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ABSTRACT The sharp increase of multimodal cloud resources demand makes it more challenging to design
rightsized virtual instances. Inefficient embedding of high sized instances into the substrate resource network
has led to numerous resource underutilization issues, which further constitute a key driver to repetitive
reallocations of virtual instances. Besides, repetitive reconfigurations of virtual network instances go through
a process of intra- or inter-cloud migration that provokes additional increase in power consumption. This
paper proposes to solve these mutual challenges through a proactive, power efficient and hybrid Virtual
Network Embedding (VNE) approach. We first formulated a Mixed Integer Linear Programming (MILP)
model purposing to maximize total power efficiency of intra Data Center (DC) and inter networking
resources as a function of EC2 instances requests rates. Leveraging the AWS cloud as a primary case study for
this paper, the suggested VNE combines a multi-stage hybrid Virtual Node Embedding (VNoE) policy with
an adaptive multistep consolidated Virtual Link Embedding (VLiE). As a starting point, a Green-Location
aware - Global Topology Ranking (GLA-GTR) is designed as a primary ranking process suggesting the
greenest substrate DCs locations with their related delivery networks. After implementing our proposal
on a real AWS backbone network topology, simulation results indicated the efficiency of the proposed
VNE approach. The Stacked Denoising Auto Encoders - Bidirectional Gated Recurrent Unit - Resources
Vector Matching VNoE (SDAE-BiGRU-RVMVNoE) policy achieved a power decrease of 14.61%, 14.95%
and 17.21% compared to BiGRU-RVM-VNoE, BiGRU-BF-VNoE and BF-VNoE policies, respectively.
Accordingly, the suggested policy has reached significant power efficiency and overall maximized resource
utilization.

INDEX TERMS Proactive hybrid virtual node embedding, multistep virtual link embedding, global topology
ranking, power efficiency, carbon emission, AWS cloud.

I. INTRODUCTION
Nowadays, the enormous multimodal cloud traffic, be it
processing-intensive,memory-intensive, or storage-intensive,
is further complicating the effective management of cloud
resources. Poor resource planning management may exhibit
repetitive allocation reconfigurations in response to resource
underutilization issues and their chaotic demands [1]. Recon-
figuring virtual instances provisioning incurs significant
power costs, either through virtual instances migration within
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intra DCs or through inter-cloud migration [2]. These state
how neither cloud resources capacity extension nor geo-
distributed DCs installation, can keep pace with a non-greedy
consumed power of cloud resources. The ‘‘green’’ or
‘‘sustainable’’ cloud concept is calling for an efficient pro-
cessing of a wide spectrum of requests, while minimizing
resource waste, power consumption and the cost of geo-
distributed carbon emissions.

To keep in line with less Operational Expenditures (OPEX)
and Capital Expenditures (CAPEX) in future distributed
cloud industry [3], combining multi-level virtual resource
consolidation in intra DCs and multi-domain virtual network,
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becomes one of the promising solutions. This jointure is
also favored thanks to the emergence of Software Defined
Network (SDN) and Network Function Virtualization (NFV)
technologies [4]. In the case of AWS cloud, DCs are dis-
tributed following a redundancy hierarchy wherein clusters
of DCs from different regions in the world are connected
through a global AWS backbone network. From an Inter
Cloud point of view, AWS backbone network is managed
by the Equinix platform [5] that provides various Ama-
zon Partners Networks (APNs) supplied with automated
SD-WAN devices. As for intra AWS DCs nodes, each dis-
tributed computing node may hold multiple roles that may
be initially grouped as central endpoints computing nodes,
CloudFront or cache edge nodes, 5G wavelength nodes and
AWS Direct Connect nodes [21]. AWS resources provision-
ing is therefore a process that mandatorily runs over inter
AWS cloud backbone to intra endpoints DCs.

To dig deeper into details of provisioning AWS virtual
instances, this process is executed in the Compute Optimizer
recommendation engine of each DC. AWS recommendation
engine deploys [6] a machine learning facility to select the
optimal EC2 instance kind for a particular workload. More
precisely, this recommendation process starts with a capture
of the last 14 days data on resources utilizations for eachAWS
user account. Based on analyzedworkload characteristics, the
recommendation engine identifies resized resources among
existing instances groups that best suit the workload require-
ment. Thereby, the Compute Optimizer projects the behavior
of a particular user workload in terms of resource usage and
execution time on the recommended instance option. This
in turn gives a better insight on how a workload may oper-
ate, prior to implementing the recommendations. Accord-
ing to AWS, this Compute Optimizer’s recommendations
decrease costs by up to 25% [7].

In short, our key contribution resides in proposing a power
efficient and hybrid VNE joining a multi-stage consolidated
Virtual Node Embedding (VNoE) with a multistep consoli-
dated Virtual Link Embedding (VLiE).

-The proposed hybrid VNoE, denoted as the SDAE-
BiGRU-RVM-VNoE, is designed to be run in the AWS
Compute Optimizer Engine within each of the four con-
sidered instances racks: General Purpose (GP), Compute
Optimizer (CO), Memory Optimized (MO), and Storage
Optimized (SO).

-Subsequently, the proposed multistep VLiE process is
designed to be executed throughout the inter AWS cloud
Equinix Fabric Engine. The first step in this process is an
Adaptive Yens (AY-KSP) routing algorithm followed by a
Best-Fit Spectrum Assignment (BF-SA) algorithm.

-Taken into account the Amazon’s ambitious target of
fostering green energy within their computing regions,
a GLA-GTR algorithm is proposed to be executed as a start-
ing point for the proposed framework. The GLA-GTR is
designed as a ranking process recommending the greenest
AWS DCs nodes given their computed Carbon Emission
Rates (CERs).

The rest of this paper divided into seven sections.
Section 2 reviews different VNE models while outlining
our proposal’s main contributions. Section 3 describes our
global system architecture that contextualizes our proposed
suggestions. Section 4 formalizes the VNE problem by defin-
ing its main parameters, constraints, and decision variables.
The proposed flowchart solution design is synthetized in
Section 5. Section 6 validates our proposal’s in terms of con-
sidered performance metrics. Eventually, section 7 concludes
this paper and hints at plausible future research perspectives.

II. RELATED WORKS
Elaborating a topical overview in (Table 1), it turns out
how VNE techniques have been investigated differently over
recent years. It is evident how previous VNE approaches
were often treated in a static scheme with no considera-
tion to the highly dynamic workload changes and resource
fragmentation induced by incoming and outgoing requests.
This shortcoming has been partially handled by probabilistic
population-based heuristics then by some reinforced learning
frameworks. Besides, these techniques were only tested on a
small number of instance requests. Thus, their optimal con-
vergence rates only evolved from the last observed states of
the reward functions. To yield more decisive VNE solutions,
our proposal bridges existing gaps by these terms:

-Unlike state-of-art studies, we treat the heterotopic aspect
of VNE problem by ensuring realistic MILP constraints
such as:multi-level embedding restrictions, reported dynamic
instances arrival, and various canceled instances rates.

-Contrary to almost adopted ranking processes (table 1),
our proposed VNE flowchart solution starts with a ranking
process purposing to rank substrate computing and networks
nodes not only according to their resources availabilities, but
primarily based on their CER values.

-According to ranking classes results, the VNE proposal is
constituted from a hybrid proactive VNoE denoted as SDAE-
BiGRU-RVM-VNoE, then a multi-step VLiE.

-For each instance provisioning, the proposed hybrid
VNoE integrates multivariate time series of EC2 instance
attributes that are previously predicted by the SDAE-BiGRU
model. Combined to the RVM rule-based allocation policy,
a personalized instance size is recommended along with its
optimal host’s allocation index.

-Subsequently, the proposed multistep VLiE consists of
a process that combines an adaptive routing algorithm
(AYens-KSP) with a spectrum assignment (BF-SA)
algorithm.

-Through this proposal, we aim to maximize total power
efficiency of intra and inter AWS network resources, multi-
level resources utilizations and geo-distributed carbon emis-
sion reduction.

III. SYSTEM DESCRIPTION
The distribution of AWS cloud DCs follows a redundancy
hierarchy, in which clusters of DCs from different regions
in the world are connected through a global AWS backbone
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TABLE 1. Relevant state-of-art VNE techniques.
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TABLE 1. (Continued.) Relevant state-of-art VNE techniques.

network. Within a region, there exists a cluster of Availability
Zones (AZs). An AZ is in turn represented by a cluster of
closely spaced DCs, designed to minimize the risk of any
downtime and ensure the highest availability of services [23].

AWS computing nodes located in different regions,
or within the same region, and perhaps within an availability
zone, can play various roles. We can initially group these
roles as central endpoints computing nodes, CloudFront or
cache edge nodes, 5G wavelength nodes and AWS Direct
Connect nodes [24]. AWS resources provisioning by multi-
tenant identified users, is a process that mandatorily runs
through the inter AWS cloud backbone to the intra end-
points DCs. Figure 1 describes the three phases that EC2
instances provisioning goes through.

A. AWS RESOURCES PROVISIONING ENGINE
In this phase, identified users receive the AWS MarketPlace
catalog according to their specified region. Using Cloud-
Formation, a user may choose either one Amazon Machine
Image (AMI) to launch their specified EC2 instances with
the same configuration or multiple AMIs when instances
with divers configurations are needed. For more details about
required EC2 instances, a user needs to specify first the
required instance family type, then a specific instance name
and size with dedicated vCPU, memory, storage, and network
virtual resource capacities. In addition, a user must create a
Virtual Private Network (VPN) connecting it to its instance
infrastructure. Accessing resources from multiple regions
mandates authorization checks through the AWS Services
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FIGURE 1. System description.

Authorization Reference. So far, all mentioned and coming
users’ actions are executed via APIs calls.

B. INTER AWS CLOUD EQUINIX EXCHANGE FABRIC
ENGINE
In this phase, distributed AWS cache nodes are associated
to AWS endpoints DCs nodes through a backbone network
designed by popular AWS Partners Networks (APNs) along
worldwide 1/2/3 Tier telecom. More precisely, the provided
APN choices in Equinix platform includes Cisco, Juniper,
Vmware, PaloNetworks, Aruba, Ckeck Point, Fortinet and
Versa [25]. These entire APNs are supplied with automated
SD-WAN devices connecting a single Hop-to-Hop (H2H) IP
and optical network layer [26]. Each APN deploys its own
routing strategies, policies, and priority rules. In this paper,
we propose a multistep adaptive routing and spectrum assign-
ment strategy for embedding virtual connections (Section 5).
In addition, we assign another function to distributed AWS
edge cache nodes, namely the Global intra and inter cloud
resources Topology Ranking (GTR). Indeed, each edge cache
node may recommend two peering connection scenarios to
the identified users: a green aware scenario with tax discount
opportunities and a delay-sensitive one. When choosing a
green-aware scenario, a proposed GLA-GTR purposes to
find the greenest substrates links and endpoints nodes (See
more details in Section 5). For this target, we assume that
distributed AWS cache nodes are informed about legislation
status of AWS Renewable Energy (RE) assets via Equinix
Portal. It is then up to users to confirm the peering connection
scenario that best suit them.

C. COMPUTE OPTIMIZER RECOMMENDATION ENGINE
In this last engine, we deploy the proposed instances demand
and resources occupancies predictor associated to the pro-
posed proactive and hybrid VNE scheduler. This is intended
to perform an early recommendation of rightsized instances
with their embedding. Using predicted results, the VNE
scheduler is executed in an offline fashion in order to com-
pute anticipated cost, power, and carbon emission saving

opportunities that may be achieved when recommending
a downsized personalized instance. Depending on each
instances’ family historical occupancies and users behaviors,
optimal rightsized EC2 instances are recommended in an
early stage prior to instances underutilization occurrence.
The recommendation benefits are sent to identified user
through a CSV report for template confirmation. Once the
recommended personalized template is validated, the pro-
posed VNE scheduler is executed in an online fashion to
link user to its endpoint infrastructure and associate a unique
Amazon Resource Names (ARNs) for the identified template.
An ARN is a combination of subnet regions partition in
which resources are located, the AWS product, then user and
resources IDs (See more details in Section 5).

IV. PROBLEM FORMULATION
Our model’s parameters and variables are mostly dependent
on AWS regions, seasonality time slots, EC2 instances’ fam-
ily types, then usage behaviors and provisioning natures.
They include both discrete and continuous data and are noted
as follows:
Parameters and Variables:
-t ∈ T : the set of time slots.
-n ∈ N : the set of AWS endpoint DCs nodes.
-net ∈ Net: the set of AWS APN nodes.
-e ∈ E : the set of AWS edge cache nodes.
-s ∈ Sc: the set of a rack servers.
-c ∈ Cn: the set of family racks in a DC.
-AWSu : EC2ki,c : VPC

t
p: the template specification.

-u ∈ U : the set of identified users in a template.
-i ∈ I : the set of required EC2 instances in templates.
-k ∈ {1: dedicated/2: shared}: the tenancy type that might

be either shared among many users or dedicated to one single
user.

-ρ ∈ {1: green− aware/2: delay− sensitive}: the chosen
peering connection scenario.

-Loc(·): the location region of a certain node (·).
-CILoc(·): the carbon intensity at energy assets locations.
-PStatics,c : the idle server’s consumed power.
-vCPUi, vMemoryi, vStoragei: virtual CPU, memory and

storage resources dedicated to an EC2 instance i.
-UvCPU t

i ,UvMemory
t
i ,UvStorage

t
i : the utilized resources

of an instance i.
-ACPU t

s,c(n),AMemory
t
s,c(n),AStorage

t
s,c(n): a server’s

capacities.
-h ∈ HR,t

(e→n): the set of forwarded hops from a source cache
node to endpoint DC, following a path R.
-f o,th = staring slot index of an optical spectrum o in the

hop fiber link h.
-W o,t

h ∈ W = number of frequency slots dedicated to the
optical spectrum o in the hop fiber link h.
-Go,th the guar band slot index of the optical spectrum o in

the hop fiber link h.
-p ∈ P: the set of optical segments constituting a routing

path R connecting the source edge cache node with the end-
point Virtual Private Cloud (VPC).
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-(j, j′): two regenerated vertices delimiting an optical
segment.

-C : a slot bandwidth capacity.
-ESDSolar,Tn/net /ESDWind,Tn/net : energy storage devices for solar

and wind energies in a DC or APN node.
-RST−1n/net/RW

T−1
n/net : remaining solar and wind energies from

previous time interval.
Binary Decision Variables:

- γ S,Tn/l /γ
W ,T
n/l : if DC or APN node’s PDU respectively

provide sufficient solar / wind energy at T.
- λi,ts,c(n): if required instance i is assigned to the server s in

a cluster c within DC n.
- ξ i,to,w,h(R): = 1 if the provisioned instance i is assigned an

optical spectrum channel owith a slot numberw in the path R.
Constraints Formulation: The following introduced con-

straints represent the three main components of the stud-
ied system, i.e., the ranking process, the intra virtual nodes
embedding and the inter virtual links embedding.

As a starting point, the proposed GLA-GTR ranking pro-
cess aims to find the greenest substrate nodes and links. The
corresponding ranking is supported by the Carbon Emission
Rate (CER) computation, which relies on REs availabilities
within DC or APN sites as well as the specific carbon inten-
sities of their REs assets. The CER value is determined as
follows, where CR is a capacity regulator coefficient:

CERn/net = [(CILoc(wa) · ESD
Wind,T
n/net · γ

W ,T
n/net )

+ (CILoc(sa) · ESD
Solar,T
n/net · γ

S,T
n/net )]× CR

+ [CILoc(ba) · ABTn/net ] · γ
B,T
n/net (1)

Each DC or APN node’s related Power Distribution
Unit (PDU) should provide only one type of energy per hourly
interval.

En∑
en=1

γ
en,T
n/net = 1 (2)

Normally, the charging and discharging efficiencies of REs
are often about 85%∼95% [27]. We set respectively α =
10% and β = 10% as their energy losses, while the
self-discharging energy loss is set to θ = 0.2% [27]. The
Purchased Active Solar (PAS) and Wind (PAW) energies by
a DC or APN node during an interval T , are used to derive
the Active Solar and Wind energies, as shown in (3-4):

ASTn/net = PASTn/net (1− α − β − θ ) (3)

AW T
n/net = PAW T

n/net (1− α − β − θ ) (4)

At T0, both solar and wind Energy Storage Devices (ESDs)
within DC and APN nodes receive previous active energies
that should be equivalent to their capacities.

ESDSolar,T0n/net = AST0n/net = ESDSolar,Maxn/net (5)

ESDWind,T0n/net = AW T0
n/net = ESDWind,Maxn/net (6)

In the following time intervals T , both ESDs types contain
the remaining energies from the last time interval T −1 along

with the available active energies received during the current
time interval.

ESDSolar,Tn/net = ASTn/net + RS
T−1
n/net ≤ ESD

Solar,Max
n/net (7)

ESDWind,Tn/net = AW T
n/net + RW

T−1
n/net ≤ ESD

Wind,Max
n/net (8)

Remaining solar or wind energies in a DC related ESDs,
are represented respectively by equations (9-10). δT−1n is the
efficiency rate of the cooling devices and fans, which varies
in accordance with the computing loads of DC’s servers on
various racks.PT−1n is the total consumed power consumption
of servers during previous time interval.

RST−1n = AST−1n − [(PT−1n + δT−1n AST−1n ) · γ S,T−1n ] (9)

RW T−1
n = AW T−1

n − [(PT−1n + δT−1n AW T−1
n ) · γW ,T−1n ]

(10)

Remaining solar and wind energies in an APN related ESDs
are represented respectively by equations (11-12).

RST−1net = AST−1net − (PT−1net · γ
S,T−1
net ) (11)

RW T−1
net = AW T−1

net − (PT−1net · γ
W ,T−1
net ) (12)

Concerning intra virtual nodes embedding, a user must spec-
ify a template containing: the required EC2 instance name;
the instanc’s family typ; the tenancy typ; and the required
VPC subnet with a preferred peering connection scenario.
In this study, four types of instances’ families correspond-
ing to four computing racks are considered and namely:
the compute-optimized, the memory-optimized, the storage-
optimized and the general-purpose instances families.

The assigned instances provisioning templates shall not
exceed available resources in the concerned DC within the
involved time slot.

I∑
i=1

(AWSu : EC2ki,c : VPC
t
ρ · vCPUi)× λ

i,t
s,c(n)

≺ ACPU t
s,c(n) (13)

I∑
i=1

(AWSu : EC2ki,c : VPC
t
ρ · vMemoryi)× λ

i,t
s,c(n)

≺ AMemoryts,c(n) (14)
I∑
i=1

(AWSu : EC2ki,c : VPC
t
ρ · vStoragei)× λ

i,t
s,c(n)

≺ AStoragets,c(n) (15)

There should be only one instance request per template and
that instance should not be assigned to more than one host
and cluster.

I∑
i=1

(AWSu : EC2ki,c : VPC
t
ρ) = 1 (16)

Sc∑
s=1

(AWSu : EC2ki,c : VPC
t
ρ)× λ

i,t
s,c(n) = 1 (17)
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Since users only pay for resources used during their active
time, nothing is paid during passive time even though inactive
instances still consume a large amount of energy. Conse-
quently, a user’s instance may be fully terminated until the
end of his agreement. Nevertheless, we adopt in this paper
an instance stopping process regarding identified users with
‘‘dedicated’’ tenancy type. An assigned instance with
‘‘dedicated’’ tenancy type must be terminated once its user
provisions new template (18). This process is not applicable
to users with a ‘‘shared’’ tenancy type since they may provi-
sion various template at a same time.

I∑
i=1

(AWSu : EC2ki,c : VPC
t
ρ)× λ

i,t
s,c(n) = 1,

if k = dedicated (18)

A server power consumption may be formulated as shown
in (19). Therefore, the consumed power of a DC node at a
certain time slot is mentioned in (20)

Pts,c = PStatics,c + (PCPUs,c ·
I∑
i=1

U t
vCPUi,s · λ

i,t
s,c)

+ (PMemorys,c ·
I∑
i=1

U t
Memoryi,s · λ

i,t
s,c)

+ (PDisks,c ·
I∑
i=1

U t
Diski,s · λ

i,t
s,c) (19)

PtDC (n) =
Cn∑
c=1

Sc∑
s=1

Pts,c (20)

Embedding a customer dedicated VPN consists of peering
its virtual connection in the inter backbone network, with a
specified bandwidth depending on the provisioned instance
template. In practice, a peering path may be constituted of
one-to-many optical segments between regenerated network
nodes (routers) (21). Each optical segment can be composed
from one-to-many hops (links). No matter which routing hop
is followed, a virtual connection should be assigned to an
optical spectrum channel with a number of slots that satisfy
the connection bandwidth (22).

HR,t
(e→n) =

P∑
p=1

Hp,t
(j→j′) (21)

AWSu : EC2ki,c : VPC
t
p · vBandwidthi

≤ ξ
i,t
o,w,h(R) ·

∑
w∈W

W o,t
h · C ∀h ∈ HR,t

(e→n) (22)

A virtual instance connection may be assigned only one
optical spectrum per hop fiber link and their associated slots
are not assigned to any other optical spectrum (23).

O∑
o=1

ξ
i,t
o,w,h(R) = 1, ∀h ∈ HR,t

(e→n) ∪ ∀w ∈ W
o,t
h (23)

Again, each assigned optical spectrum should be ended by an
adjacent guar band slot to avoid any overlap between virtual
connections (24).

f o,th = W o,t
h − G

o,t
h , ∀h ∈ H

R,t
(e→n), where G

o,t
h ≤ W

(24)

Considering an optical segment between two regenerated
routers (j, j′), the vertical slots continuity constraint (25) indi-
cates how the assigned optical spectrum shall be the same
along forwarded hop fiber links constituting this segment.
In addition, the horizontal slots consecutiveness constraint
mandates that sub-curries (slots) deployed over an optical
spectrum must be consecutive in the frequency domain (26).

f o,th · ξ
i,t
o,w,h(R) = f o,th+1 · ξ

i,t
o,w,h+1(R), ∀h ∈ H

p,t
(j→j′) (25)

− |S| · (ξ i,to,w,h(R)− ξ
i,t
o,w+1,h(R)− 1)

≥

∑
w∈[w+2,|W |]

ξ
i,t
o,w,h(R) (26)

The power consumption of network is formulated in (27),
where refers to the typical power consumption of the router
line card per Gbps.

PR,tnet(e↔n) =

HR,t
(e→n)∑
h=1

[
O∑
o=1

(ξ i,to,w,h(R) ·W
o,t
h · C) · PR

]
(27)

Objective Function:The objective function of the proposed
MILP model is intended to maximize the total power effi-
ciency, which involves intra AWS DCs nodes power effi-
ciency and inter network power efficiency (28-30).

Max : TPeff = Peff ,DC (n)+ Peff ,net(e↔n) (28)

Peff ,DC(n) =

Cn∑
c=1

Sc∑
s=1

I∑
i=1

(AWSu : EC2ki,c : VPC
t
p · λ

i,t
s,c(n))

PDC (n)
(29)

Peff ,net(e↔n) =

HR,t
(e→n)∑
h=1

I∑
i=1

(AWSu : EC2ki,c : VPC
t
p · ξ

i,t
o,w,h(R))

PR,tnet(e↔n)

(30)

V. FLOWCHART SOLUTION DESIGN
The proposed flowchart depicted in (Figure 2) demonstrates
the three main phases through which EC2 templates pro-
visioning runs through. The first stage is a GTR Process
followed by a two-stage VNE.

A. GREEN LOCATION AWARE-GLOBAL TOPOLOGY
RANKING (GLA-GTR) STEP
The proposed GLA-GTR is designed to be performed at each
AWS edge cache node to recommend the greenest endpoints
substrate nodes with their related delivery APN.

Recommendations are released under three ranking
classes. The first class Q1 englobes substrate nodes with
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their associated network paths that have lower CER val-
ues (Equation 1) than their corresponding fixed thresholds
(i.e., CERn < 4.73 & CERnet < 3.76).

If this complete condition is not met, the algorithm extends
the ranking process based on power consumptions met-
rics (Equation 20 & 27). The second class Q2 incorpo-
rates then substrate nodes that are compensating the brown
power of their related APNs nodes (i.e., CERnet > 3.76 &
PDC > Pnet ). Finally, the third class Q3 includes substrate
nodes with their associated network paths that have higher
CER values (Equation 1) than their corresponding fixed
thresholds.

B. VIRTUAL NODE EMBEDDING (VNoE) STEP
The proposed proactive and hybrid VNoE is designed to
be executed within the compute optimizer recommenda-
tion engine in each instances family rack. Combining, as
input, future predicted template demand and resources occu-
pancies with current received provisioning template, the
VNoE may be performed using certain predefined rule-based
policy.

In this study, future predicted templates inputs are released
by the SDAE-BiGRU model. Therefore, the proposed
VNoE adopt an RVM rule-based policy. As demonstrated
in Figure 2, the proposed SDAE-BiGRU-RVM is a VNoE
policy purposing to maximize the power efficiency of mul-
tilevel resources within entire instances family racks. More
precisely, this policy makes use of predicted provisioning
template to be received at t+1, current received provisioning
template request at time t , and resources status of hosts inside
a rack. The first step of this policy consists of checking the
necessary instance shutdown, as stipulated in constraint (18),
and thereby performing appropriate resources status updates.
Next, the active hosts are sorted in ascending order of the
dominant resource type in an instance family. For instance,
in GP and CO families, active hosts are sorted in ascending
order of available vCPU values. On the other side, active
hosts are sorted in ascending order of available memory
and storage values respectively in MO and SO families.
The main target behind this sorting scheme is to maintain a
multilevel resources consolidation. The second fundamental
principle underlying this allocation policy consists of reserv-
ing the least available host resources to the provisioning
template having the most similar required resources. The
computed similarity in the RVM rule-based policy is per-
formed using the Cosine function. As highlighted in Figure 2,
the Cosine function was computed once between available
resources and current received template required resources,

then between available resources and next arrived template
required resources (31), as shown at the bottom of the page.

If the similarity function between current template pro-
visioning request and the hosts’ least available resources is
greater than the similarity function between next predicted
provisioning request and hosts’ least available resources, the
host’s least available resources will be dedicated to the next
coming template. This implies that current template request
will be assigned to the next active host index. At the end, the
VNoE outputs the instance template allocation index, with its
resulting servers consumed power, acceptance ratio and last
resources status updates.

The key VNoE benchmark policies that are tested in this
study are:

-The proposed SDAE-BiGRU-RVM: a proactive VNoE
policy deploying multivariate instances attributes predictions
using the SDAE-BiGRU model, combined to the RVM rule-
based allocation policy.

-BiGRU-RVM: a proactive VNoE policy deploying the
univariate instance demand predictions using the BiGRU
model, combined to the RVM rule-based allocation policy.

-SDAE-BiGRU-BF: a proactive VNoE policy deploying
the multivariate instances attributes predictions using the
SDAE-BiGRU model, combined to the Best Fit (BF) rule-
based allocation policy.
-BiGRU-BF: a proactive VNoE policy deploying the

univariate instance demand predictions using the BiGRU
model, combined to the Best Fit (BF) rule-based allocation
policy. -BF: a reactive VNoE policy that does not deploy any
prediction engine.

C. VIRTUAL LINK EMBEDDING (VLiE) STEP
Once the allocation index of theDC node is specified, the next
multistep VLiE process is designed to be executed throughout
the inter AWS cloud Equinix Fabric Engine.

The first step in this process is an adaptive Yens
K-Shortest Path (KSP) algorithm which alternates between
two SP routing functions for finding the initial SP. Yens
algorithm outputs K required SP that are not necessarily
completely different, thus may share a common edge link.
In order to avoid any links premature blocking issue, while
compromising link adaptability and execution time, the first
initial SP in the Yens algorithm switches between two SP
functions according to links loads. As a starting point, initial
SP is determined by the Breath-First-Search function to find
the first minimum hop path. Once the load of at least one
edge link becomes greater than a predefined fixed threshold,
the previous SP function is replaced by the Dijkstra function
to find the first minimum load path. The sorted KSP are

SimCosine(Currenti/Predictedi, availables)

=
(UvCPUi · AvCPUs)+ (UMemoryi · AMemorys)+ (UStoragei · AStorages)√
UvCPU2

i + UMemory
2
i + UStorage

2
i ·

√
AvCPU2

s + AMemory2s + AStorage2s

(31)
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FIGURE 2. The proposed flowchart solution design.

successively deployed by the Best-Fit spectrum assignment
stage, where received instance’s virtual connection band-
width is assigned a spectrum with the required slots number
(Figure 2).

Likewise, after each connection assignment, the con-
sumed network power is sorted with the allocated spectrum
index, the resource state update, and the achieved blocking
rate.

Once both VNE steps achieved, the VNE outputs the total
power efficiency resulting from current embedding status,
and entire resources utilizations.

VI. EXPERIMENTATION AND RESULTS
In this section, we provide separately an overview on:

-Simulation setups and supported hypothesis in
subsection A;
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-Instances input and energy input data in subsection B;
-Simulation results in subsection C.

A. SIMULATION SETUPS AND SUPPORTED HYPOTHESIS
All experiment scenarios were coded in Python 3.8 under
Jupyter notebook using the NVIDIA GeForce RTX2070
GPU and 16 Go of RAM on an intel core 7 DELL G5-15
machine. The proposed architecture was restricted to AWS
European and UK endpoints DCs (Figure 3) and simulated
under the global AWS backbone network topology designed
in (Figure 4).

We validated the proposed system under the following
supported hypothesis:

-Initial networks and servers capacities are supposed to be
unutilized and fully available at the first experiment.

-At the first-time interval, ESD status at DCs nodes and
APNs nodes are equivalent to the received active energies.
The remaining energies in ESD devices start to be computed
after the first-time interval.

-Each Power Distribution Unit (PDU) of a DC or an APN
node are supposed to provide only one type of energy per
hourly interval, while prioritizing the greenest ones according
to their carbon intensities.

-For more concise results regarding the proposed rank-
ing system, the green-aware and delay-sensitive scenarios
are treated separately since no chosen peering connection
attribute is available in the deployed dataset.

-For the sake of simplicity, instance provisioning requests
come from a single source.

As shown in Table 2, we sought to keep the configuration
of DCs and hosts parameters setup as close as possible to
the actual configuration of the AWS deployment, initially
in terms of geographical locations as depicted in Figure 3,
then in terms of computing capacities per various instances
families (Table 2). Each family has a group of EC2 instances
with a unique name. In addition, each instance could be
available in different predefined sizes: starting from medium,
large, to x/2x/4x/. . . /24xlarge dimensions. Table 3 provides
characteristics values of deployed network resources.

B. AWS ENEGRY INPUT DATA AND EC2 INSTANCES INPUT
DATA
For each computing or APN node within the AWS back-
bone network (Figure 3), data regarding hourly available
renewable energies was gathered using the ElectricityMap
platform [28]. As previously mentioned, we focused on UK
and Europe countries given Amazon’s ambitious target of
fostering green energy in these regions.

We also leveraged the International Energy Agency (IEA)
platform [29], to gain insight into dominant backup energy
types within each region with their related carbon intensities
depicted in (Figure 5). Furthermore, we proceeded with the
following steps to get more tangible data:

-For each AWS solar and wind power plant (Figure 2),
we estimated hourly energy availabilities using AWS plant’s

FIGURE 3. Simulated AWS nodes categories in the UK and Europe.

FIGURE 4. The simulated AWS backbone network.

installed capacities and occupied capacities percentages
obtained from ElectricityMap platform.

-Obtained values were converted into KW unit for each
AWS power plant.

-The hourly energy availabilities were then fairly dis-
tributed to the central and peripheral DC nodes and APNs
nodes taking into account their numbers and ESDs capacities.

Regarding entered instances data, each instances fam-
ily involves the following fourteen multivariate attributes:
time attribute; required instance name and size; its related
vCPU, memory, storage, and network capacities; user ID;
a binary novelty attribute; tenancy; utilized vCPU, memory
& storage resources; then next predicted instances demand
and resources occupancies. The established future hourly
intervals predictions were ensured by the BiGRU model
and the SDAE-BiGRU for respectively instances demand
prediction and multivariate instances resources occupan-
cies prediction. In this paper, we worked with five hourly
time intervals each containing 60 instances from various
families.
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TABLE 2. DCs and servers configurations.

C. SIMULATION RESULTS
This section is dedicated to numerically evaluate our proposal
by comparing VNoE andVLiE policies and peering scenarios
proposed in Section 5. The performance evaluation is con-
ducted according to the following metrics:

-Power consumption: evaluates intra DCs and inter
network consumed power in (W) using respectively
equations (20 & 27).

-Power efficiency: evaluates the total power efficiency
resulting from intra DCs and inter network, in divers five
experimented time intervals.

-Multi level resources utilizations: refer to hosts’ occupied
vCPU, memory and disk given each allocation policy.

-Acceptance ratio: represents the ratio of all completed
instances on the total number of received instances.

-CER values: the total Carbon Emission Rate metric men-
tioned in equation (1), related to both considered peering
scenarios.

Through intra DCs power consumptions summarized in
(Figure 6), it is evident how the proposed SDAE-BiGRU-
RVM-VNoE and the SDAE-BiGRU-BF-VNoE approaches
outperformed other allocation policies given their anticipated

personalized downsized instances allocation. More precisely,
the proposed SDAE-BiGRU-RVM-VNoE policy achieved a
power decrease of 14.61%, 14.95% and 17.21% respectively
compared to BiGRU-RVM-VNoE, BiGRU-BF-VNoE and
BF-VNoE. Again, the SDAE-BiGRU-BF-VNoE achieved
a power decrease of 14%, 14.35% and 16.62% respec-
tively compared to BiGRU-RVM-VNoE, BiGRU-BF-VNoE
and BF-VNoE.

This mutual decrease in power related to the two proactive
VNoE approaches is also related to the relatively smaller
number of their occupied servers compared to the other poli-
cies. Figure 7 illustrates the total occupied servers number
related to each VNoE allocation policy, in five-time intervals
with divers instances inputs. Taken as an example the second
time intervals, the total number of occupied servers in entire
family racks is 28 for both SDAE-BiGRU-RVM-VNoE and
SDAE-BiGRU-BF-VNoE policies, as compared to 39 occu-
pied servers in other allocation approaches.

In the other hand, network power consumptions (Figure 8)
are mainly dependent on network throughput rates requested
by the arriving instances within a time interval, the routing
congestion rates and, consequently, the transmitted network
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FIGURE 5. Multi energy sites related carbon intensities in KgeqCO2/KWh.

TABLE 3. Network configuration.

FIGURE 6. Power consumption results within a) intra DCs given the
considered five VNoE policies.

hops. Since the proposed routing strategy sorts feasible
3-SP adaptively according to network links states using two
divers SP strategies, the network blocking rate was ultimately

FIGURE 7. The total number of occupied servers in each time intervals.

FIGURE 8. Power consumption results within inter AWS network topology
using the proposed multistep VLiE.

FIGURE 9. Total power efficiencies resulting from five VNE experimental
intervals.

avoided under entire VNoE allocation policies. The same
goes for intra DCs instances acceptance ratio which remained
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FIGURE 10. Multi-level resources utilization in multimodal instances family racks.

equivalent to 1 in all experiments, given the high considered
availability of DCs locations and servers.

From a power efficiency point of view, total power efficien-
cies related to each experimental time intervals are depicted in
(Figure 9). After converting power into KW,maximum power
efficiencies were achieved during the second and first experi-
mentation intervals. Indeed, this finding supports the model’s
dependence on both intra-DC power, given instance usage
behaviors, provisioning natures in each time slot, variability
in family types within a time slot, and then on inter-network
power impacted by the considered destinations in the AWS
topology.

It is obvious from Table 4 that the best method providing
the most optimal assignments is the exact simplex MILP
algorithm. While this is intended, we are also seeking speed

and mixed-integer compatible processing with respect to the
other two algorithms. When running 20 instances, the results
provided by the SDAE-BiGRU-RVM-VNE are very near
to the optimal values with an error not exceeding 0.21%.
Besides, the proposed algorithm is significantly less time-
consuming than simplex, even for large instances. In what
follows, the discussion will concentrate on the analysis of the
remaining experimental intervals by comparing only the two
algorithms.

After demonstrating the effectiveness of the two multi-
variate proactive policies SDAE-BiGRU-RVM-VNoE and
SDAE-BiGRU-BF-VNoE compared to the other univari-
ate proactive policies and compared to the reactive policy,
Figure 10 highlights some areas of divergence between these
two policies in terms of multi-level resource exploitation.
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TABLE 4. Experimental results comparison.

FIGURE 11. CER values obtained under GLA-GTR and DS-GTR peering
scenarios.

It is worth reminding how both multivariate proactive poli-
cies deploy a multi-stage consolidation scheme depending on
the instance family rack nature (Figure 2). Both proactive
multivariate policies consider a vCPU resources consolida-
tion in GP and CO families, a memory consolidation in MO
family then a disk storage consolidation in SO family. While
the SDAE-BiGRU-RVM-VNoE policy outputs optimal host
index on the basis of a tri-dimensional resources investigation
regardless of the envisaged instance family (equation 33), the
SDAE-BiGRU-BF-VNoE solely relies on a single resource
dimension that need to be consolidated.

Therefore, these differences explain the noticed dispropor-
tionate occupancy of host resources under the SDAE-BiGRU-
BF-VNoE policy. These resources disproportions are partic-
ularly manifested over first occupied servers. Using the first
three occupied servers examples (Figure 10), the proposed
SDAE-BiGRU-RVM-VNoE shows an increase of 47.75% in
occupied storage resources under the GP family, an increase
of 27.09% of occupied storage resources under the MO fam-
ily, then an increase of (20.15% - 20,08% - 36.73% ) respec-
tively in vCPU, memory, and storage under the SO family,
respectively over the SDAE-BiGRU-BF-VNoE. These pro-
portions explain the useless consumption of static powers

beside unused resources when deploying the BF rule-based
approach as a combination to the multivariate anticipated
inputs.

In terms of CER metric, Figure 11 demonstrates obtained
CER results in both GLA-GTR and DS-GTR peering sce-
narios. The sum of intra CER values resulting from the
GLA-GTR algorithm during the five experimentation inter-
vals accounts only for 6, 36% of the sum of CER values
resulting from the DS-GTR algorithm.

VII. CONCLUSION
In this paper, we examined a jointure of a hybrid intra
DCs VNoE policy with an inter cloud multistep VLiE pol-
icy, to solve the mismatch between the maximum resources
utilization of personalized instances, overall power effi-
ciency and the minimum geo-distributed carbon emission
targets. Holistically, the proposed elastic and proactive VNE
flowchart is founded on an AWS cloud case study to solve the
formulated MILP optimization model. In the proposed sys-
tem, green DCs and networking nodes are prioritized through
a GLA-GTR algorithm.

The investigated VNE stipulated two instances provision-
ing scenarios: a supply capacity in excess over demand, and a
supply capacity equaling demand. Future works could focus
on improving our proposal’s through incorporating other fac-
tors influencing the proposed VNE decisions. The first factor
concerns the addressing of a third provisioning scenario in
which demand exceeds resources capacity supply. Then, the
other factors may concern the provisioning of multi-sources
requests destined to multi-destination computing nodes. This
later concern should be investigated within the proposed
system in a parallel scheme, in which an effective ordering
approach is therefore desirable to assign routing priority to
the source/destination pairs where path finding is prone to be
more problematic.

NOMENCLATURE

APN Amazon Partners Networks.
AWS Amazon Web Services.
AY-KSP Adaptive Yens K-Shortest Path.
BF Best Fit.
CER Carbon Emission Rate.
CO Compute Optimizer.
DCs Data Centers.
ESD Energy Storage Devices.
GLA-GTR Green Location Aware Global

Topology Ranking.
GP General Purpose.
ISPs Internet Service Providers.
MO Memory Optimizer.
PDU Power Distribution Unit.
REs Renewable Energies.
RVM Resources Vector Matching.
SDAE-BiGRU Stacked Denoising Auto-Encoders

Bidirectional Gated Recurrent Unit.
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SD-WAN Software Defined Wide Area Network.
SO Storage Optimizer.
VLiE Virtual Link Embedding.
VNE Virtual Network Embedding.
VNoE Virtual Node Embedding.
VPC Virtual Private Cloud.
VPN Virtual Private Network.
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