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ABSTRACT Over the past few decades, floods have severely damaged production and daily life, causing
enormous economic losses. Streamflow forecasts prepare us to fight floods ahead of time and mitigate
the disasters arising from them. Streamflow forecasting demands a high-capacity model that can make
precise long-term predictions. Traditional physics-based hydrological models can only make short-term
predictions for streamflow, while current machine learning methods can only obtain acceptable results
in normal years without floods. Previous studies have demonstrated a close relation between El Niño-
Southern Oscillation (ENSO) and the streamflow of the Yangtze River. However, traditional models, holding
the encoder–decoder architecture, only have one encoder block that can not support bivariate time series
forecasting. In this study, a transformer-based double-encoder-enabled model was proposed, called the
double-encoder Transformer, with a distinctive characteristic: ‘‘cross-attention’’ mechanism that can capture
the relation between two time series sequences. Using river flow observation collected by the Yangtze
River Water Resources Commission and El Niño-Southern Oscillation (ENSO) observation collected by
the National Oceanic and Atmospheric Administration, the model can achieve better performance. By using
variational mode decomposition (VMD) technique for preprocessing, the model can make precise long-term
predictions for the river flow of the Yangtze River. A monthly prediction of 21 years (from January 1998 to
December 2018) was made, and the results indicate that the double-encoder Transformer outperforms
mainstream time series models.

INDEX TERMS Streamflow prediction, Yangtze River, deep learning, transformer, variational modal
decomposition, flood forecasts.

I. INTRODUCTION
The Yangtze River has seen numerous floods in its history.
Affected by various factors, including the El Nino weather
pattern [1]–[3], the river flow time series are complex and
nonlinear [4]. Flow prediction is a practical problem and has
been drawing an increasing amount of attention. Many stud-
ies have been done to predict the river flow for months [5], [6]
or even years in advance [7], [8]. Streamflow predictions help
in the ability to fight floods in advance and help local admin-
istrators make better decisions and mitigate disasters [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehab Elsayed Elattar .

Over the past few decades, many numerical and machine
learning methods have been developed to predict streamflow.

Numerical prediction models [10]–[12] can simulate the
interactions of various physical processes, such as atmo-
spheric circulation and the evolution of long-term weather
in the physical world [13]. Numerical models can be anal-
ogous to conducting a particular physics experiment as a
way to achieve satisfactory results in short-term forecast-
ing [14]. The soil and water assessment tool (SWAT) [10]
was proposed as a way to predict the effects of land man-
agement on water, sediment, and chemicals in a large water-
shed with complex and varied soil types, land-use patterns,
and management practices. SWAT is a distributed watershed
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hydrologic model based on the geographic information sys-
tem (GIS). SWAT primarily uses the space-based information
from remote sensing and geographical information systems
to simulate various hydrological physical and chemical pro-
cesses [10]. However, hydrologic numerical models have
some severe drawbacks: 1. Large amounts of data with high
accuracy are required; 2. long-term forecasting is less accu-
rate; and 3. numerical methods are computationally intensive,
requiring vast computing resources. Statistical prediction
methods generally belong to traditional machine learning.
Many statistical models have been employed in predicting
streamflow [15]–[17]. Support vector machines (SVMs) [18]
was designed to be a strict theoretical and mathematical basis
classifier. In 2016, Shuang Zhu et al. used SVMs to predict
the upper reaches of the Yangtze River; here, the R2 could
reach 0.87 in a single-year monthly forecast [19]. Statistical
hydrological models can perform well in normal years but
perform poorly in flood years because the organizational
structure of its parameters limits the complexity of the model,
hence not being able to predict the anomalies precisely.

Traditional deep learning models for extracting features
that can be used as prediction models. Artificial neural net-
work (ANN), convolutional neural network (CNN) [20], and
recurrent neural network(RNN) [21] are promising meth-
ods for predicting river flow. An ANN can approximate the
unknown and nonlinear functions with arbitrary precision,
namely universal function approximators [22]. ANN mod-
els have been used to predict streamflow [23]–[25]. How-
ever, the ANN has two drawbacks: 1. With the increase
of sequence length, the amount of trainable parameters
increases sharply. 2. An ANN cannot capture sequence infor-
mation (e.g., position and order ). It is generally accepted
that an ANN is not suitable for processing time series.
CNNs and RNNs were designed to overcome the limita-
tions of ANNs. Previous studies have found CNNs and
RNNs to be more accurate than other models for dealing
with time series. Shun-Yao Shih et al. used a CNN for
multivariate time series forecasting [26]. Shaojie Bai et al.
proposed a new CNN architecture named a temporal con-
volutional network (TCN) [27] and obtained good results
on various time series datasets. An RNN was specifically
designed to deal with time series [21]. However, the vanilla
RNN architecture is full of problems that cannot be used
directly. Based on RNN architecture, long short-term mem-
ory (LSTM) [28] has been proposed, as a way to allevi-
ate problems within an RNN. Currently, LSTM is widely
used in hydrologic prediction tasks [13], [29], [30]. In 2020,
Liu et al. used LSTM to predict the middle reaches of
the Yangtze River; here, in flood years, the R2 monthly
prediction could reach 0.89 [31]. However, there are also
some shortcomings in CNNs and RNNs: 1. RNNs are
not computationally parallel, making them slow and time-
consuming. 2. CNNs will lose critical sequence information
while processing with time series, decreasing their accuracy.
3. CNNs and RNNs cannot capture the long-term dependence
effectively.

The attention mechanism was first proposed by
Bengio et al. in 2014 [32], and since then, it has been widely
applied in various fields of deep learning. With the atten-
tion mechanism, models can ignore low-value information
and focus on high-value information. The attention layer
can capture the long-term dependency by computing the
‘‘attention’’ between all pairs of points. The process does not
need to be sequential, so it is computationally parallel. The
attention mechanism can also be used as a feature extractor,
outperforming CNN and RNN architectures. Based on an
attention mechanism, Google proposed a new model called
Transformer [33]. Transformer abandoned the traditional
CNNs and RNNs, and the entire network structure is com-
pletely composed of the attention mechanism. Transformer
was initially designed for natural language processing (NLP).
Still, currently, many studies have indicated that Transformer
is faster and stronger than CNNs and RNNs in dealing
with time series [34]–[36]. However, like the previous mod-
els, Transformer also has trouble in predicting flood peak
discharge.

There are three deficiencies in the previous works: 1.
They can not forecast the flood peak discharge precisely.
The R2 in flood years has been lower than 0.9. 2. They
cannot make long-term stable predictions with high accuracy.
Whenmaking long-term predictions (e.g., more than a decade
of predictions), the average R2 may only be around 0.85.
3. Previous models do not have structures for multidimen-
sional data processing and combine all the dimensions into
feature vectors as input to make multidimensional predic-
tions for river flow, limiting the models’ capability. The
previous multidimensional data prediction models all use
this method of feature vectors [26], [37], [38]. In this study,
a restructured Transformer model combined with VMD is
proposed, namely double-encoder Transformer. Variational
mode decomposition (VMD) is widely used to preprocess
complex and nonlinear data [39]. It can decompose a signal
into several different modes to transform the signal in the time
domain into the frequency domain. The inherent features of
the original signal can be better reflected, making the model
fit well, no matter in normal or flood years. The restructured
Transformer is still an encoder–decoder architecture with two
encoders and one decoder. The structure of the multiencoder
can support multivariate prediction. The inputs of the two
encoders are observed river flow data and observed ENSO
data, respectively. To better obtain the correlation between
El Nino and flow, the decoder receives the outputs of the
two encoders as inputs and then learns and computes the
correlation between them.

The contributions of the present paper are as follows:
• The double-encoder Transformer is proposed to enhance
the prediction capability successfully, which signifi-
cantly improves the flow prediction accuracy of flood
years with an R2 higher than 0.95.

• A reliable long-term (21 years) flow prediction of the
Yangtze River had been performed, achieving high
accuracy.
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• The ‘‘cross-attention’’ mechanism is proposed to solve
the bivariate prediction problem, which validates the
attention-based model’s potential value for making a
multivariate prediction.

• A heuristic method is applied to determine the K value
in the VMD algorithm.

II. METHODOLOGY
The specific research methods can be divided into data pre-
processing and deep learning. The critical step of data pre-
processing is the VMD algorithm. In section II-A, starting
with data preprocessing, the focus is on the details of the
VMD algorithm. Deep learning techniques generally develop
an encoder–decoder paradigm [38], mainly using a CNN and
RNN and their variants. The double-encoder Transformer
holds the encoder–decoder architecture with attention blocks.
In section II-B, the principles and processes of attention oper-
ation are presented and described. Section II-C provides the
core part of the work. The model’s architecture and network
layers will be presented in detail. Please refer to Fig. 1 for an
overview and the sections for more information.

FIGURE 1. The overview of the work.

A. DATA PREPROCESSING
This section presents the process of preprocessing original
observed flow data and ENSO data. There are three steps:
1. data normalization; 2. Adding time stamps; 3. applying
the VMD algorithm to decompose the signal. The key to the
third step is the appropriate amount of frequency components
decomposed by the VMD. Here, we will demonstrate how
to determine the right amount. There are two steps before
employing the VMD.

1. Data normalization. The flow of the Yangtze River
changes dramatically, ranging from 5000 m3/month to nearly
70000 m3/month. Suppose the dimensional (scaler) differ-
ence of the data is too large. In this case, the data with a
large dimension (scale) will take the leading position, which
will reduce the accuracy of the model. In addition, data with

Algorithm 1 Complete Optimization of VMD [39]
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a large dimension will have a longer axis when updating
the model using a gradient descent, which means that the
convergence of the model will be slow [40]. In this study,
we used min–max scaling to perform data normalization.

2. Adding time stamps. For time series, it is essential
to add time information while training [41], [42]. Classic
Transformer only encodes the input data with position and
does not contain more fine-grained time information such as
year, month, day, or hour [38]. The dataset used has amonthly
dimension, so we added time stamps of years and months to
each piece of data. Like positional encoding [33], these time
stampswould be embedded into higher dimensions and added
to the input data as sequential information.

VMD works efficiently with nonlinear and nonstationary
data like streamflow by decomposing a signal into different
modes of distinct spectral bands. In the original description,
a model is defined as a signal whose number of local extrema
and zero-crossings differ almost by one. Now, the definition
is slightly changed into the so-called intrinsic mode function
(IMF) [43], [44]. The complete VMD algorithm [39] can be
summarized in Algorithm 1, where uk := {u1, u2, u3, . . . , uk}
are the shorthand notations for the set of all modes (IMFs) and
wk := {w1,w2,w3, . . . ,wk} are the shorthand notations for
their center frequencies, respectively. The role of Lagrangian
multipliers λ is to enforce the constraint. The goal of VMD is
to decompose the original signal into subsignals uk .
VMD has proven to be a better algorithm than empiri-

cal mode decomposition (EMD) [45]. VMD is much more
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robust to sampling and noise and supported by mathematical
theory [39]. However, the amount of IMF decomposed by
VMD is not fixed, and the effect of VMD is mainly affected
by this amount. K will be used as a shorthand notation for
this amount in the following presentation. Applying VMD
to decompose the original signal will produce losses. When
K is too small, a lot of important information in the original
signal will be filtered, affecting the accuracy of subsequent
predictions. The loss can be observed by decomposing the
original signal into IMFs and then recomposing them and
comparing them with the original signal. The loss can be
defined as the difference between the recomposed signal and
the original signal. To measure the loss, the coefficient of
determination (R2 ) is introduced. A R2 between 0 and 1 can
reflect the difference between the two distributions, and the
smaller the R2 the greater the difference. The loss can be
measured by R2 :Loss = 1 − R2. Fig. 2(a) and Fig. 2(b)
show the influence ofK to loss on the flow and ENSO dataset,
respectively. The larger K is, the smaller the loss. However,
When K is too large, it will cause a few problems: 1. There
will be gaps in high-frequency IMF, and the high-frequency
signal becomes intermittent. 2. The center frequencies of
the adjacent IMFs will be close to each other, resulting in
modal repetition and extra noise. 3. More IMFs mean more
computing resources and more time.

FIGURE 2. The correlation between K and Loss on flow and ENSO
datasets.

In this study, a heuristic approach was adopted to select the
appropriateK value. We apply Hilbert transform (HT) [46] to
each IMF. The HT can be described as (1):

H [x(t)] = x̂(t)

= x(t) ∗
1
π t

=
1
π

∫
∞

−∞

x(τ )
t − τ

dτ (1)

where π is the Pi. ∗ and τ are the convolution operator and the
integration variable, respectively. The integral is considered
to be Cauchy principal value, which avoids singularities at
τ = t and τ = ±∞. The instantaneous amplitude A(t) and
the instantaneous phase ψ(t) can be calculated using x(t) and
x̂ (t):

A(t) = ±
√
x2(t)+ x̂2(t) (2)

ψ(t) = arctan
x̂(t)
x(t)

(3)

Then, calculate the instantaneous frequency IF(t) for all
points except for two endpoints:

IF(t) = ψ ′(t)

=
x(t)x̂ ′(t)− x ′(t)x̂(t)

A2(t)
(4)

Finally, the mean of all the instantaneous frequencies of each
IMF is the central frequency of that IMF:

CF =

∑n−1
t=2 IF(t)
n− 2

(5)

Fig. 3(a) and Fig. 3(b) show the central frequency distri-
butions of the two datasets under different K values, respec-
tively. Here, we focus on the high frequencies. When the
K value is in a reasonable range, it is meaningful that the
higher the frequency, the higher the central frequency. When
K is too large, there is an obvious inflection point where the
central frequency goes down as K goes up. This inflection
point means thatK is already large enough.When theK value
is too high, the high-frequency part of the signal will break
off, and there is no instantaneous frequency at the breakpoint;
hence, after averaging, the center frequency will decrease
instead. Fig. 4(a) and Fig. 4(b) show the variation of the
highest center frequency with K , where the inflection points
can be seen. The inflection point means the highest center
frequency, and the K should be selected at the point. In this
study, K = 9 was selected for the flow dataset and K = 8 for
the ENSO dataset.

B. ATTENTION MECHANISM
Self-attention is the core part of Transformer. The attention
mechanism is a heuristic method that refers to the process
of human attention, hence enabling neural networks to focus
more on what is important [32]. Therefore Transformer can
also be regarded as a feature extractor. As the name suggests,
self-attention is about inner attention, which excels in dealing
with time series. For a time series sequence, self-attention can
capture the correlations between each time step and all other
time steps so that the prediction results will be more accurate.

Deep learning techniques mainly develop an encoder–
decoder architecture by using RNNs and CNNs. However,
both the RNN and CNN models are much slower than
attention-based models. Compared with RNN and CNN
architectures, the self-attention mechanism is faster [33] and
is almost unaffected by the length of the sequence. In general,
the longer the sequence, the slower the processing. With this
in mind, an experiment was performed to test the speed of
the three architectures. Three time series models, including
vanilla TCN, vanilla LSTM, and vanilla Transformer, were
selected. By recording the time consumed by three models
while training, the speed can be measured. We used the
flow time series data to train these models, respectively.
The length of the input sequence ranges from 12 to 96 and
the models were trained for 10 and 50 epochs. This exper-
iment and all the following experiments were performed in
the environment given in Table 1. Fig. 5 shows the time
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FIGURE 3. The original signal was decomposed into IMFs of K amount (e.g. K = 9 means the original signal was
decomposed into nine IMFs). The range of K was from 2 to 16. The subfigure shows the central frequency of every IMF
under particular K . LF: low frequency; HF: high frequency.

consumed to train the models of three architectures for 10 and
50 epochs under different lengths of the input sequence.

It is supposed that the longer the sequence, the slower the
processing. For the LSTM, with the length of the sequence
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FIGURE 4. The figure shows the correlation of K and central frequencies of high-frequency IMFs. Because the IMFs of a high frequency was
discontinued, the central frequencies would decrease. It is supposed to select a K value to maximize the center frequency. The green dot in
the figure represents the highest center frequency. For the flow dataset, when K = 9, there is the highest center frequency; and for the
ENSO dataset, K = 8.

TABLE 1. The environment.

FIGURE 5. Time consumed during training. The models were trained for
10 and 50 epochs. The length of input sequence is (12, 24, 36, 48, 60, 72,
84, 96).

increasing, it consumes significantly more time. However,
for CNN and Transformer, the time consumption changes
gently and is less affected by the sequence length. The reason
for this phenomenon is that the sequence length is not long
enough. In the settings of this study, the sequence length
ranging from 12 to 96 is reasonable and meaningful. It can
be seen that the time consumption of TCN has an obvious
increase when the sequence length is longer than 48. As for

the Transformer, there will be a significant increase, when
the sequence length is longer than 400. In a word, the time
consumed by the Transformer is the least of the three and is
hardly affected by the sequence length.

On the one hand, the RNN and CNN architectures are
slower than the attention architecture. On the other hand, the
CNN and RNN models are powerless to capture long-term
dependency as efficiently as attention-based models. The
reasons for this are as follows:

1. RNN is a linear architecture, and to obtain the corre-
lations between time steps, the operation of each time step
depends strictly on the previous steps [21]. RNN is a step-
by-step architecture that limits its parallelism. As a result, the
RNN is slow. The CNN uses convolution kernels to extract
features. The size of the kernels and step size of the convo-
lution affect its speed. Moreover, to better extract features,
a multilayer convolutional network is required. Although a
CNN is much faster than an RNN, it is still not as fast
as self-attention. Self-attention completely abandons RNN
structures and instead introduces matrix operations. Matrix
operations are parallel, which means that each time step
is computed simultaneously instead of one by one, which
significantly increases the speed. Because it is parallel, the
length of the sequence has little effect on the speed.

2. Although the structure of the ‘‘gates’’ mechanism such
as LSTM and its variant gated recurrent unit (GRU) [47]
alleviate the problem of long-term dependence, RNN is still
powerless in dealing with the exceedingly long-term depen-
dence [33]. If the length of inputs is L, the RNN obtains a
length of dependence that is shorter than L. The length of
dependence that a CNN could get completely depends on
the size of convolution kernels, which are generally shorter
than L. On the other hand, because the attention value
between any two-time steps is computed, it can obtain arbi-
trarily long-term dependence before then focusing on the high
weight and ignoring the low weight. Self-attention obtains a
length of dependence that can be L.
The input sequence is transformed into three vectors

through threematrices in the self-attentionmechanism. These
are query matrix (Q), key matrix (K ) and value matrix (V ).
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The canonical self-attention is defined based on the tuple
inputs (Q,K ,V ). Self-attention performs the scaled dot prod-
uct that can be summarized as follows [33]:

Self-Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (6)

where Q ∈ Rdx×dk , K ∈ Rdx×dk , V ∈ Rdx×dv and dx is the
input dimension. dk stands for the dimension of the Qmartrix
andKmatrix, and dv stands for the dimension of the Vmatrix.
We use 1

√
dk

as the scaling factor.
The concepts of query, key, and value are derived from

information retrieval systems. This matches the key to the
query to get the matching value. The value is the similarity
between the query and the key. In matrix operations, the dot
product is a method to compute the similarity of twomatrices,
and operation Q · KT computes the similarity of each pair of
time steps. Weighted matching is then performed based on
similarity, and the weights are the similarities.

In this study, based on attention mechanism, we pro-
pose the ‘‘cross-attention’’ mechanism (Fig. 6). The
cross-attention mechanism combines both the dot product
attention and the additive attention to efficiently capture the
dependency between two time series sequences. Like tradi-
tional attention mechanisms, there are one query, one key,
and one value. The cross-attention block comes immediately
after the two encoders. The outputs of the flow encoder were
transformed into the query and the value matrices, and the
outputs of the ENSO encoder were transformed into the key
matrix. Let qi, ki, and vi stand for the i-th row in Q, K, and V
respectively.The process of cross-attention can be described
as follows:

First, use additive attention to weighted average the key
matrix into a global key vector (k):

k =
L∑
i=1

αi · ki (7)

FIGURE 6. The Cross-Attention.

The weight αi is calculated as follows:

αi =
exp

(
kiwT

k /
√
d
)

∑L
j=1 exp

(
kjwT

k /
√
d
) (8)

where wk ∈ RL is a trainable vector. Use Hadamard product
to simulate the nonlinear relation between qi and k and get a
score (si):

si = qi ◦ k (9)

The i-th query’s cross-attention is defined as:

Cross-attention(qi,K ,V ) = Softmax(si/
√
d) · V (10)

It has been proven that the additive attention has a lower
computational complexity than dot product attention. The
main purpose of using the additive attention is that it can
quickly summarize important information in a sequence with
linear complexity, which greatly improves the efficiency of
multivariate forecasting.

C. DOUBLE-ENCODER TRANSFORMER
It has been proven that El Nino has a close correlation with
rainfall, which affects the flow of the river, so El Nino has
a significant impact on streamflow [1]. Classic Transformer
only has the self-attention block, which is only suitable for
dealing with a single time series. When dealing with the
prediction issues with multivariate data, it cannot capture
the attention among different kinds of variates effectively.
The aim of the attention mechanism is to obtain the corre-
lation of one point to all the other points and then weight the
average of them so that the attention operation could be more
than just self-attention. Because the self-attention process can
obtain a correlation among the time steps of one sequence,
the correlation between different sequences can be obtained,
too. In this study, we improved the classic Transformer by
using two encoders and one decoder with a cross-attention
block to make streamflow predictions with El Nino covariate.
The whole double-encoder architecture is proposed and illus-
trated in Fig. 7. Because Transformer abandoned the RNN
linear sequence structure to support parallel computing, the
positional information in time series will be lost. Therefore,
adding order signals to vectors is necessary to help the model
learn this positional information, so positional encoding [33]
is used to solve this problem. Positional encoding works
by combining order information and vectors to form a new
representation input to the model to learn order information.
Positional encoding is itself a vector with order information.
In this study, order information and date information are
added to the input sequence. The datasets are monthly, so the
year and month information were embed into vectors and
added to original input vectors with positional encoding.

The original hydrological time series are nonlinear and
nonstationary. Some features will be ignored if used directly,
causing decreases in the prediction accuracy, especially in
flood years. The VMD could decompose original data into
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FIGURE 7. The architecture of double-encoder Transformer.

several IMFs. Compared with the other frequency decompo-
sition technique, the fundamental components decomposed
by VMD have physical significance and are much more
robust to sampling and noise. In this study, the flow sequence
was decomposed into nine IMFs and ENSO sequence into
eight IMFs. The IMFs were sent into encoders to perform
self-attention. Each IMF should have its own encoder block,
so there are nine encoder blocks for the flow sequence and
eight for the ENSO sequence. The present study adopted
the transfer learning method: flow IMFs share a common
input embedding block and self-attention block, and so do
ENSO IMFs, but the layers behind them are different. To sum
up, there are two input embedding blocks, two self-attention
blocks, 9+8 feed-forward blocks and 9+8 linear blocks.
The introduction of transfer learning can significantly save
the space occupied by the model and accelerate the training
speed.

All the IMFs of flow and IMFs of ENSOwere re-composed
as one, respectiovely, after being processed by the encoders.
The recomposed flow and ENSO data were sent into the
decoder to perform cross-attention. In river flow forecasting,
the ENSO dataset works as the covariate. The main pur-
pose of cross-attention is to capture the impact of ENSO on
flow. flow was convert into Q and V , and ENSO was con-
vert into K . The details of cross-attention were presented in
section II-B.

Let Lin and Lout stand for the input window size and output
window size. The proposed method can be summarized as
Algorithm 2: where Qself _f , Kself _f , Vself _f , Qself _e, Kself _e,
and Vself _e are conversion matrices in self-attention. All the
IMFs of flow were converted into Q, K , and V using the
same Qself _f , Kself _f , and Vself _f matrices, and all the IMFs
of ENSOwere converted intoQ, K , V using the sameQself _e,
Kself _e, and Vself _e matrices. The wf and we are trainable
vectors used to recompose the IMFs.

Algorithm 2 The Process of Proposed Method

Input: The flow data: F =
{
f1, . . . , fLin

}
; The ENSO

data: E =
{
e1, . . . , eLin

}
; The time stamps:

ST =
{
st1, . . . , stLin

}
.

Output: The predictions of river flow:
Fpred =

{
fLin+1, . . . , fLin+Lout

}
.

Initialize Qself _f , Kself _f , Vself _f , Qself _e, Kself _e, Vself _e,
wf , we, wk , Qcross, Kcross, Vcross;

Use the VMD to decompose the original data:

VMD(F) =
{
FIMF_1, . . . ,FIMF_9

}
;

VMD(E) =
{
EIMF_1, . . . ,EIMF_8

}
;

foreach modal in VMD(F)and VMD(E) do
Perform data embedding:

EMB = Conv1d(modal)+ PE + Conv1d(ST );

Convert EMB into Q, K , V matrices usingQself _f ,
Kself _f , Vself _f , Qself _e, Kself _e, and Vself _e, and
compute the Self-attention:

Self-attention(modal) = softmax
(
QKT
√
d

)
V ;

The outputs of the two encoders are:

Fself =
{
Fself _1, . . . ,Fself _9

}
;

Eself =
{
Eself _1, . . . ,Eself _8

}
;

Re-compose the Fself and Eself into one:

F ′ = concat(Fself _1, . . . ,Fself _9) · wf ;

E ′ = concat(Eself _1, . . . ,Eself _8) · we;

Convert F ′ into Q, and V matrices using Qcross and
Vcross. Convert E ′ into K using Kcross. Compute the
Cross-attention:
foreach qi in Q do

si = qi ◦ k = qi ◦
∑Lin

i=1 αi · ki;

Cross-attention(F ′,E ′)

= Softmax(concat(s1, . . . , sLin )/
√
d) · V ;

The prediction of river flow is:

Fpred = Feedforward(Cross-attention(F ′,E ′))

III. EXPERIMENT AND RESULTS
This study focuses on the streamflow predictions on the
Hankou Hydrological Station. The goal is to predict river
flow with the flow and ENSO datasets. The flow dataset was
collected by theYangtze RiverWater Resources Commission,
and the ENSO dataset was collected by the National Oceanic
and Atmospheric Administration. Both datasets were col-
lected monthly from January 1952 to December 2018, hence
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totaling 67 years. The datasets were divided into two parts:
one from 1952 to 1997 and another from 1998 to 2018. The
former was used to train the model, and the latter was used to
make predictions. The Yangtze River has experienced several
floods from 1952 to 2018, most recently in 2016. In 1998,
the Yangtze River experienced a devastating flood because
of strong subtropical highs, resulting in the most significant
surge over the past 50 years. In this study, the proposed model
was proven to work well in both flood years and normal years
by making predictions from 1998 to 2018. We have chosen
streamflow data in 1998, 2016, and 2018 (two flood years and
one normal year) to make predictions and then made 21 years
of rolling predictions from January 1998 toDecember 2018 to
further verify the overall reliability.

Some representative models were selected as comparisons,
including the traditional statistical analysis method: autore-
gressive integrated moving average model (ARIMA), the
convolutional neural network: TCN [27], the representative of
the RNN: LSTMa [48], and the classic Transformer [33]. For
CNNs, RNNs, and classic Transformer, there is no structure
specifically designed to support multidimensional prediction,
so it is general to combine all dimensions into feature vectors
as input when dealing with multidimensional time series.
All the models have a 2d correlated input to make mul-
tidimensional time series forecasting. Under the fixed-size
window forecasting setting, for double-encoder Transformer,
the input flow sequence is Ft =

{
ft−L , . . . , ft | fi ∈ Rdx

}
from time t − L to time t , and the input ENSO sequence
is Et =

{
et−L , . . . , et | ei ∈ Rdx

}
. And the input sequence

for TCN, LSTMa, and classic Transformer is FEt ={
(ft−L , et−L), . . . , (ft , et ) | fi, ei ∈ Rdx

}
. The output predicts

the corresponding sequence F ′ =
{
f ′t , . . . , f

′
t+l | f

′
i ∈ Rdx

}
.

L is the length of the inputs. It has been proven that El Nino
is cyclical, with a cycle of about 5.5 years [49] and through
experiments, we have verified that there will be better results
when the input length (L) is 72 (6 years). l is the length of
the prediction steps. In this study, l is set to 12 so that the
decision makers can take action to prepare for the flood a
year in advance. For the TCN model, the kernel size was 24,
and the stride was 1. The MSE-Loss was selected as the loss
function, here using AdamW as the optimizer. To measure
the performance of the results, two evaluation metrics were
introduced, including root mean squared error (RMSE) and
coefficient of determination (R2). The RMSE was defined as:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (11)

and the R2 was defined as:

R2 = 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − yi)

2 (12)

A. ORIGINAL DATA DECOMPOSE
To improve the accuracy and speed up the convergence of
the model, data normalization is necessary. Min–max scal-

ing was used to perform data normalization. For data X =
{x1, x2, x3, . . . , xn}, the min-max scaling is defined as:

xi(scaled) =
xi −min(X )

max(X )−min(X )
· (max − min)+ min (13)

where the [min,max] is a scaling interval and all the data
is scaled into the interval. In this study, both the flow and
ENSO data were scaled into [−1, 1]. The scaled data from
January 1952 to December 2018 were decomposed into nine
IMFs and eight IMFs, respectively. The decomposed results
are shown in Fig. 8(a) and Fig. 8(b).

B. THE FLOOD YEARS AND NORMAL YEAR PREDICTIONS
The main purpose of river flow forecasting is to predict
floods, especially the flood peak discharge, helping those
affected prepare to fight the flood ahead of time. So it is
crucial to predict floods accurately, which previous models
have not been able to do. Traditional models could obtain
decent performance in normal years but did not work well
in flood years. In this section, the time series from January
1952 to December 1997 were used to train the model, and
1998, 2016, and 2018 were selected to make predictions to
measure the model’s performance. Taking 1998 predictions
as an example, the input data is the flow data and ENSO data
from January 1992 to December 1997 (a total of 72 months).
The output is a 12-months prediction for 1998.

ARIMA, TCN, LSTMa, and classic Transformer were
selected as comparisons that made the same predictions
on these models. Fig. 9(a) and Fig. 9(b) show the whole
12 months of predictions for 1998 and 2016, respectively.
Additionally, data in 2018 were selected as a representative of
normal years to measure the model’s performance in normal
years. Fig. 9(c) shows the whole 12-month prediction of
2018. Finally, the metrics including R2 and RMSE were used
to measure the performances of all the models in 1998, 2016,
and 2018. Table 2 shows the RMSE and R2 of all the models
on these three years of predictions.

All three models could fit the streamflow change trend that
increases first and then decreases. They all performed well
at the beginning and end of the year (when the streamflow
is low), and the gap among their forecasts was widest in
June, July, and August (when the streamflow is at its peak
of the year). The double-encoder Transformer had a higher
R2 and lower RMSE . In the flood years (1998, 2016), it is
evident that double-encoder Transformer fits better than other
models with the actual values, especially the flood peak,
and the R2 could reach more than 0.95. In a normal year
(2018), all three models performed well, but double-encoder
Transformer was more accurate than the others, here with a
0.94 R2.

C. THE 21 YEARS OF ROLLING PREDICTIONS
In section III-B, three years were selected to perform pre-
dictions, and the results showed that the double-encoder
Transformer had significant advantages in flood years and
normal years. However, the results of the three-year pre-
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FIGURE 8. The IMFs of the original data.

TABLE 2. The streamflow forecasting results on three years (five models).

dictions were largely haphazard. In this section, a 21-year
rolling forecast (from 1998 to 2018) was made to test the
models’ capacity for long-term prediction. Fig. 10(a) shows
the 21 years of rolling predictions of all models and the
actual value: it is a little confusing, so Fig. 10(b) shows
the double-encoder Transformer and the actual value in iso-
lation. Fig. 10(c) and Fig. 10(d) are corresponding scatter
plots.

Annual R2 and RMSE were calculated for each year of the
five models and finally obtained the 21 years of the average
R2 and RMSE . Fig. 11(a) and Fig. 11(b) show the 21 years
of the annual R2 and RMSE , respectively. The results of the
21-year prediction show that the double-encoder Transformer
was better than the traditional time series models, with an

average R2 of more than 0.91 and an average RMSE of lower
than 2600 m3/month.

The experimental results show that double-encoder Trans-
former is superior to the current time series forecasting
models. In 21 years of rolling predictions, the average
R2 of the double-encoder Transformer could reach more
than 0.91, which is higher than the other models by about
0.1, and the RMSE was just 2579 m3/month, nearly half
of the other models. It can be seen from Fig. 10(c) that
these points of the five models are very concentrated near
the actual red line at first, which means that they all per-
formed well when streamflowwas low. As the flow continued
to increase, the distribution of the points became more
scattered, resulting in bad predictions. In this case, the
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FIGURE 9. The forecasted streamflow of models and the validation scatter plot in 1998, 2016, and 2018.

double-encoder Transformer had a considerable advantage
of being more accurate in predictions of high streamflow.
The results fully prove that the double-encoder Transformer

could perform very well in normal and flood years and
could be reliable enough in long-term predictions with high
accuracy.
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FIGURE 10. A 21-year rolling forecast (from January 1998 to December 2018) was made to test the models’ capacity. Fig. 10(a) shows the
actual value and the prediction results of all models in 21 years. To show the proposed model’s performance more clearly, Fig. 10(b) shows
the actual value and the result of the double-encoder Transformer in isolation. Fig. 10(c) and Fig. 10(d) are the corresponding scatter plots
for model comparison. It can be seen from the scatter plots that when streamflow was in low value, all the models have great performance
(scatters are concentrated near the red line), but when streamflow was in high value, the models except double-encoder Transformer
perform worse (scatters are away from the red line).
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FIGURE 11. The R2 and RMSE of 21 years of rolling predictions.

IV. CONCLUSION
In this work, the streamflow forecasting problem of the
Yangtze River was studied, and a new Transformer-
based double-encoder-enabled model was proposed: double-
encoder Transformer. This model, combined with the VMD
algorithm, can effectively make precise long-term stream-
flow forecasting of the Yangtze River, especially in flood
years. Although the model is still of an encoder–decoder
architecture, it alleviates the limitation of a traditional
encoder–decoder architecture. Specifically, we designed the
cross-attention mechanism to handle the challenges of not
supporting multivariate prediction in traditional time series
forecasting models. Combining the additive attention with
the dot product attention, the cross-attention mechanism can
effectively capture the relation between flow and ENSO data.

The experiments on real-world data of the Hankou Hydro-
logical Station demonstrated the effectiveness of the new
model for enhancing the prediction capacity both in normal
and flood years. A reliable long-term monthly prediction
(from 1998 to 2018) was made. There were floods in two of
these 21 years (1998 and 2016). TheR2 in both years is higher
than 0.95, and the RMSE value is just 3224 m3/month, which
is when the flow reached nearly 70000 m3/month in 1998.
Other mainstream forecasting models, including ARIMA,
TCN, LSTMa, and classic Transformer, were selected as
comparisons to demonstrate the superiority of the double-
encoder Transformer. In the 21 years of predictions, the
average R2 of double-encoder Transformer was about 0.91,
which is higher than the other model by 0.1, and the
RMSE was 2579 m3/month, which is significantly lower
than the other models. These experimental results show that

the double-Encoder Transformer can be used in real-world
streamflow predictions.

The main work of this study is to predict the stream-
flow of the Yangtze River, focusing on flood prediction.
However, drought year is also important because water is
a vital resource on earth and we depend heavily on river
water. Accurate drought forecasting is promising for future
research. The variation of river flow in the Yangtze River is
related to many variables. In this work, we made a bivariate
forecast with the ENSO data. The outcomes can be improved
by adding more variables to make multivariate forecasting.
The cross-attention mechanism is a promising method that
can efficiently summarize the features of a sequence into a
vector and compute the attention between the independent
variable and covariates. This work is a good start in making
the multivariate long sequence time series forecasting.We are
excited about the future of models with the cross-attention
mechanism.
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