered. For example, for a given hearing loss,
preferred compression settings for understanding speech in
the presence of babble background noise would be differ-
ent from preferred compression settings when listening to
music. The online training capability is essential as far as
the deployment of any personalization algorithm in the field
is concerned. The main contribution of this work is thus
in the development of a machine learning personalization
approach for hearing aid compression via Maximum Likeli-
hood Inverse Reinforcement Learning (MLIRL)which can be
trained in the field in an onlinemanner. This approach enables
optimal personalized settings to be determined in on-the-
fly manner in real-world audio environments. The existing
personalization approaches in the literature are conducted in
an offline training manner. In other words, the novelty of our
approach lies in its ability to get trained in an online manner.
MLIRL was initially introduced in [25] and since then has
been implemented in several applications, e.g. [26]–[28].

The rest of this paper is organized as follows. In section II,
the developed personalization approach based on MLIRL is
described in detail. In section III, the experimental setup is
stated. The preference and word recognition results for ten
subjects are then reported in section IV. The paper is finally
concluded in section V.

II. ONLINE PERSONALIZATION OF COMPRESSION
In the hearing aid fitting process, the gains across a number
of frequency bands are adjusted as specified by a prescription
based on a user’s audiogram. For personalizing hearing aid
compression, the prescriptive gains are considered to be the
initial condition and are adjusted to the user’s preference.
Figure 1 shows a depiction of the range of personalized gains
around prescriptive gains across different frequency bands.
This range spans the boundaries of hearing threshold and
loudness discomfort.

FIGURE 1. Depiction of the range of personalized gains across
prescriptive gains as the initial condition.

The gains are related to so-called compression ratios (CRs)
in each of the frequency bands. Figure 2 illustrates a typical

58538 VOLUME 10, 2022



S. Akbarzadeh et al.: Online Personalization of Compression in Hearing Aids

FIGURE 2. Typical compression curve for one frequency band.

compression curve in one frequency band. By individualizing
or personalizing CRs in each band, a personalized compres-
sion can be reached.

First, the prescriptive gains are translated into prescriptive
CRs and are used as the initial or starting condition. These
CRs are then trained or adjusted via MLIRL. To adjust CRs
to their new values from their prescriptive settings, scales are
used as follows:

CRnew(i) = CRprescription(i)× scale(i) (1)

where CRprescription(i) denotes prescriptive CR in the ith fre-
quency band and scale(i) denotes the adjustment scale in
that band. The personalization of compression is aimed at
finding the most preferred combination of CRs across all the
frequency bands for a specific user.

Paired comparisons of audio signals are considered to pro-
vide an easy and user-friendlymechanism for users to provide
their feedbacks in order to find the best combination of scaled
CRs. A paired comparison means presenting an audio signal
pair compressed by different sets of CRs and asking users
to indicate the audio signal they prefer in the pair. Carrying
out paired comparisons for all possible CRs is very time
consuming and thus not practical due to users getting fatigue
and tired. In this work, we have used the method of MLIRL
in order to find the most preferred CRs by carrying out paired
comparisons in a systematicmannerwithin a non-fatigue time
duration. In the subsections that follow, it is explained how
MLIRL is utilized for personalization of compression. First,
we state the general concept of Inverse Reinforcement Learn-
ing (IRL). Then, our personalization approach via MLIRL is
described.

A. PROBLEM FORMULATION
Reinforcement Learning (RL) is a machine learning method
that enables an agent to interact with an environment to
perform an action based on a reward received from the envi-
ronment. This paradigm involves a Markov Decision Pro-
cess (MDP) consisting of a 5-tuple (S,A,P, γ,R), where
S is a finite set of states in the environment,
A is a finite set of available actions,

FIGURE 3. Inverse reinforcement learning framework.

P : S × A × S → [0, 1] indicates a state transition
probability;

P
(
s, a, s′

)
= P

(
st+1 = s′ | st = s, at = a

)
with s′ denot-

ing next state resulted from performing action a in state s,
γ ∈ [0, 1] is a discount factor,
R : S×A→ R is a reward function.
A reward is a value assigned to performing action a in

state s. A limitation of RL is that it requires the reward to
be pre-defined. This restricts its applicability to the problems
in which the reward function can be readily defined [29].
To avoid obtaining the reward in an offline manner as done
in [23] by training a DNN model or enable field deploy-
ment, when demonstrations or partial information of a desired
behavior are available, IRL can be used. IRL is thus used in
this work to broaden the applicability of RL to field deploy-
ment for this hearing application. Figure 3 shows the general
framework of IRL. IRL involves a MDP without the reward
and the goal of the agent is to find a reward function from
demonstrations reflecting a policy or the human behavior.

In the problem at hand, the human behavior is denoted
by a user’s preference which is unknown to us. The user’s
feedback on paired comparisons can be viewed as par-
tial information of the user’s preference. The reward func-
tion is thus obtained from such paired comparisons. The
state space S consists of sounds compressed by all possi-
ble sets of CRs. Each set of CRs corresponds to a vector
[CRnew (1) ,CRnew (2) , . . . ,CRnew(N )] of new CRs derived
from (1) across N number of frequency bands.
Each action corresponds to applying a set of scales in the

frequency bands and the action space consists of all permu-
tations of the scales across N frequency bands. If βi denotes
the number of scales at the ith frequency band in (1), then the
number of actions in the action space is given by

nA =
∏N

i=1
βi (2)

For a sound compressed by a set of CRs in state s, applying
action awill result in a sound compressed by a new set of CRs
depending on action a. Here, the actions are stochastic but P
is deterministic since it is known what the next state s′ would
be by applying action a in state s. R, which is the reward of
applying action a in state s, needs to be found.
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Similar to other works using IRL [30]–[32], the reward
here is considered to be a linear function of state-action
features; RW (s, a) = W Tϕ(s, a) where ϕ : S × A → Rn

is a known n-dimensional state-action function and W is an
unknown weighting vector of the state-action function. Next,
it is discussed howMLIRL is used to find the reward function
or the weighting vectorW .
A demonstration consists of a series of trajectories

D =
{
τ i
}K
i=1, where K is the number of trajecto-

ries and each trajectory is a set of state-action pairs;
τ i = {(s1, a1) , (s2, a2) , . . .}. Demonstrations are generated
according to a policy. In IRL, the policy is indicated to be the
probability of choosing action a in state s and is defined by
the Boltzmann distribution as follows:

πW (s, a) = P (at = a | st = s) =
eαQW (s,a)∑

a′∈A eαQW (s,a′)
(3)

where α controls the randomness in the policy and QW (s, a)
denotes the optimal state-action value function. The optimal
state-action value function can be written as:

QW (s, a) = RW (s, a)+ γ
∑

s′∈S
P
(
s, a, s′

)
×

[∑
b∈A

πW
(
s′, b

)
QW

(
s′, b

)]
(4)

where γ is the discount factor and P
(
s, a, s′

)
is the state tran-

sition probability stated earlier. The likelihood of a demon-
stration D having the weighting vectorW can be written as

L (D |W ) =
∏

(s,a)∈D

[πW (s, a)] (5)

MLIRL obtains the weighting vectorW which maximizes the
likelihood of the demonstration D.
In the following subsection, it is explained how the feed-

back of a user is collected via paired comparisons. Then, it is
described how this feedback is used to find the reward via
MLIRL.

B. USER’S FEEDBACK
The agent interacts with the environment for several trajec-
tories. In each trajectory, the agent observes the environment
and collects the user’s feedback on several paired compar-
isons and updates the reward function based on the user’s
feedback. The first paired comparison in the first trajectory
is initialized with CRprescription. At each paired comparison or
time step t , a noise added speech signal is randomly selected
from a dataset and presented to the user. A state s corresponds
to the sound compressed by a set of CRs, CRinitt , which
represents the initial CRs at time step t . Then, an action a
which corresponds to a scale set is randomly selected from
the action space. Performing action a takes state s to state
s′, which means having the noise added speech signal com-
pressed by an updated CRs denoted by CRupdatet . Therefore,
the state transition s→ s′ corresponds to CRinitt → CRupdatet .
The user’s feedback on performed actions is obtained via
a hearing preference interface. A pair of audio signals, one
compressed by CRinitt and the other compressed by CRupdatet ,

are presented to the user as audio 1 and audio 2 asking the
user to select the one he or she prefers. The user is provided
with three options to select from: audio 1 is preferred, audio
2 is preferred, no preference between audios 1 and 2 or same
preference. If the user selects the audio compressed with
CRupdatet as the preferred audio, action a is considered to be a
correct action, i.e., the feedback is considered to be positive
and denoted by f +. If the user selects the audio compressed
with CRinitt as the preferred audio, action a is considered
to be a wrong action, i.e., the feedback is considered to be
negative and denoted by f −. When the user expresses the
same preference for both audios, the feedback on action a in
state s is considered to be neutral.
Getting the user’s feedback on all possible actions and

states would be very time consuming and not practical when
human subjects are involved. To avoid human fatigue and
enable a manageable training time, the action space is sub-
sampled while going through each trajectory. The agent
defines the next state based on the feedback received from the
user. Positive feedback means that CRupdatet is more preferred
than CRinitt . Thus, the next step gets adjusted or initialized
by CRupdatet , that is CRinitt+1 = CRupdatet , and CRinitt is not
considered in future comparisons in the same trajectory. If the
feedback is negative, CRupdatet is not considered for future
comparisons in the same trajectory and CRinitt+1 = CRinitt .
If the feedback is neutral, one of CRinitt and CRupdatet is
randomly selected as CRinitt+1 and the other one is not consid-
ered for future comparisons in that trajectory. This procedure
is repeated for a predefined number of paired comparisons
in a trajectory. The outcome of each trajectory defines the
initialization of a next trajectory. At the end of each trajectory,
the reward function is updated using the MLIRL algorithm as
described in the following subsection.

C. MLIRL OPTIMIZATION USING USER’S FEEDBACK
A feedback model h is defined based on feedbacks received
from a user. Based on feedback faj for performing action aj
in state s, similar to [27], the following feedback model is
defined

h
(
s, ai, faj = f +

)
=

 1− ε, if ai = aj
ε

|A| − 1
, if ai 6= aj

∀ai ∈ A,

(6)

h
(
s, ai, faj = f −

)
=

−(1− ε), if ai = aj
−ε

|A| − 1
, if ai 6= aj

∀ai ∈ A,

This model indicates whether the performed action was in
favor or against the user’s preference with a feedback error
of ε. At the end of each trajectory, the following preference
function or modelH (s, ai | fs) is set up

H (s, ai | fs) =
|fs|∑
j=1

h
(
s, ai, faj

)
, ∀ai ∈ A. (7)
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where fs is the list of all feedbacks received in state s. This
function reflects the feedback history and incorporates the
user’s preference for action ai in state s. Then an enhanced
preference functionHE is set up by normalizing the function
H to [0-1] as described in [27].

In the likelihood objective function in (5), the rewardW is
found in such a way that:
• If the feedback for action a in state s is positive
(fa = f +), then the policy πW (s, a) is maximized in the
likelihood objective function.

• If the feedback for action a in state s is negative
(fa = f −), then the policy πW (s, a) is minimized in the
likelihood objective function.

As a result, the likelihood function of a demonstra-
tion D based on the reward function W and feed-
back f can be stated as (8), shown at the bottom of
the page.

The goal here is to maximize the probability of correct
actions and minimize the probability of wrong actions. Since
the user’s feedback may include errors and inconsistencies,
instead of using the exact correct or wrong actions, the pref-
erence model HE (s, a) is used and the likelihood function is
modified as follows:

L (D |W ,HE ) =
∏

(s, a) ∈ D

[
πW (s, a)HE (s,a)

]
(9)

Then, the optimization problem of interest involves finding
the optimum reward function W ∗ that maximizes the likeli-
hood of the demonstration, i.e.

W ∗ = argmaxWL (D |W ,HE ) (10)

The gradient ascent approach is used to obtain the optimum
W . The gradient is given by

d
dW

log [L (D |W ,HE )]

=

∑
(s, a) ∈ D

HE (s, a)
πW (s, a)

dπW (s, a)
dW

=

∑
(s, a) ∈ D

HE (s, a)
πθ (s, a)

1

BW (s)2

·

[
BW (s) αeQW (s,a)

dQW (s, a)
dW

− eQW (s,a)
dBW (s)
dW

]
(11)

FIGURE 4. General framework of developed personalization approach.

where BW (s) =
∑
′

a e
αQW (s,a′) and QW (s, a) is defined by

(4). The reward function gets updated at the end of each
trajectory via gradient ascent.

Figure 4 shows the general framework of the developed
online personalized compression approach defined in the
context of IRL. The block diagram of this approach is pre-
sented in Figure 5 with more details and its algorithm is
outlined in Table 1.

III. EXPERIMENTAL SETUP
Ten subjects with mild to moderately severe hearing loss par-
ticipated in our study under an approved human subject Insti-
tutional Review Board protocol (IRB 20-13) at the Callier
Center for Communication Disorders, University of Texas at
Dallas. The eligibility for participation included: (i) symmet-
ric mild to moderately severe hearing loss, (ii) being able to
speak and understand English, and (iii) being an adult in the
age range of 21-80 years old who could provide informed
consent.

The experiments were conducted in three sessions. In the
first session, the subject’s audiogram was obtained by a hear-
ing healthcare professional. The DSLv5 prescription [33] was
then used to define the subject’s prescriptive gains across
these five frequency bands that are commonly used [0-0.5],
[0.5-1], [1-2], [2-4], and [4-6] kHz and the gains were trans-
lated to CRs. These CRs were used to initialize the MLIRL
personalization algorithm described in section II.

In the second session, the subject’s preferences were used
to personalize the settings. Each subject sat in a sound booth
wearing hearing aids in left and right ears connected via Blue-
tooth to a computer running the personalization algorithm.
The hearing aids were programmed to have flat amplification,
no compression on the hearing aid processors and all noise

L (D |W , f ) =
∏

(s, a) ∈ D

where fa = f +

πW (s, a)
∏

(s, a) ∈ D

where fa = f −

(1− πW (s, a)) (8)
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FIGURE 5. Block diagram of the personalized compression approach using MLIRL.

reduction and sound enhancement features were turned off.
All the audio signal processing was performed on the com-
puter and transmitted to the hearing aids via Bluetooth.

The experimenter first presented pairs of audio signals of
about 2.5 second duration to the subject. Then the subject’s
feedback from each paired comparison was used to train
the agent in the personalized compression algorithm. For
each paired comparison, a stimulus was randomly selected
from a dataset consisting of noisy speech sentences. The
noisy speech sentences were generated by addingmulti-talker
babble noise to the TSP speech database [34]. The TSP
speech database consists of over 1400 utterances spoken by
24 speakers (half male, half female). The SNR of the noisy
sentences were set to a moderate noise level of 5 dB and the

sampling rate was set to 16 kHz. To adjust the CRs, similar to
our previous work [23], two scales for each frequency band
were considered; scale (i) ∈ {1, 4} ,∀1 ≤ i ≤ N . To avoid
human fatigue by keeping the total duration of the sessions to
less than two hours, an action space of 32 was thus considered
by the above two scales and five CRs across the frequency
bands of [0-0.5], [0.5-1], [1-2], [2-4], and [4-6] kHz. The
preference data collection was conducted in 7 trajectories and
each trajectory consisted of 31 paired comparisons. At the
end of each trajectory, the reward function was updated in
an online manner. Finally, the reward function of the last
trajectory was used to define the policy.

The CRs with the highest probability was chosen to be the
most preferred CR set defining the personalized compression

TABLE 1. Online personalization of compression algorithm.
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TABLE 2. Parameters used in the MLIRL personalized compression.

setting. The parameters used in the MLIRL personalized
compression algorithm are shown in Table 2. The compres-
sion parameters of CT, attack time, and release time listed in
this table correspond to the nominal values of the prescriptive
compression.

IV. RESULTS AND DISCUSSION
After obtaining each subject’s audiogram, the DSLv5 pre-
scriptive compression ratios were set as the initial condition
to personalize the fitting. By going through the MLIRL per-
sonalization algorithm, the personalized CRs were obtained.
Table 3 shows the audiograms of the ten subjects who par-
ticipated in this study. Audiometric thresholds are shown for
the five frequency bands used by the algorithm. This table
also includes the prescriptive DSLv5 gains for the soft speech
level and the corresponding CRs in the frequency bands. The
last column shows the personalized CRs. The personalized
CRs that are different than the prescriptive ones are bolded.

To compare preference between the personalized and the
standard prescriptive settings, a preference comparison test
was conducted for 30 sentences randomly selected from the
TSP database. The subjects were presented with a pair of
audios, one compressed by the prescriptive CRs (five CRs
that are listed in the fourth column of Table 3) and the other
compressed by the personalized CRs (five CRs that are listed
in the fifth column of Table 3) in random order. Subjects
had to define the audio that they preferred or if they had the

same preference for both audios. Figure 6 shows the results
of the preference testing. As can be seen from this figure,
the personalized settings were preferred about 10 times more
than the DSLv5 prescriptive settings. The only other person-
alization algorithm that has been reported in the literature for
speech stimuli in the presence of babble background noise is
the one in [23] named DRL. Similar to this work, DRL uses
five frequency bands to personalize compression ratios asso-
ciated with the DSLv5 prescriptive compression. As reported
in [23], the DRL personalized settings were preferred about
7 times more than the DSLv5 prescriptive settings. Although
the performance of the DRL personalization is comparable
to the MLIRL personalization, the key difference is that the
DRL algorithm training is done in an offline manner while
theMLIRL training is done in an online manner. Note that the
DRL personalization algorithm is not deployable in the field
as it takes a few hours of training time on a modern computer,
whereas the MLIRL personalization algorithm developed in
this work is deployable in the field as it takes only a couple
of seconds of training time on a modern computer.

A one-way ANOVA statistical test was performed on the
preference results with compression setting (personalized
or prescriptive DSLv5) as a within-subject factor to evalu-
ate the statistical significance of the difference between the
preference for the personalized versus prescriptive settings.
A p-value lower than 0.05 was considered for rejecting the
null hypothesis. The ANOVA test revealed that the personal-
ized compression settings was preferred over the prescriptive
settings in a statistically significant way (F (1,18) = 122.36,
p� 0.01).
To ensure that the personalized settings did not compro-

mise audibility or negatively impact word recognition or
speech understanding, a word recognition test was conducted.
One list of 50 words was selected from the Northwestern Uni-
versity Auditory Test No. 6 (NU-6) [30]. Half of the list was
selected randomly and processed by the prescriptive settings
and the other half was processed by the personalized settings.
Subjects had to repeat each word back to the experimenter

TABLE 3. Prescriptive DSLv5 and personalized compression settings for ten subjects participated in the study.
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FIGURE 6. Preference comparison between the personalized and DSLv5 compressions in percentages.

FIGURE 7. Word recognition score in percentages for (a) clean speech signals, and (b) noisy speech signals at 5dB SNR.
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after it was presented to them. Another list of 50 words was
selected from the same database for the word recognition test
in the presence of noise. The noisy sentences at 5 dB SNR
were created by adding the multi-talker babble noise to the
clean speech signals.

The word recognition scores obtained are shown in
Figure 7 in terms of the percentages of the words correctly
recognized out of the total number of the presented words in
quiet and noisy conditions. As can be seen from this figure,
except for one subject, the same number of words or more
words were recognized when using the personalized settings
compared to when using the prescriptive settings in quiet
condition. Adding the noise resulted in lower word recogni-
tion scores for both the personalized and prescriptive settings
compared to the quiet condition. In noisy condition, for all
but one of the subjects, the decrease in the word recognition
score was lower for the personalized settings.

The codes developed for the personalized compression
reported in this paper can be obtained via a GitHub link by
contacting the authors.

V. CONCLUSION AND FUTURE WORK
A machine learning personalization approach for perform-
ing the compression function in hearing aids has been
developed in this paper. This approach utilizes maximum
likelihood inverse reinforcement learning to establish per-
sonalized compression for hearing aid fitting purposes in an
online manner. As a feasibility or proof-of-concept study, ten
hearing impaired subjects participated in the testing of this
developed personalized compression approach. The results
of preference comparison between the prescriptive DSLv5
compression and the personalized compression showed that
the personalized compression settings were preferred about
10 times more than the prescriptive compression settings
which is higher than the previous state-of-the-art compression
personalization method. Furthermore, the developed person-
alized compression settings did not have an adverse impact
on the word recognition scores and in fact improved the
word recognition scores in noisy condition compared to the
prescriptive compression settings. It is worth noting here that
for commercial deployment of the developed personalized
compression solution, it is necessary to examine a much
larger pool of hearing impaired subjects.

Noting that the developed personalized compression
approach is trainable in an online manner, it can get deployed
in the field or in real-world audio environments. This enables
the user to find the preferred settings for different audio
environments. As our future work, we plan to develop a
smartphone app for this purpose so that the experimentation
can be carried out live in the field.
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