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ABSTRACT Writer identification has steadily progressed in recent decades owing to its widespread
application. Scenarios with extensive handwriting data such as page-level or sentence-level have achieved
satisfactory accuracy; however, word-level offline writer identification is still challenging owing to the
difficulty of learning good feature representations with scant handwriting data. This paper proposes a
new Residual Swin Transformer Classifier (RSTC), which comprehensively aggregates local and global
handwriting styles and yields robust feature representations with single-word images. The local information
is modeled by the Transformer Block through interacting strokes and global information is featurized by
holistic encoding using the Identity Branch and Global Block. Moreover, the pre-training technique is
exploited to transfer reusable knowledge learned from a task similar to writer identification, strengthening
RSTC’s representation of handwriting features. The proposed method is tested on the IAM and CVL
benchmark datasets and achieves state-of-the-art performance, which demonstrates the superior modeling

capability of RSTC for word-level writer identification.

INDEX TERMS Writer identification, handwriting analysis, vision transformer, deep learning.

I. INTRODUCTION

Handwriting data is a type of behavioral biometric analogous
to iris and fingerprint, with distinct personal characteristics
that allow persons to be identified. It has been profoundly
deployed in many fields, such as security and law enforce-
ment. Writer identification is defined as finding an individ-
ual writer in a large dataset, which stems from the broader
domain of handwriting recognition. According to the data
acquisition manner, this task can be categorized as online
and offline [1], [2]. For online writer identification, it refers
to recording temporal data produced in writing procedures,
such as coordinates, angles, and pressures using specific
devices. For offline writer identification, merely static hand-
writing images are recorded and analyzed. Consequently,
identifying writers in offline scenarios is considered more
challenging with fewer features input to the identification
system. In addition, depending on the handwriting content,
writer identification can be dichotomized as text-dependent
and text-independent [2]. The former means that each writer
must write the same content; the latter, which is considered
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(a) Several examples words in IAM dataset of different writers.
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(b) Several examples words in CVL dataset of different writers.

FIGURE 1. Word images that have a low amount of handwriting.

more difficult, denotes that the writer is allowed to write
different content.

In most cases, we can only access a small amount of
personal handwriting data, such as a few words or even letters,
as depicted in Figure 1. It presents a tremendous challenge to
identify a person as handwriting data is insufficient. Earlier
studies widely exploited hand-crafted feature extractors, such
as the vector of locally aggregated descriptors (VLAD) [3]
and co-occurrence histogram [4], which capture local hand-
writing styles of the writer. On the other hand, convolutional
neural networks (CNN) [5], [6] and recurrent neural networks
(RNN) [7] were increasingly popular for deep local features
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extraction. Furthermore, the combinations of hand-crafted
feature extractors and deep neural networks [8]-[10] have
also been well explored. As attention-based methods have
recently become the mainstream, several studies [11]-[14]
have focused on attention-based methods to enhance mod-
eling in feature space, which are usually combined with
CNN. The aforementioned methods have achieved promis-
ing performances in page-level or sentence-level scenarios.
However, they did not deliver satisfactory results in offline
word-level scenarios. The reasons are two-fold. (1) Most of
the existing methods only concentrated on local features,
but ignored the modeling of global features, which limited
models’ performance. (2) Owing to the limited handwriting
data and sparse connections of neighboring strokes of words,
hand-crafted feature extraction techniques and CNN/RNN
were unable to encode enough local and global informa-
tion to capture discriminative handwriting styles. Although
attention-based methods slightly improve the accuracy, they
only optimized the representation of local features without
involving global dependency. Hence, existing methods failed
to yield robust features for single-word images, resulting in
poor performances.

Recently, the Vision Transformer (ViT) [15] has achieved
considerable success in many fields of computer vision, such
as object detection and image classification [15]. And vari-
ous vision transformers [16]-[18] have been proposed. The
transformer in vision fields reduces pixel information lost
in long-range modeling using self-attention mechanism and
captures shallow and deep features of images based on dif-
ferent architectures, which means that it could be a potential
approach for improving the accuracy of offline word-level
writer identification. Furthermore, the pre-training technique
has been widely leveraged for its effectiveness in transferring
knowledge, such as in the large pre-trained language models
(LMs) [19], [20]. However, it has not been investigated in
writer identification.

This paper proposes a new effective Residual Swin Trans-
former (RSTC) to explicitly handle the extraction of local
and global features of single-word images in a comprehensive
manner. To better model local fine-grained features such as
letter strokes, the Transformer Block is introduced, which
mines interconnections of strokes by the interaction of pixel
tokens. To characterize global handwriting styles such as the
spatial architecture of words, the Identity Branch and the
Global Block are proposed. The former encodes the entire
image through patch embedding to a feature vector and the
latter adaptively incorporates all extracted local and global
features, resulting in joint optimization of the Transformer
Block and Identity Branch. In general, the proposed RSTC
coordinates local and global feature modeling and forms
robust final features although the handwriting data is limited.
Additionally, the pre-training technique is exploited to facili-
tate RSTC’s performance, where word recognition is adopted
as the pre-training task to provide transferable knowledge.

In summary, the main contributions of this paper
include:
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o This paper proposes a new Residual Swin Transformer
Classifier (RSTC) for offline word-level writer iden-
tification. To the best of our knowledge, this is the
first paper that introduces the vision transformer-based
model in the domain of writer identification.

¢ RSTC models fine-grained local features using the
Transformer Block and global features using the pro-
posed Identity Branch and Global Block, and then com-
prehensively aggregate them. Therefore, it effectively
solves the difficulty of extracting robust features with
a low amount of handwriting data.

« Extensive experiments on two widely used benchmarks
demonstrate that the proposed method is superior to
the existing approaches, indicating the effectiveness
of RSTC.

The remainder of this paper is organized as follows.
Section II presents a review of the related works of writer
identification. Section III introduces the proposed method-
ologies. Section IV describes the implementation details and
experimental results. Section V concludes the paper.

Il. RELATED WORKS

Considerable research has been conducted in the field of
writer identification, including online and offline methods.
They generally involved three stages: data preprocessing,
feature extraction, and writer decision. Based on different
schemes of the latter two stages, the existing techniques
can be grouped into hand-crafted feature-based and deep
learning-based methods.

A. HAND-CRAFTED FEATURE-BASED METHODS

Before the advancement of deep learning, the conventional
methods extracted hand-crafted features from handwriting
images, and then combined them with decision systems to
make classifications.

1) TEXTURAL FEATURES

Considering handwriting as texture [21], textural features
have been widely exploited. Bertolini et al. [22] utilized the
Local Binary Pattern (LBP) [23] and Local Phase Quantiza-
tion (LPQ) [22] features of texture blocks and passed them to
the SVM classifier. Newell and Griffin [24] applied the ori-
ented Basic Image Feature (oBIF) Column scheme to encode
handwriting images. They used a bank of six Derivative-of-
Gaussian (DtG) filters to extract texture features as encoding
representations. Said et al. [21] and Mridha et al. [10] lever-
aged the Gabor filter, which is a useful descriptor for texture
extraction. Similar to Gabor filters, the XGabor filters were
used in [25] with the feature relation graph (FRG).

2) ALLOGRAPHIC FEATURES

The allograph of handwritten characters contains features
of their shapes. Bulacu et al. [26] used a segmentation
method to extract allographic features by generating shape
codebooks and computing probability distribution functions
(PDF). Ruben et al. [27] captured the occurrence probability

57453



IEEE Access

P. Zhang: RSTC: New Residual Swin Transformer for Offline Word-Level Writer Identification

of allographic elements of handwriting to distinguish writers.
In [28], Niels et al. novelly proposed to extract allograph
frequency vectors for each writer and matched writers by
similarity.

3) CONTOUR-BASED FEATURES

In [29], K-adjacent segment features were used to model
the character contours on the entire page. Brink et al. [30]
extracted Quill-Hinge features from contours of the ink-trace
to make representations. In [31], Lai ef al. proposed Pathlet
features, which extracted oriented fragments of handwriting
contours using the Ramer-Douglas-Peucker algorithm and
then described them with Path Signature or Log Path Signa-
ture features. In addition, they calculated the Scale Invariant
Feature Transform (SIFT) features. The combination of Path-
let and SIFT features achieved excellent results on page-level
writer identification.

B. DEEP LEARNING-BASED METHODS

Following the advancement of deep learning, neural network-
based methods, such as CNN and RNN, have been widely
employed for writer identification. They are not typically
used alone, but combined with existing feature extraction
techniques.

1) CNN-BASED

Christlein et al. [5] exploited CNN as the feature extrac-
tor and used Gaussian Mixture Models (GMM) Supervec-
tor encoding to aggregate the features. Yang et al. [8]
developed a CNN architecture and used Path Signature to
extract features. They also proposed a data-augmentation
method called DropStroke and concluded that CNN needs
a large amount of data to achieve reasonable performances.
Xing and Qiao [6] proposed an end-to-end DCNN model.
With multistream input and parameter sharing, their model
leveraged the spatial features between patches and achieved
good results when the input was a sentence or a Chinese
character. Rehman et al. [32] investigated the effect of dif-
ferent frozen layers of CNN on the identification rate of
writers on several datasets. In [10], Mridha et al. explored
combining the thresholded-Gabor filter and CNN for Indic
language writer identification in word-level scenarios. He and
Schomaker [33] proposed a deep-adaptive learning model
based on single-word images. They used a two-stream CNN,
one for the main task and the other for the auxiliary task,
which receives shared feature representations. Subsequently,
they introduced FragNet [34] that also had two modeling
paths. The first path used the feature pyramid to receive
entire images as input and the second one predicted writers’
identities through fragments of the images.

2) RNN-BASED

Liu et al. [7] employed LSTM and the Path Signature to
capture sequential information of handwritings. He ef al. [35]
adopted the residual learning mechanism and introduced
a residual RNN block that received the local feature map
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computed by the CNN block. Additionally, they studied the
effects of horizontal and vertical segmentation of feature
maps.

3) ATTENTION-BASED

The attention mechanism was universally exploited in recent
years. In writer identification, this technique was usually
combined with CNN or RNN to enhance deep feature extrac-
tions. Shaikh et al. [14] employed cross attention and soft
attention to concentrate on highly correlated pixel regions
of handwriting pairs. Chen et al. [11] proposed the Letters
and Styles Adapters (LSA) to encode different letters, which
were inserted between CNN and LSTM. They also proposed
Hierarchical Attention Pooling (HAP) to aggregate features.
Ngo [13] proposed an attention key point filter to select key
points in historical documents, which aimed to simulate the
selection of the SIFT algorithm.

The aforementioned methods that focused on word-level
scenarios used CNN or RNN to learn handwriting styles and
perform identification. The results are unsatisfactory because
they generally consider local features but ignored global
features. Besides, limited handwriting data restricted models’
performances. To this end, this paper proposes the Residual
Swin Transformer Classifier (RSTC) to tackle these problems
by jointly capturing local and global writing styles.

lll. METHODOLOGY

This section first describes the design of the model in detail.
Then, the pre-training technique is discussed. Finally, the data
augmentation techniques and the loss function are presented.

A. RSTC: RESIDUAL SWIN TRANSFORMER CLASSIFIER
The overall architecture of the proposed RSTC model is
shown in Figure 2. The model consists of (1) the Transformer
Block, (2) the Identity Branch, and (3) the Global Block.
The former aims to minutely model the local handwriting
styles, and the latter two are responsible for capturing global
handwriting styles and performing feature integration.

1) TRANSFORMER BLOCK

Since writers have their unique style of handwriting, the
strokes of handwritten words share strong similarities. Hence,
modeling the relationship between different strokes is a key
factor in learning local handwriting styles. Considering the
local modeling ability, the tiny version of the advanced
Swin-Transformer [16] (Swin-T) is adopted as the Trans-
former Block. The core modules of Swin-Transformer are
window multi-head self-attention (W-MSA) and shifted win-
dow multi-head self-attention (SW-MSA). W-MSA computes
self-attention in nonoverlapping windows, which covers each
part of the word and finely captures the features of adjacent
strokes. SW-MSA re-partitions the image and intersects win-
dows, which unearths mutual connections between neighbor-
ing parts of the word, effectively encoding remote features.
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FIGURE 2. The overall architecture of the Residual Swin Transformer Classifier (RSTC). The Transformer Block captures local dependency of word
images. The Identity branch adds an identity mapping of the original images to capture global dependency. All local and global features are

aggregated by the Global Block.

As shown in Figure 2, the preprocessed single-word
images are first converted into pixel tokens ¢ through the
patch embedding layer. Subsequently, 7 is input to the Trans-
former Block. There are in total four inside Stages, denoted
as Stage-1, 2, 3, and 4, which contain different numbers of
consecutive internal blocks where W-MSA and SW-MSA are
implemented in. In addition, all stages excluding Stage-1,
down-sample the feature map at arate of two. Thus, the Trans-
former Block progressively expands feature maps’ recep-
tive fields and hierarchically extracts deep local features.
It finally yields local feature representations f; of the word
images.

2) IDENTITY BRANCH

Inspired by the residual-learning mechanism in [36], the
Identity Branch is proposed, which contains a global aver-
age pooling (GAP) layer and a fully-connected (FC) layer.
Because the embedded pixel tokens ¢ are directly computed
from the entire image, the Identity branch receives ¢ as input
and transforms them into one-dimensional vectors f, through
the compression of GAP and projection of FC. Hence,
f¢ denotes the extracted global features.

3) GLOBAL BLOCK

The Global Block is introduced to aggregate the local
features f; and global features f,, which comprises three FC
layers and one dropout layer. f; are first added up with f; to
form f;, and FC layers receive f; as input to make further
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integration, resulting in an aggregator of all writing style
features. The dropout layer randomly drops several nodes of
the previous layer, which helps prevent overfitting and makes
the Global Block more adaptive.

Finally, features formed before the Classification Head
cover the local and global handwriting styles of the writers,
leading to more robust classification evidence and better
model generalizability.

B. PRE-TRAINING

This paper chose handwritten word recognition as the pre-
training task, whereas the main task is writer identification.
Handwritten word recognition is a typical task in the hand-
writing field, and can be defined as a multi-classification
task analogous to writer identification. The two tasks are
similar but do not overlap, thus no leakage problem exists.
In the pre-training stage, RSTC learns knowledge k-
from word recognition on larger datasets. In the training
stage, k- is transferred and combined with the knowl-
edge kyiq learned from writer identification, as illustrated in
Equation 1:

kfinal = kyia @ kyr
]?inal = RSTC(data, kﬁ'nal) (n

where data is the handwritten word images fed into RSTC
in the training stage. Based on more reasonable parameters,
ky optimized the final feature representations ffia;.
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C. DATA AUGMENTATION

Perspective transformation is used as the data augmentation
method, whereby a multi-point transformation is performed
on the image without changing the writing style of each user.
This process is described as:

ail a2 a3
/ / /
[x',y, 2] =[x,y,2] | a21 ax ax @)
as| asz ass
where x, y, and z denote the original pixel coordinates and x’,

y', and 7’ denote the transformed coordinates. Some examples
are shown in Figure 3.

gq(uue S "DC&,U\C\JG - g%uwe S gcxuML’S

gq(uuefgiuue S 510«&” SS?uow,

FIGURE 3. Examples of data augmentation using the perspective
transformation. The upper left one is the original image. Others are the
results of applying the algorithm to the original image.

D. LOSS FUNCTION

Label smoothing cross entropy loss [37] is adopted as
the multi-classification loss. The original one hot label y;
becomes y;:

- £ 1 —¢, i=target
Yizyi(1_8)+E= . ) 3
%> i # target

where K denotes the number of classes, and ¢ denotes the
label smoothing factor. Label smoothing performs regular-
ization to prevent the overfitting of network. Hence, the label
smoothing cross-entropy loss can be interpreted as follows:

1
H(q.,p)=(0—¢&H(q,p)+ eH(%:p) “)

where g denotes the original ground-truth distribution, and
¢’ denotes the ground-truth distribution after label smoothing.
In addition, p is the prediction distribution computed by the
model.

IV. EXPERIMENTS

A. DATASETS

Three publicly available benchmark datasets are used in this
paper as follows:

o The IAM dataset [38] contains handwritten English
text of 657 users in unconstrained scenarios, with at least
one page of text per user. Each page was scanned at
a resolution of 300dpi and saved as PNG images with
256 gray levels. These texts were automatically divided
into isolated words, with writer labels provided.

o« The CVL dataset [39] contains 310 users. 283 users
contributed five pages (one German and four English)
and the other 27 users contributed seven pages
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(one German and six English). Similar to the IAM
datasets, it also provided labeled isolated word images.

o The GNHK dataset [40] is a dataset that contains

688 pages of English handwriting in the wild. The
images were captured by cameras in different regions
around the world. Each page had a corresponding JSON
file with the same name, which recorded the positions
of the English words or letters on the corresponding
image in the form of key-value pairs, where the key was
the exact English word and the value was the position
represented by a bounding box.

In the pre-training stage, IAM, CVL, and GNHK datasets
are used. In the training stage, IAM and CVL datasets are split
into the training set and testing set with a ratio of 4:1. Details
are illustrated in Table 1 and 2.

TABLE 1. Pre-training dataset details.

Dataset Images | Word Classes

IAM [38] 68072 2313

CVL [39] 97349 300

GNHK [40] | 20621 1836

Total 186042 2518

TABLE 2. Training dataset details.
Dataset Images | Training | Testing | Writer Classes

1AM [38] 90644 71990 18654 657
CVL [39] 91467 73076 18391 310
Total 182111 145066 37045 967

B. PRE-PROCESSING

Figure 4 illustrates the entire process. First, all word images
are transformed into gray-level images and Gaussian fil-
ter algorithm are applied to filter out noise. Second, they
are binarized using the OTSU [41] algorithm. Subsequently,
images are resized to a fixed size (96,192), which main-
tains the aspect ratio with white pixel padding until reach-
ing the preset size to avoid distortions. Before input to the
network, all images are augmented using the perspective
transformation.

= scaled image

({O\A_ ' YA | padding area
Original Gray-Level & OTSU Letterbox
Gaussian Filter ~ Binarization (96,192)

FIGURE 4. Preprocess procedure: Converted to gray-level image ->
Gaussian Filtering -> OTSU Binarization -> Resizing and Padding.

C. METRICS
This paper uses the popular Top-1 and Top-5 accuracies [3],
[8], [33], [34] as metrics. Top-k refers to calculating the
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percentage of queries, where the k highest-ranked words are
from the same writer. Top-1 denotes the probability that the
first ranked word stems from the match writer. Top-5 denotes
the probability that words stem from the correct writer rank
in the top five.

D. IMPLEMENTATION DETAILS

The overall network architecture is implemented using
Pytorch. The size of per batch data is set to 128. The model
is optimized using AdamW [42] with the initial learning rate
and weight decay rate of 0.0001 and 0.00001 respectively.
The learning rate decreases according to the cosine annealing
algorithm proposed in [43]. The number of epochs is 100 in
the pre-training stage and 200 in the training stage. The label
smoothing factor ¢ in Equation 3 and 4 is set to 0.1.

E. EXPERIMENTAL RESULTS

1) ABLATION STUDY

a: IDENTITY BRANCH AND GLOBAL BLOCK

To evaluate the effectiveness of the Identity Branch / and
Global Block G in RSTC, the ablation studies on the IAM and
CVL datasets are conducted separately and jointly. As shown
in Table 3, when [ is used, the accuracy on joint datasets
AcCjoins 1s improved by 0.3%, whereas the accuracies on sin-
gle datasets, a.k.a Accjay and Acccyr, gain miner improve-
ments. Surprisingly, in the case of adding G only, although
AccCjoins 1s still better than the one of adding I, Acciam
and Acccyy, suffer drops. This indicates G does better in
describing features in the mixed-dataset scenarios, whereas
I is more friendly to single-dataset. With two datasets in
use, the characteristics of CVL and IAM might affect each
other because of G, leading to more adaptive feature rep-
resentations and boosting performance. Moreover, I brings
global information, which is more valuable than extracting
only local features. When applying / and G together, RSTC
achieves the best performance as shown in the sixth row,
owing to the full utilization of local and global features.

TABLE 3. Ablation studies with different components of RSTC. Note that
the datasets are split into the training set and testing set with
a ratio of 4:1.

RSTC Settings 1AM CVL CVL and IAM

Identity Branch ~ Global Block  Top-1 ~ Top-5 Top-1 Top-5 Top-1 Top-5

X X 90.8 96.8 93.1 98.1 92.7 97.6
' X 90.9 96.9 93.1 98.1 93.0 98.0
X v 90.7 96.6 92.7 97.7 93.3 97.8
' v 91.4 97.0 93.3 98.1 93.7 97.9

b: RSTC AND OTHER BACKBONES

Table 4 respectively lists the results between different back-
bones. The tested models include ResNet-34 [36], RSTC
without pre-training weights, and RSTC with pre-training
weights. It is clear that whether using the datasets separately
or jointly, RSTC trained from scratch yields higher accuracies
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TABLE 4. Comparisons between different backbones. Note that the
datasets are split into the training set and testing set with a ratio of 4:1.

IAM CVL CVL and IAM

model pre-training weights

Top-1  Top-5 Top-1 Top-5 Top-1 Top-5

Resnet-34 [36] - 82.7 93.7 83.8 95.2 83.5 94.8
RSTC X 87.5 95.6 90.3 97.2 89.0 96.6
RSTC v 91.4 97.0 93.3 98.1 93.7 97.9

than Resnet-34, which indicates that the well-designed RSTC
captures more valid handwriting details in word images than
the CNN-based model. When pre-training weights are lever-
aged, RSTC gains a significant increase of 4.7% in the Top-1
Accjoins compared to when randomly initialized. This proves
that knowledge of writing style learned from word recog-
nition benefits the extraction of more robust features in the
writer identification task to achieve higher accuracy.

There is another point that should be discussed. From
Tables 3 and 4, Acccyy is higher than Accjyin; and Acciay
in some cases. Without pre-training weights and using single
datasets, the performance is expected to be worse because of
less data; however, experimental results show the opposite.
This is an explanation for this observation. The CVL dataset
is text-dependent as writers wrote the same words, whereas
the TAM dataset is text-independent and considered more
complex. Therefore, with less data, identifying writers on
CVL is easier and the accuracy should be correspondingly
higher than on IAM or both of them together. However, with
I, G, and pre-training weights, the Top-1 Accjin; Surpasses
Top-1 Acciap and Acccyyr . It reveals that RSTC achieves the
best performance when the data is sufficient and can handle
more complex conditions.

2) COMPARISON WITH STATE-OF-THE-ART METHODS
Tables 5 and 6 illustrate comparisons of different methods.
The two datasets are re-divided with the ratio of 7:3 as
mentioned in [33] for fair comparisons.

From Table 5 and 6, we can see that the hand-crafted
features [3], [30], [44]-[47] have significantly low accuracy
in word-level scenarios. This is because the hand-designed
features fail to provide stable feature representations owing
to scant handwriting data. Performances of neural network-
based methods [33]-[35] are better than those of hand-crafted
features; however, they are still not satisfactory. The proposed
RSTC outperforms them by a large margin in the word-level
scenario, especially on the IAM dataset with an improve-
ment of 4.3%. RSTC yields a better performance even when
compared with the method which used sentences as input as
shown in the seventh row of Table 5.

3) PERFORMANCE DISTRIBUTION

The Top-1 accuracy distributions of each writer between
RSTC and Vertical GR-RNN [35] with different datasets are
illustrated in Figure 5. The blue line represents the base-
line of the distribution and each red point corresponds to
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FIGURE 5. Top-1 accuracy distribution between RSTC and Vertical GR-RNN [35] on three scenarios. Note that the number of red points in each figure
equals the number of writers of the corresponding dataset, which are 657, 310, and 967, respectively. The horizontal and vertical coordinates of all
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figures range from 0% to 100%.

TABLE 5. Comparison with Existing Methods on IAM Dataset. Note that
the datasets are split into the training set and testing set with
a ratio of 7:3.

TABLE 6. Comparison with Existing Methods on the CVL Dataset. Note
that the datasets are split into the training set and testing
set with a ratio of 7:3.

method scenario  Top-1  Top-5

method scenario  Top-1  Top-5

curvature-free features [44] word 15.7 32.1

curvature-free features [44] word 12.8 29.6

textural and allographic features [45] word 26.7 45.4

textural and allographic features [45] word 25.8 48.0

contour-based orientation [46] word 30.5 49.8 contour-based orientation [46] word 28.8 51.4

co-occurence [47] word 37.2 57.8 co-occurence [47] word 30.0 524

ink-trace [30] word 359 57.8 ink-trace [30] word 294 52.6

deep and hand-crafted descriptors [3]  sentence 86.3 96.1 deep-adaptive learning [33] word 78.6 93.2

deep-adaptive learning [33] word 69.5 86.1 FragNet-64 [34] word 90.2 97.5

FragNet-64 [34] word 85.1 95.0 Vertical GR-RNN (FGRR) [35] word 92.6 97.9

Vertical GR-RNN (FGRR) [35] word 85.9 95.2 Horizontal GR-RNN (FGRR) [35] word 924 97.8

Horizontal GR-RNN (FGRR) [35] word 86.1 95.0 RSTC (This paper) word 92.7 97.9
RSTC (This paper) word 90.7 96.6

one writer. Points above this line indicate that RSTC per-
forms better, whereas points below indicate that Vertical
GR-RNN performs better. Since most points are clustered
in the upper left (in the black boxes), it suggests that Ver-
tical GR-RNN yields poor performance on these writers and
RSTC can improve the identification accuracies of these writ-
ers. On the CVL dataset, points are more aggregated than in
other scenarios, which indicates that RSTC is more adaptive
to writer-dependent data than to writer-independent data.

4) VISUALIZATION

The t-distributed Stochastic Neighbor Embedding (t-SNE)
visualization is conducted to intuitively demonstrate the iden-
tification performance of RSTC, as shown in Figure 6.
50 writers with 16 word images for each are randomly
selected in the testing set as the input of RSTC. Based on the
final feature vectors computed by the last layer of the Global
Block, the visualization results exhibit the distribution of
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FIGURE 6. t-SNE visualization, each cluster represents the words written
by one user.

feature vectors in a two-dimensional space after dimension-
ality reduction. For most users, their handwriting is gath-
ered, and the clusters of each user are mostly isolated.
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This indicates that the proposed RSTC can distinguish writ-
ers correctly so that they do not interfere with each other,
highlighting its high identification ability in the word-level
scenario.

V. CONCLUSION

This paper proposes a novel Residual Swin Transformer
Classifier (RSTC) for offline word-level writer identifica-
tion. To the best of our knowledge, this is the first attempt
that successfully employed the vision transformer in this
field. The Transformer Block in RSTC finely models the
local features, and the introduced Identity Branch and Global
Block deeply characterize global handwriting styles that have
usually been ignored. Therefore, RSTC comprehensively
extracts and tightly couples local and global features with
limited handwriting data and yields robust feature repre-
sentations for different writers. In addition, the pre-training
technique that has not been popularly leveraged is exploited
to boost RSTC’s performance. Experimental results demon-
strate the superiority of the proposed RSTC, surpassing the
existing methods by a significant margin.

One limitation of RSTC is that when computing
self-attention on white regions of word images, it may yield
less useful information. The model should be guided to
concentrate on the valid pixels of word images rather than
the noise pixels. To this end, the future work is oriented
to drawing on the technologies of deformable convolution
and deformable ROI pooling [48] and combining them with
the shifted-window attention mechanism to further focus on
the word regions. The model is expected to capture more
handwriting information using deformation. In this case,
more supervision information such as the mask annotations
for segmentation of words may be required to perform
deformable attention.
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