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ABSTRACT Hierarchical optimization architectures are typically employed to manage industrial steam
processes efficiently. The key challenge today is to find a near global optimum despite these subdivided
automation structures. This paper proposes a novel cooperation concept between hierarchical layers. In the
upper layer, optimal static setpoints are computed for economic operation schedules of the entire plant.
In the lower layer, a model predictive controller realizes these schedules, regulates the dynamic plant parts,
and treats occurring disturbances optimally in a stochastic manner. To adequately overcome limitations
due to mismatches between the optimization layers (caused by model mismatches or disturbances), it is
essential to establish an efficient cooperation concept. Therefore, the presented concept exchanges specific
sensitivity information between the optimization layers, where it is skillfully exploited to the benefit of global
automation objectives, resulting in optimal expected operating costs. The novel concept is demonstrated via
simulation studies calibrated with industrial measurements of a chipboard manufacturer. A performance
analysis shows that the proposed cooperation concept outperforms alternative approaches, leading to the
best possible trade-off between additional fuel and steam demand violation costs.

INDEX TERMS Hierarchical operation optimization, mixed-integer linear programming, model predictive
control, sensitivity-based cooperation, stochastic control.

I. INTRODUCTION
A. MOTIVATION
The International Energy Agency (IEA) annually publishes
theWorld EnergyOutlook, in which various scenarios provide
an overview of tomorrow’s energy sector [21]. Of particular
interest are two scenarios that envisage compliance with the
Paris climate targets [45], or even more ambitious zero net
emissions by 2050. Both scenarios rely on renewable energy
sources.

The goal of achieving a climate-neutral energy sector
through the integration of renewable energies requires greater
flexibility on the supply and demand sides of industrial
processes while also increasing their efficiency. In energy-
intensive industries, as in the chipboard manufacturing plant
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under investigation, steam plays a major role in converting
heat to power or distributing thermal energy throughout
the plant to drive its mechanical and chemical processes.
Additionally, industrial plants are facing new challenges
in the transition to climate-friendly energy systems, such
as the task of feeding power into electricity grids at peak
times or supplying district heating to their neighborhoods.
These challenges require the use of automation methods
(e.g., advanced process control methods and operation opti-
mization) to operate industrial steam processes efficiently and
sustainably.

B. INDUSTRIAL PROCESS AUTOMATION
A brief overview of advanced process control and its role in
the industry is given in [20], [50]. Basic process controls,
such as classical PID-based control methods, are designed
and implemented within the process components themselves
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to provide the foundation for operation as well as automation.
Advanced process controls are usually added at a higher level,
often later, to exploit optimization potential by combining
process knowledge with control techniques.

Numerous control methods, from basic to advanced
schemes, have been applied in literature for the control of
steam-powered systems. A review using both conventional
and advanced methods was conducted by [51] and includes
academic studies as well as industrial practice. A well-known
advanced method is the use of a model predictive controller
(MPC), see, e.g., [38]. The MPC computes optimal control
actions over a prediction horizon in order to regulate a system
as close as possible to optimal setpoints while taking con-
straints into account.

In addition to process control, operation optimization
determines optimal strategies for operating industrial pro-
cesses while taking advantage of their economic character-
istics. The optimal commitment–which defines if a unit is on
or off–and the loading level of relevant units of the process
need to be determined. This optimization problem is typically
called Unit Commitment (UC) problem and originated in
1949 in power systems research [2]. Since then, the UC
problem has been the focus of many studies and is also widely
applied to thermal processes [1].

To solve the UC problem, a variety of methods and
algorithms have been proposed. For example, they include
priority listing, dynamic programming, Lagrangian relax-
ation, simulated annealing, fuzzy systems, artificial neural
networks, genetic algorithms, and integer and linear pro-
gramming. Out of these methods, mixed-integer linear pro-
gramming (MILP) is an operation research method in which
specific variables are integers [1]. This solution technique
yields feasible solutions, however, large optimization prob-
lems lead to high computational complexity and long run
times [46]. Nevertheless, the MILP formulation has become
one of the state-of-the-art solutions for the UC problem and
is still widely applied.

A concept that goes one step further than traditional oper-
ation optimization approaches is the Energy Hub (EH), intro-
duced in [12] and reviewed by [40]. The EH is a concept
for optimal energy management of multi-energy-carrier sys-
tems, including electrical and thermal energy, water, and gas.
It describes a system where multiple energy carriers can
be transformed, conditioned, and stored. Thus, this concept
emphasized a global view of energy systems, not taking
into account one energy carrier in one process, but multiple
energy carriers, possibly in a network of energy systems [32].
Although the EH concept is more far-reaching than tradi-
tional optimization approaches, it can basically be seen as
an extension of the UC problem. Thus, for the formulation
and solution of EHs, also methods and algorithms of the UC
problem can be used, MILP amongst others [17].

The question arising is whether and how process control
and operation optimization can be efficiently combined.

C. HIERARCHICAL PROCESS AUTOMATION
ARCHITECTURES
In order to operate industrial steam processes efficiently and
combine process control and operation optimization strate-
gies, hierarchical process automation architectures are typ-
ically employed [11], [35], [41], [43]. In these concepts,
hierarchical process automation is decomposed into several
parts (layers) to abstract the complex optimization problem
into manageable subproblems. The hierarchical process
automation problem is usually decomposed according to the
different dynamics of states and disturbances. The sampling
time and optimization horizon decreases in the lower layers
due to faster process dynamics, disturbances and real-time
computation requirements. Typically, real-time optimization
(RTO) in the upper layer exploits the economic characteris-
tics of the process while accounting for significant changes
in operating conditions, such as price factors and slowly
varying disturbances that strongly affect plant profitability.
It provides either stationary setpoints or dynamic trajectories
as well as additional information on economically optimal
operation to the control layer beneath. The control layer for
ongoing operations applies the information provided tomatch
the output variables as closely as possible to the optimal
setpoints/trajectories in the presence of disturbances or model
mismatches [43], [48]. The following RTO/MPC strategies
can be distinguished based on their temporal characteristics.

The static RTO/dynamic MPC strategy uses a steady-state
plant-wide model for its economic optimization in the upper
layer and dynamic models of particular sub-systems for con-
trol in the lower layer. The static RTO in the upper layer can
only provide steady-state setpoints and is thus less frequently
executed. In general, this approach does not consider the
economic performance of the plant during the transition from
one steady state to another, leading to suboptimal operation
for processes that have slow dynamics, experience frequent
transitions, or are continuously affected by fast disturbances
[22], [43]. The plant’s economic performance can suffer
since the RTO and MPC solve two different optimization
problems, each with different models, objectives, and on
different time scales, while accounting for disturbances dif-
ferently. The conflict between these optimization layers can
lead to both infeasibility and unreachability of the economic
setpoints in the control layer, resulting in poor economic
performance. Therefore, it is essential and inevitable to check
the consistency between the different layers even despite their
different levels of abstraction. Additionally, an appropriate
strategy to unify the (possibly competing) objectives is highly
desirable [19].

To address this shortcoming, a new optimization layer was
added between the RTO and MPC referred to as steady-
state target optimizer [19], [22]. This layer computes feasible
setpoint updates for the MPC to which the system must be
stabilized, using a steady-state model that is consistent in its
formulation as well as frequency with the dynamic MPC,
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and taking into account information from the RTO [13],
[29], [34]. However, this approach is limited with respect to
transient operations or fast disturbances.

In other approaches, instead of RTO based on steady-
state models, dynamic real-time optimization (DRTO) is
performed, which takes into account disturbances and
process dynamics and provides target trajectories (rather
than steady-state setpoints) to the lower layer [6], [24].
Tosukhowong et al. [44] propose a DRTO approach for the
upper optimization layer, which is designed to capture only
the dominant slow modes that describe the effective plant-
wide dynamics but are not affected by local fast disturbances.
Kadam et al. [23] decompose the operation of chemical pro-
cesses into a two-layer architecture, where in the upper layer
a DRTO optimizes the dynamic trajectory, which is tracked
by the controller of the lower layer. Instead of performing
the trajectory optimization at a fixed interval, the DRTO
computation in the upper layer is performed only when
external disturbances exceed a certain limit. Würth et al. [52]
implement a neighboring-extremal control strategy in the
lower layer control problem, designed to update the econom-
ically optimal control trajectory based on sensitivity infor-
mation computed at the DRTO level. Vega et al. [48] present
a benchmarking of different hierarchical control structures
consisting of RTO, DRTO and MPC for wastewater treat-
ment plants. Jamaludin and Swartz [22] developed a closed-
loop DRTO-MPC formulation along with approximations
thereof to manage the computational load and tested their
approaches on a polystyrene reactor. Ramesh et al. [36] pro-
posed aDRTO-MPC strategy to handle systems around unsta-
ble operating points and tested it on a continuous stirred tank
reactor use case. Other strategies aim to approximate the RTO
problem setting in the lower-layer MPC, which is considered
as economicMPC (EMPC) [3], [10], [37]. Also combinations
of RTO/EMPC strategies exist [53].

Nevertheless, strategies such as DRTO-MPC remain com-
putationally expensive, and the use of plant-wide imple-
mentation for many different interacting plant components
with many states and a large optimization horizon does not
appear reasonable as it is too complex and too demanding for
real-time requirements. For a reasonable implementation of
hierarchical automation architectures, though, efficient coop-
eration between optimization levels is essential to adequately
account for the effects of modeling mismatches between lay-
ers (static and dynamic models), disturbances, or plant con-
straints. In this work, a sensitivity-based stochastic method is
developed to do so in a highly efficient manner.

D. MULTI-LAYER OPERATION WITH SENSITIVITY-BASED
COOPERATION CONCEPT
In the investigated use case, the main process is steam gener-
ation that supplies heat to a chipboard production. In addi-
tion, a steam turbine generates electricity, and heat can be
fed into a district heating network that supplies a hospital.
An implementation of an DRTO-MPC or an economic MPC
approach for optimal process operation and control would not

be reasonable due to computational complexity. Therefore,
a two-layer operation optimization and control architecture
for industrial steam process is developed, including a well-
suited cooperation concept.

The operation optimization is formulated as MILP-UC
problem based on the EH concept, forming the upper process
automation layer. In this automation layer, the entire chip-
board manufacturing plant is optimized, considering heat,
electricity, interactions with the district heating network as
well as the electrical grid, and economic criteria. In addition
to the traditionally used EH concept, the product streams and
production units of the chipboard manufacturing plant are
included in the optimization, according to [16], [17]. To this
end, this upper automation layer is further referred to as
energy hub optimization (EHO) and is built on static models.

An MPC is chosen for the lower automation layer to track
the setpoints computed by the EHO and control the system.
The MPC employs a nonlinear dynamic plant model of the
crucial parts which is successively linearized around the cur-
rent trajectory, see, e.g., [25], [54]. In order to account for
disturbances, stochastic MPCmethods as in [18] are adopted.

In the proposed hierarchical operation optimization and
control architecture, the EHO is introduced as an offline
economic optimization scheduling problem, while the con-
troller (MPC) is an online optimization problem. Due to
stochastic fluctuations in the combustion process of the chip-
board manufacturing plant, the steam demand computed by
the EHO cannot always be met exactly. There are several
ways to handle the resulting problem and bridge the time
domain difference between the two automation layers. One
option would be to calculate the action integral over time to
ensure that the total amount of energy demanded by the EHO
is met by the MPC over a given time horizon. In this work,
a different approach is taken, which ensures that the energy
demand is met according to its importance at a given point in
time. In order to have sufficient steam available at all times,
excess steam must be generated and thus more fuel must
be consumed. An efficient cooperation concept between the
EHO and the MPC is developed to optimally solve the trade-
off between fuel consumption and steam demand satisfaction,
in which stochastic information and true costs are optimally
exploited. Thus, a complex coupled plant operation can be
better managed in terms of overall costs and also emissions.

To do so, the EHO passes the (time-varying) sensitivi-
ties of its economic cost function to a cooperation concept.
In the cooperation concept, optimal expected operating costs
(risk costs) determine permitted violation probabilities of the
EHO’s setpoints. The MPC uses the desired setpoints of the
EHO and their permitted violation probabilities computed
by the cooperation concept to efficiently produce and dis-
tribute the steam over the entire plant, even without knowl-
edge of all plant-wide components and the global economic
optimization goal. The occurring process disturbances are
handled by the MPC in a stochastic manner, and their cor-
responding covariances are estimated online. As a result of
the sensitivity-based cooperation concept, the plant can be
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operated at optimal expected costs. To the best of the authors’
knowledge, no such process automation framework for indus-
trial steam processes has been presented so far.

The investigated use case is based on plant models that
are calibrated with real industrial measurement data. The
simulation studies are performedwith these validatedmodels.

E. MAIN CONTRIBUTIONS
The main contributions of this paper are as follows:
• A novel multi-layer automation framework for indus-
trial steam processes is proposed, which employs a
hierarchical structure and leads to minimal expected
operating costs (risk costs) while considering stochastic
disturbances.

• A developed cooperation strategy between two opti-
mization layers ensures efficient cooperation between
the high-layer EHO and the low-layer MPC by
computing a permitted violation probability of the
EHO’s setpoints based on its sensitivity and stochastic
information.

• The underlying static and dynamic models are presented
and their parameters are identified from real industrial
measurement data of a chipboard manufacturing plant.

F. PAPER STRUCTURE
The paper is organized as follows: Section II describes the
use case and the purpose of the different optimization layers
in more detail, followed by the description of the static model
and the EHO approach in Section III. The dynamic models of
the plant are introduced in Section IV, and their parameters
are identified from the chipboard manufacturer’s data using
parameter sensitivity analysis. Section V describes the con-
trol concept for the chipboard production process, including
the nonlinear stochastic MPC, the state observer, and the
disturbance covariance estimation. The cooperation concept
between the EHO and the MPC is stated in Section VI.
In Section VII, simulation studies to demonstrate the effec-
tiveness of the proposed framework are performed and a
conclusion is drawn in Section VIII.

II. USE CASE
A. PLANT DESIGN
The investigated plant of the chipboard manufacturer is oper-
ated with steam, see Figure 1. First, the steam is generated
and superheated. From the steam generation unit, the steam is
distributed throughout the plant via two extraction ports. The
steam at the lower enthalpy level is used in a heated press
to harden the adhesives in the chipboards. The steam at the
higher enthalpy level is expanded in a turbine and generates
electricity. The turbine has two extraction ports at different
pressure levels. At the intermediate-pressure stage, the steam
can be extracted and supplied to a chip dryer or to district
heating. At the low-pressure stage, the steam can only be used
for district heating (if its temperature level is high enough,
depending on the season and turbine settings), or is condensed
and returned to the plant’s water cycle. The plant is modeled
in terms of dynamics at two complexity levels:

• The static part consists of models for all components in
the entire plant: steam producer, steam turbine, presses,
dryers, district heating heat exchangers, air condenser
(after the turbine), and two additional smaller steam
producers that are only used if required. The models are
simplified, do not contain any dynamics, and represent
the main behavior as well as couplings of the plant. The
static component models are implemented in an EHO to
compute cost-optimal setpoints.

• The dynamic part decomposes the steam generation pro-
cess into multiple detailed (sub)models. These dynamic
models are implemented in a controller (MPC) to follow
the setpoints computed by the EHO.

B. PLANT OPERATION
The EHO computes optimal static setpoints for the entire
plant, exploiting its economic characteristics while account-
ing for significant changes in operating conditions such as
price factors or other slowly varying disturbances.

The MPC stabilizes the dynamic plant components and
follows the EHO’s cost-optimal setpoints by minimizing a
quadratic cost function that describes the deviations of the
states from their desired values.

In a trivial scenario, where no disturbances occur and
the operating conditions do not change, the MPC realizes
the setpoints of the EHO and performs optimally. However,
during a realistic plant operation situation, disturbances and
time-varying operating conditions occur. In such situations,
an MPC that only tracks the static setpoints with a quadratic
penalty on deviations yields suboptimal economic efficiency.

To achieve a (near) optimal solution, a cooperation concept
is developed based on the sensitivities of the economic cost
function and stochastic information about the disturbances
that occur. The proposed cooperation concept manages the
interaction between the EHO and the MPC most efficiently
in the presence of disturbances.

III. ENERGY HUB OPTIMIZATION
The upper optimization layer (EHO) is based on the previous
work [17], where we developed a MILP optimization frame-
work for industrial (manufacturing) processes and applied
it to the chipboard manufacturing plant. Using the MILP
optimization framework, relevant units of the use-case and
their interactions are formulated by linear constraints and
objectives, and the models are aggregated to form the final
static plant model. This static plant model includes all rele-
vant units of the chipboard production plant, in contrast to the
dynamic control design model that only represents the steam
generation process.

After the formulation of the static plant model, the opti-
mization of the plant can be carried out, resulting in optimal
trajectories of all units’ energy flows. These trajectories are
the final results of the EHO layer and specify the setpoints to
be followed by the lower control layer. Because the control
concept only considers the steam generation process, the
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FIGURE 1. Illustration of the main components and energy flows in the chipboard manufacturing plant-operation via hierarchical two-layer process
automation architecture.

relevant setpoints define the steam flows for the press and for
the steam turbine, see Figure 1.

As the entire formulation and description of the EHO of the
chipboard production plant would exceed the scope of this
work, we refer to [17] for a detailed description. However,
in this Section, we briefly summarize the used constraints and
objectives, the modeled units of the static plant model, and
relevant optimization features.

A. OPTIMIZATION PROBLEM
The static plant model of the chipboard manufacturing plant
is based on a cost-based UC approach using three binary vari-
ables to describe the behavior of one unit, according to [8].
Every unit can have an arbitrary number of flows (energy
or product flows) entering or leaving. Using the following
constraints, a unit itself and its corresponding flows can be
described:

• Conversion constraints describe the linear relation
between different flows of a device, e.g., between
input and output. If required, nonlinear behavior can
be approximated by piecewise linear segments, using
additional binary variables.

• Start-up constraints define that a unit can either be
on or off, and can not be started up and shut down
simultaneously.

• Maximum/minimum generation constraints set a
maximum/minimum value for a flow of a unit.

• Ramp-up/ramp-down constraints limit the maximal
positive/negative gradient of a flow of a unit.

• Minimum up-/ downtime constraints define the min-
imal up-/downtime of a device after it was started/shut
down.

• Storage constraints are implemented to model the use
of (limited) storage.
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• External requirement constraints define a desired ful-
fillment of external requirements at every time-step, e.g.,
district heating demand.

• Production schedule constraints also define a desired
fulfillment, however, along a specified time interval.
Thus, these constraints can be used to define a produc-
tion schedule of a manufacturing plant.

The EHO’s optimization problem is based on an objective
function JEHO, which is the sum of all fuel costs CEHO,
rewards REHO, and penalties EEHO over an optimization hori-
zon HEHO (time step index k and sampling time TEHO,s),

JEHO(ppp)=
HEHO∑
k=1

(
CEHO,k (pppk)+ EEHO,k (pppk)− REHO,k (pppk)

)
.

(1)

The objective function depends on the plant operating sched-
ule ppp =

{
pppk , . . . ,pppk+HEHO−1

}
, whose entries comprise the

input and output flows of all plant components given by the
vector pppk . Rewards include selling electricity to the grid,
while penalties are caused by failure to meet external require-
ments such as meeting district heating demand or production
schedules [17]. By minimizing the objective function,

min
ppp
JEHO (ppp) , (2)

subject to plant constraints as outlined above, the optimal
plant operating scheduling is found.

B. STATIC PLANT MODEL
In contrast to the dynamic model that only includes the steam
generation process with the medium steam, the static plant
model contains all relevant parts of the chipboard produc-
tion plant and the mediums steam, electricity, and product.
In addition, two district heating demands need to be met by
the plant operators, electricity can be sold to the grid, and
a specified production schedule needs to be fulfilled. Thus,
in the static plant model, the following units are modeled by
the constraints outlined above: steam producer, steam turbine,
presses, dryers, district heating heat exchangers, air con-
denser (after the turbine), and two additional smaller steam
producers that are only used if required.

The unit models are aggregated by connecting their input
and output flows with corresponding other units’ flows to
form the entire static plant model. The static models were
applied to process input data to validate the aggregated plant
model, and their results were compared to process output
data. The analysis showed that the aggregated static plant
model can approximate the behavior of the plant well, show-
ing an average error of only 2.4 % for all energy and product
flows, see [17]. Nevertheless, this was tested over a time
interval of onemonth and does not allow accurate conclusions
to be drawn about the plant’s dynamic short-term behavior.

C. IMPLEMENTATION
The optimization of the static plant model is conducted
with the developed EHO framework using the YALMIP [27]

toolbox inMATLAB R© [30] with the solver GUROBITM [15].
The horizon of the optimization is set to 12 h using hourly
time-steps. The optimization identifies the optimal plant
operating schedule to achieve minimal costs-which also
includes the best possible fulfillment of the plant’s external
requirements. As a result, the optimal trajectories of all mod-
eled units’ flows are determined, including the info whether
these units are on or off. Additionally, sensitivities of the
EHO’s cost function are exported for the cooperation concept.
The trajectories can then be handed to the control concept,
which aims to follow the setpoints based on dynamic com-
ponent models, and the sensitivities are used for the control
concept. 4

IV. DYNAMIC MODELING AND PARAMETER
IDENTIFICATION
In this section, the dynamic models for the components of the
steam generation process are presented and their assembly
into a plant model is outlined. The implemented models are
mechanistic and their parameters are identified and validated
using actual industrial measurement data from a chipboard
manufacturer. The models serve as simulated reality of the
process and form the basis for the MPC.

A. GENERAL MODEL STRUCTURE
The general model structure of both the dynamic component
models and the plant model is given by an implicit nonlinear
state space descriptor form and reads

MMM (xxx) ẋxx = fff (xxx,uuu, zzz) , (3)

wherein xxx ∈ Rnx×1 denotes the state vector, uuu ∈ Rnu×1 the
input vector, zzz ∈ Rnz×1 the disturbance vector, ΘΘΘ ∈ RnΘ×1

the parameter vector, andMMM the mass matrix. The outputs of
the model are given by

yyy = ggg (xxx,uuu) , (4)

with yyy ∈ Rny×1. In (3) and (4), the function fff describes the
differential equation’s right-hand side, and ggg is the function
mapping the states and inputs to the outputs. The mass matrix
MMM and the function fff depend on the parameter vector ΘΘΘ ∈
RnΘ×1. This model forms the basis for all model variants
described later, and the state meaning/composition remains
the same throughout this work.

B. PLANT MODEL
The models are implemented in MATLAB R© employing a
class structure for each type of component and the assembled
plant. The component classes construct the corresponding
models and specify their properties, state equations, interface
definitions, as well as connection rules to other components.
The plant class contains the instances of the component
classes as well as information concerning their assembly and
is responsible for calling the components’ methods. By call-
ing the components’ methods, the plant class computes
their state equations, connects the components to each other
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through flow variables (e.g. steam, flue gas), and updates their
state vectors. Thereby, the plant class has methods for sim-
ulation (via the MATLAB R© solver ode15s), linearization,
and control. The plant model is composed of the component
models described in the following section.

C. COMPONENT MODELS
The main components of the steam generation are illustrated
in the lower part of Figure 1. The furnace ‘‘FN’’ (symbolized
by a flame) generates hot flue gas, which distributes thermal
energy throughout the process. Thereby, water evaporates in
the drum boiler ‘‘DB’’ and is then further heated in the super-
heaters ‘‘SH’’. Finally, the resulting steam is directed to the
consumers ‘‘C’’ (press and steam turbine). The component
models are mechanistic and derived from literature [4], [7].

Basically, there are two flows that drive the steam gen-
eration process and connect the components: flue gas and
water/steam. The evaluation of these flows is executed
through the plant model, which contains the assembled com-
ponent models.

The flue gas is produced in the furnace and emits heat to
the drum boiler ‘‘DB’’ and superheaters ‘‘SH’’, further also
referred to as steam components ‘‘SC’’. The temperature of
the flue gas at the outlet of the previous steam component
corresponds to the inlet temperature of the flue gas of the
following steam component.

The water/steam flows from one steam component
(‘‘SC1’’) to the next (‘‘SC2’’) due to the pressure difference
between ‘‘SC1’’ and ‘‘SC2’’,

ṁSC1out = KSC2
√
pSC1 − pSC2 for pSC1 > pSC2. (5)

Therein ṁSC1out denotes the mass flow out of steam compo-
nent ‘‘SC1’’, KSC2 the flow constant of the following steam
component ‘‘SC2’’, and pSC1 and pSC2 the pressure of ‘‘SC1’’
and ‘‘SC2’’, respectively.

The components in the steam generation process are mod-
eled as follows.

1) FURNACE
The furnace ‘‘FN’’ combusts the fuel, e.g. wood, and releases
thermal energy, which is distributed in the process by the
flue gas. The initial flue gas temperature (combustion tem-
perature) TFN and the heat capacity cp,FG is affected by the
composition of the fuel, e.g. themoisture content of the wood,
and thus subject to disturbances. The time response of the
furnace is modeled assuming a linear PT1 behavior of the
available power PFN,

ṖFN =
1

KFN,PT1

(
PFN,nomuFN − PFN

)
. (6)

Therein, KFN,PT1 is the time constant of the PT1 behavior,
PFN,nom is the nominal power and uFN ∈ [0, 1] the utilization
factor of the furnace. The available power PFN determines the
mass flow ṁFG of the flue gas ‘‘FG’’,

PFN = ṁFGcp,FGTFN. (7)

As indicated by the chipboard manufacturer’s measure-
ment data, the heat flow from the flue gas ‘‘FG’’ to a steam
component ‘‘SC’’ Q̇SC arises primarly due to convection,

Q̇SC = α̃SC1TSC,log. (8)

Therein, α̃SC is the heat transfer coefficient that determines
the heat transfer properties of the corresponding steam com-
ponent. TSC,log stands for the mean logarithmic temperature
difference which depends on the type of heat exchanger,
either parallel such as for the drum boiler ‘‘DB’’, superheater
‘‘SH2’’ and ‘‘SH3’’ or countercurrent such as for the super-
heater ‘‘SH1’’. The mean logarithmic temperature difference
reads

TSC,log =
1TSC,max −1TSC,min

log
(
1TSC,max
1TSC,min

) with (9)

1TSC,max =

{
TFGin − TSCin for parallel,

TFGin − TSCout for countercurrent,
(10)

1TSC,min =

{
TFGout − TSCout for parallel,

TFGout − TSCin for countercurrent.
(11)

The properties of the incoming and outgoing flows are
denoted by the indices ‘‘in’’ and ‘‘out’’, respectively.

In addition to (8), the energy balance for the flue gas must
hold,

Q̇SC = ṁFGcp,FG (TFGin − TFGout) . (12)

2) DRUM BOILER
In the drum boiler ‘‘DB’’, the water circulates in risers con-
nected to the furnace. The water evaporates at saturation
temperature and leaves the boiler as steam towards the super-
heaters. Meanwhile, feed water is constantly supplied to the
drum boiler.

To model the dominating drum boiler dynamics, the well-
known and validated second-order model of [4] is adopted.
It captures the overall behavior of the steam boiler well, but
does not describe the behavior of the drum level. If the latter
is of interest, other higher-order models from [4] could be
implemented instead. In this work, the second-order model is
employed.

The dynamic system equations are derived from the mass
and energy balances of the drum boiler,

[
e11 e12
e21 e22

]
dVDB,w
dt

dpDB
dt

 (13)

=

[
ṁDBin,w − ṁDBout,s

Q̇DB + ṁDBin,whDBin,w − ṁDBout,shDB,s

]
with e11 = ρDB,w − ρDB,s,

e12 = VDB,s
∂ρDB,s

∂pDB
+ VDB,w

∂ρDB,w

∂pDB
,

e21 = ρDB,whDB,w − ρDB,shDB,s,
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e22 = VDB,s

(
hDB,s

∂ρDB,s

∂pDB
+ ρDB,s

∂hDB,s
∂pDB

)
+VDB,w

(
hDB,w

∂ρDB,w

∂pDB
+ ρDB,w

∂hDB,w
∂pDB

)
−
(
VDB,s + VDB,w

)
+ mDB,mcDB,m

∂Tsat
∂pDB

.

The first row of (13) represents the transient mass balance for
the water and steam fraction in the drum boiler. The second
line results from the instationary energy balance of the drum
boiler, for further details see [4]. The symbol V denotes the
volume, p the pressure, ṁ the mass flow, Q̇ the heat flow,
h the specific enthalpy and ρ the density. The different phases
steam and water are described by the indices ‘‘s’’ and ‘‘w’’,
respectively. The influence of the drum boiler’s metal parts
in (13) depends on its total mass mDB,m (drum, tubes, and
risers), the metal’s specific heat capacity cDB,m, and the metal
temperature, which is strongly correlated with the saturation
temperature Tsat.

The input to the system (13) is the valve position uDB which
defines the incoming feed water

ṁDBin,w = uDBKDB,w
√
pDB − pDB,w, (14)

wherein KDB,w is the flow constant and pDB,fw the pressure
of the feed water supply. The connection variables to other
components are the heat flow to the drum boiler Q̇DB eval-
uated in (8) and the steam flow ṁDBout,s to the component
downstream (5).

3) SUPERHEATER AND SPRAY ATTEMPERATOR
In the superheaters ‘‘SH’’, the steam supplied by the drum
boiler absorbs the heat from the combustion gases of the
furnace. Usually, there are multiple superheater stages in
which the steam is brought to the desired temperature and
is then delivered for further use, e.g. to a steam turbine.
Spray attemperators ‘‘SA’’ support the precise control of the
steam temperature and are integrated in the corresponding
superheater model. The state equations are derived by means
of the energy and mass balances [7], (15), as shown at the
bottom of the page, with

e11 = VSH

(
hSH,s

∂ρSH,s

∂pSH
+ ρSH,s

∂hSH,s
∂pSH

− 1
)
,

e12 = VSH

(
hSH,s

∂ρSH,s

∂TSH
+ ρSH,s

∂hSH,s
∂TSH

)
,

e21 = VSH
∂ρSH,s

∂pSH
,

e22 = VSH
∂ρSH,s

∂TSH
.

Therein V denotes the total volume, p the pressure, T the
temperature, ṁ the mass flow, Q̇ the heat flow, h the specific
enthalpy and ρ the density. The different phases steam and
water are described by the indices ‘‘s’’ and ‘‘w’’, respectively.
The incoming and outgoing quantities are indicated by the
index ‘‘in’’ and ‘‘out’’, respectively.

The input to the system (15) is the valve position
uSH,w ∈ [0, 1] of the spray attemperator which determines
the incoming spray mass flow

ṁSHin,w = uSH,wKSH,w
√
pSH − pSH,w, (16)

wherein KSH,w is the flow constant and pSH,w the pressure
of the spray attemperator. The connection variables to other
components are the heat flow to the superheater Q̇SH eval-
uated in (8), and the incoming and outgoing steam flows
ṁSHin,s and ṁSHout,s (5), respectively.

4) CONSUMER
The consumer model ‘‘C’’ represents the press and the steam
turbine. It is assumed as static and its properties determine
the steam mass flow out of the steam generation process,

ṁSCout,s = uCKC
√
pSC − pC, (17)

wherein pSC denotes the pressure in the steam component
‘‘SC’’, KC is the flow constant, and pC the pressure of the
consumer ‘‘C’’. The input to the consumer model is the valve
opening uC ∈ [0, 1]. The required steam mass flow to the
consumers is determined by the EHO, and the MPC attempts
to realize the EHO’s setpoints.

D. PARAMETER IDENTIFICATION
The parameters of the models described in Section IV-C
are obtained either from data sheets or through parameter
estimation of the chipboard manufacturing plant. For the
latter, parameter sensitvity analysis is applied utilizing real
industrial measurements from the chipboard manufacturer.
A viable summary of the steps required for parameter esti-
mation can be found in [39].

1) PARAMETER ESTIMATION
To estimate the unknown parameters not found in data sheets,
a suitable quadratic cost function is defined,

Jid (ΘΘΘ) = Tr
((
YYY (ΘΘΘ)− ỸYY

)T
QQQy

(
YYY (ΘΘΘ)− ỸYY

))
. (18)

Here, Tr (···) stands for the trace of a square matrix, represent-
ing the sum of its diagonal elements. The vectorΘΘΘ contains
all model parameters. The matrix ỸYY ∈ Rm×ny contains
the ny measurement channels at m measurement samples.

[
e11 e12
e21 e22

]
dpSH
dt
dTSH
dt

 = [Q̇SH + ṁSHin,whSHin,w + ṁSHin,shSHin,s − ṁSHout,shSH,s
ṁSHin,s + ṁSHin,w − ṁSHout,s

]
(15)
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FIGURE 2. The models show an accurate fit using the optimal parameter estimates.

The corresponding simulated model outputs are in the matrix
YYY (ΘΘΘ) ∈ Rm×ny . The residuals of the different measurement
types are scaled by the weighting matrix QQQy. The optimal
parameter estimates are given by

Θ̂ΘΘ = argmin
ΘΘΘ
(Jid (ΘΘΘ)) . (19)

The parameter estimations are performed separately for each
component, treating them in either a static or a dynamic
optimization problem.

The static parameter estimation of the flow constants in (5),
(14), (16) and (17) yields a standard least-squares regression
problem.

In order to solve the dynamic parameter estimation prob-
lem, the dynamic component models are simulated forward
in time. The optimal parameter estimates Θ̂ΘΘ are found using
the solver fmincon of MATLAB R© and minimizing the cost
function Jid (ΘΘΘ) (18). To ensure good quality and significance
of the parameter estimates, parameter sensitivity analysis is
performed.

2) PARAMETER SENSITIVITY ANALYSIS
Many works have dealt with parameter estimation along
with the related problems of optimal experiment design [5],
identifiability analysis [14], [31], and measures of estimation
quality [47]. In this work, the approach described by [39]

for characterizing estimation quality as well as significance
is recapitulated and applied.

Given a consistent estimator and the correct model struc-
ture, the parameter estimates approach their true values as
the number of measurement samples grows, Θ̂ΘΘ → E (ΘΘΘ).
Consequently, the entries of the covariance matrix approach
zero as well,ΣΣΣ

Θ̂
= cov

(
Θ̂ΘΘ
)
→ 000. Hence, in order to assess

the accuracy of the parameter estimates Θ̂ΘΘ , the associated
parameter covariance matrix,

ΣΣΣ
Θ̂
= cov

(
Θ̂ΘΘ
)
= E

[(
Θ̂ΘΘ − E[ΘΘΘ]

) (
Θ̂ΘΘ − E[ΘΘΘ]

)T]
(20)

is evaluated. Thereby, E [···] stands for the expected value, and
thus E [ΘΘΘ] represents the actual parameter.

In general, however, a numerical approximation directly
of equation (20) is not feasible, but a lower bound can be
obtained from the Cramér-Rao inequality [9],

ΣΣΣ
Θ̂
≥ FFF−1. (21)

The Fisher information matrix FFF in (21) is defined
as [26], [55]:

FFF = FFF (ΘΘΘ,m) =
m∑
k=1

φφφT (k,ΘΘΘ)ΣΣΣ−1e φφφ (k,ΘΘΘ) . (22)
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TABLE 1. Plant parameters (dynamic model).

In (22)ΣΣΣe denotes the error covariancematrix andφφφ (k,ΘΘΘ) is
seen as the parametric output sensitivity of the np parameters,

φφφ (k,ΘΘΘ) =

[
d
dΘ1

yyy (k,ΘΘΘ) , · · · ,
d

dΘnp
yyy (k,ΘΘΘ)

]
. (23)

The Fisher information matrix is formed by applying finite
differences at the optimal parameter estimates Θ̂ΘΘ . In order to
render the Fisher information matrix comparable for different
types of measurements, it is scaled using a diagonal matrix Ω̂ΩΩ
containing the optimal parameter estimates,

FFF s = Ω̂ΩΩ
T
FFFΩ̂ΩΩ. (24)

IfFFF s,ii→ 0 themmeasurement samples of the ny measure-
ment channels do not provide enough information to estimate
the parameter Θi, i ∈ [1, . . . , np].

3) PARAMETERS AND MODEL FIT
All parameters and their corresponding scaled Fisher infor-
mation of the dynamicmodels are listed in Table 1. The Fisher

information indicates an excellent suitability of the available
data for estimating the parameters not given by data sheets.

The geometry and material parameters of the drum boiler
and the superheaters, namely VDB,t, mDB,t, cDB,t, VSH1, VSH2,
and VSH3, are obtained from data sheets. The time constant
of the furnace is derived from a step response recorded in the
chipboard manufacture.

The flow constants K of the steam flow between two
consecutive components (5), the feedwater to the drum boiler
(14), the spray attemperator (16) and the outlet (17) are
obtained from static parameter estimation.

The other parameters are estimated using dynamic simula-
tions, (18), and MATLAB R©’s fmincon solver.

Fits of the model outputs using the optimal parameter esti-
mates are shown in Figure 2. The measurements are historical
data from a steam-powered industrial plant for the manu-
facture of chipboards. The R2-fit is 85.4%, 74.0%, 86.2%,
and 1% for the models of the drum boiler, the superheater 1,
the superheater 2, and the superheater 3, respectively. Even
though the R2-fit for the superheater 3 model is low, a close
examination of the model outputs (Figure 2) shows that the
transient and steady-state behavior of all models is sufficient
to be implemented in an MPC.

V. CONTROL CONCEPT
The lower automation layer controls the steam generation
process subject to dynamics and disturbances. The control
concept is composed of a stochastic MPC, a nonlinear plant
model, a successively linearized plant model, and an observer
for state and disturbance covariance estimation, see Figure 3.
It computes optimal control actions to fulfill a setpoint
sequence rrr with a given permitted violation probability β. The
setpoint sequence is a section of the optimal operating sched-
ule calculated by the EHO, rrr ∈ ppp. The permitted violation
probability β is obtained by the cooperation concept. In the
cooperation concept, stochastic information about the distur-
bances and the EHO’s cost function sensitivities are exploited
to compute the permitted violation probability β that leads to
optimal expected plant operating costs (risk costs).

In the control concept, the plant model (nonlinear) pre-
dicts the future state trajectories online using the current
control inputs but assuming no disturbances. Then, the plant
model is successively linearized around this trajectory and
discretized in time. The stochastic MPC implements the
obtained linearized plant model and computes optimal con-
trol inputs based on chance constraints to follow desired
reference setpoint sequence from the EHO in a probabilistic
manner. In order to provide the stochastic MPC with up-to-
date information, the observer estimates the true states from
measurements of a plant (simulated reality) and computes
their estimation error covariances. Additionally, the covari-
ance of the disturbance is estimated.

In the following Section, k is the time step index with a
chosen time step length 1t , so tk = k 1t , and signals with
subscript k denote their values at time t = tk = k 1t .
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FIGURE 3. Scheme of the control concept with signal (solid line) and process flow (dashed line).

A. PLANT (SIMULATED REALITY)
The simulated reality is based on the model (3)-(4) from
Section IV calibrated against real measurement data. The
process equations with disturbances and the measurement
output equations with noise have the form

MMM
(
xxxp
)
ẋxxp = fff

(
xxxp,uuuk , zzzk

)
(25)

yyyp,k = ggg
(
xxxp (tk) ,uuuk ,vvvk

)
, (26)

with xxxp ∈ Rnx×1 and yyyp ∈ Rny×1. The disturbances zzzk and the
measurement noise vvvk are both assumed Gaussian and white.
The simulated reality describes the steam generation process
subject to disturbances.

B. PLANT MODEL (NONLINEAR)
The nonlinear plant model matches the plant (simulated real-
ity) (25)-(26), except no disturbances are assumed,

MMM (xxxm) ẋxxm = fff (xxxm,uuuk , zzzk = 000) (27)

yyym,k = ggg (xxxm (tk) ,uuuk ,vvvk = 000) , (28)

with xxxm ∈ Rnx×1 and yyym ∈ Rny×1. The plant model predicts
the future state trajectories based on the current states and
inputs (xxxm (tk+1) ,uuuk). The predicted states form the basis for
linearization and state estimation.

C. LINEARIZED PLANT MODEL
The plant model equations (27)-(28) are discretized
and successively linearized (see, e.g., [54]) around the

predicted trajectories,

1xxxk+1 = AAA1xxxk +BBB1uuuk +EEE1zzzk (29)

1yyyk = CCC1xxxk +DDD1uuuk , (30)

where 1 indicates the deviations from the state trajectories.
The system matrices AAA ∈ Rnx×nx , BBB ∈ Rnx×nu , CCC ∈

Rny×nx , DDD ∈ Rny×nu , and EEE ∈ Rnx×nz are derived using
finite differences and their time index is omitted for rea-
sons of brevity. The system (29)-(30) can be implemented
in a standard MPC or an extended Kalman filter (observer)
formulation.

D. OBSERVER
In the control concept, observers are used to estimate the true
states, their estimation error covariances, and the disturbance
covariance from measurements.

1) EXTENDED KALMAN FILTER
A standard extended Kalman filter (EKF), as described
in [42], is implemented to estimate the true states and their
estimation error covariances. The state update,

x̂xxk+1 = xxxm,k+1 +KKKK
(
yyyp,k+1 − yyym,k+1

)
, (31)

is determined using measurements yyyp from the simulated
reality and the predicted nonlinear plant model outputs yyym.
The Kalman gain KKKK is computed using the Jacobians of
(27)-(28), the evolution of the estimation error covariance
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ΣΣΣ x̂,k , and the process as well as measurement noise. The pro-
cess noise is obtained by estimating the disturbance covari-
ance Σ̂ΣΣ z,k as described in Section V-D2 and the measurement
covariance RRR is assumed to be known.

2) DISTURBANCE COVARIANCE ESTIMATION
The disturbance covariance estimation is based on the EKF’s
assumptions and the definition of the state covariance matrix.
First, the differences of the measurements and the model
outputs are computed,

sssk+1 = yyyp,k+1 − yyym,k+1. (32)

This current ouput residual is collected with ns older residuals
in the innovation matrix,

SSSk+1 =

sssk−ns+2 sssk−ns+3 . . . sssk+1

 , (33)

with SSSk ∈ Rny×ns whereby ns is the window size of the
estimator. Then, the covariance matrix of the measurements
is defined as

Σ̂ΣΣyz,k+1 =
SSSk+1SSSTk+1
ns − 1

. (34)

The disturbance variance’s influence on the states is
given by

Σ̂ΣΣxz,k+1 = CCC\
(
Σ̂ΣΣyz,k+1 −RRR

)
/CCCT
−AAAΣΣΣ x̂,kAAA

T , (35)

and the disturbance error covariance results in

Σ̂ΣΣ z,k+1 = EEE\Σ̂ΣΣxz,k+1/EEET , (36)

where (·)\ and /(·) denote left- and right-pseudo inverses of
matrix (·). The quality of estimation significantly depends on
the window size ns. A large window size is required for good
convergence, whereas a small window size is better suited
to account for a (slowly) time-varying disturbance covari-
ance and thus reduces the effective bias in the estimation.
A recursive estimation algorithm for disturbance covariance
estimation can be found in [28], which, however, cannot
consider a time-varying disturbance covariance.

E. CHANCE-CONSTRAINED MODEL
PREDICTIVE CONTROL
MPCs are widely used to control multivariable systems under
constraints. The key idea is to compute an optimal trajectory
of the controlled system model, predicted over a chosen
horizon from the current time into the future. The first con-
trol signal value is applied and the whole optimization is
repeated at the next time step, based on an updated initial
state. In order to account for disturbances and ensure suf-
ficient steam quality, stochastic MPC methods as described
in [18] are adapted here. The formulations of [18] result in

the following deterministic optimal control problem of the
linearized plant model (29)-(30),

min
uuu

JMPC,N
(
x̂xxk ,uuu, rrr, β

)
(37)

s.t. 1x̃xxk+i+1 = AAA1x̃xxk+i +BBB1uuuk+i, (38)

1ỹyyk+i+1 = CCC1x̃xxk+i +DDD1uuuk+i, (39)

Pr
[
ỹyyk+i+1,j≥rrrk+i+1,j

]
≥ 1− βj, (40)

uuuk+i ≤ uuucon, (41)

1x̃xxk+i = E[1xxxk+i], (42)

with i = 0, . . . ,N − 1, (43)

j = 1, . . . , ny. (44)

Therein, the cost function JMPC,N is minimized over the
prediction horizon N to compute an optimal input control
sequence uuu = {uuuk , . . . ,uuuk+N−1}. The first input uuuk of the
control sequence is applied to the system, and then the
optimization problem is recomputed at the next time step.
In (37)–(44) the subscript k+i+1 denotes the value at the cor-
responding future time step based on the current knowledge.
The expected deterministic value of the predicted state and
output vector (no disturbances assumed) is given by1x̃xxk+i+1
and1ỹyyk+i+1, respectively. Here,1 indicates deviations from
the trajectory computed by the nonlinear plant model, so that
the effective predicted state and output vector is the sum
of the two.

When the disturbances1zzzk in (29) are modeled as random
variables, the system dynamics are described in a probalistic
sense. In the chance constraint (40), Pr [·] stands for the prob-
ability of an event. The vectors rrrk+i+1 and uuucon contain the
desired outputs (setpoints) and the input constraints, respec-
tively. In (40), the probability of violating an output constraint
j should not exceed a permitted probability βj ∈ (0, 1].
The chance constraints (40) can be expressed in terms of

the expected deterministic predicted output variable ỹyyk+i+1,j
and the inverse cumulative density function F−1k+i+1,j for each
output constraint j,

ỹyyk+i+1,j ≥ rrrk+i+1,j + F
−1
k+i+1,j

(
1− βj

)
. (45)

The complexity of computing (45) depends on the underlying
probability distribution of the stochastic disturbances 1zzzk as
well as the specific nonlinearity characteristics of the plant
behavior. Assuming 1zzzk as Gaussian and the plant behavior
to be approximately linear with respect to disturbance prop-
agation over the prediction horizon N , the state and output
covariance can be propagated over the prediction horizon,

ΣΣΣ x̃,k+i+1 = AAAΣΣΣ x̃,k+iAAA
T
+EEEΣΣΣ z,kEEET , (46)

ΣΣΣ ỹ,k+i+1 = CCCΣΣΣ x̃,k+i+1CCC
T , (47)

with i = 0, . . . ,N − 1.

In (46),ΣΣΣ z,k is the disturbance covariance matrix,

ΣΣΣ z,k = E
[
1zzzk 1zzzTk

]
. (48)
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Since the disturbance covariance matrix is unknown and
needs to be estimated as described in Section V-D2,
the predicted state vector and thus the output vector
is modeled via the Student’s t-distribution xxxk+i+1|k ∼
T
(
x̃xxk+i+1|k ,ΣΣΣ x̃,k+i+1, ν

)
, whereby ν is the number of

degrees of freedom of the Student’s t-distribution.
The cumulative density function F and its inverse can be

obtained with initial condition ΣΣΣ x̃,k = ΣΣΣ x̂,k and x̃xxk = x̂xxk ,
both computed by the EKF in Section V-D1.
The cost function JMPC,N in (37) is designed to track

the desired setpoint sequence rrr = {rrrk+1, . . . rrrk+N } with
rrr i ∈ Rny×1,

JMPC,N =

N∑
i

((
ỹyyk+i − rrr i

)T QQQy (ỹyyk+i − rrr i))
+

N−1∑
i

(
uuuTk+iQQQuuuuk+i

)
(49)

whereinQQQy andQQQu are weighting matrices.
By minimizing equation (49), the MPC is able to optimally

track the setpoints given by the EHO with a given permitted
violation probability β. The permitted violation probability β
of (40) is obtained from the cooperation concept in SectionVI
using the EHO’s cost function sensitivities.

VI. COOPERATION CONCEPT
The basic idea of the following cooperation concept is to
determine a permitted violation probability β of the desired
setpoints rrr that leads to optimal expected plant operating
costs (risk costs). Therefore, the EHO passes its cost function
sensitivities to the cooperation concept. In the cooperation
concept, the EHO’s sensitivities are implemented in a risk
cost function that takes into account the stochastic distri-
bution of the process variables. Minimizing the risk cost
function leads to an optimal permitted violation probability
β, which can be adopted by the stochastic MPC.

FIGURE 4. Plant output y vs. steam demand (setpoint) r .

A. RISK COST FUNCTION
The risk cost function is based on static considerations of
the EHO’s cost function and describes the additional costs
incurred by non-ideal plant operation due to disturbances.
It consists of two terms, one for fuel costs and one for

violation costs,

Jrisk(cfuel, cviol, β) = cfuel(ỹ− r)+ cviolω. (50)

Therein, cfuel denotes the fuel costs per additional output unit
and cviol the violation costs per missing output, obtained by
deriving the cost function of the EHO with respect to the
corresponding setpoint

cviol =
dJEHO
dr

. (51)

These cost factors are multiplied by the difference between
the desired setpoint r and the expected deterministic output ỹ
as well as by the expected violations ω.
The optimal permitted violation probability β sought for

the stochastic MPC is determined by minimizing the risk cost
function,

min
β
Jrisk (cfuel, cviol, β) . (52)

The output of the controlled plant y will fulfill the EHO’s
setpoint r with the probability 1 − β, see Figure 4. The
green area shows the overproduced steam and the red area
shows the steam shortage caused by disturbances. The trade-
off between steam overproduction and steam shortage is opti-
mally solved by the cooperation concept.

FIGURE 5. The expected output ỹ depends on the permitted violation
probability β and the desired setpoint r .

B. EXPECTED OUTPUT AND VIOLATIONS
The expected output ỹ and the expected violations ω depend
on the choice of the permitted violation probability β, see
(40) and Figure 5. The expected output and violations are
determined using the probability density function fX , which is
chosen to be Student’s t-distributed. Then, the permitted vio-
lation probability is given by the cumulative density function

β =

∫ r

−∞

fXdx, (53)

and the expected output is the inverse of it.
The expected violations, weighted by severity and fre-

quency, are determined by

ω =

∫ r

−∞

(r − x) fXdx. (54)
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Using these relations, the optimal permitted violation prob-
ability can be computed (52).

C. MULTIPLE OUTPUTS
In the case of multiple outputs, the corresponding permitted
violation probabilities can be evaluated separately if there are
no other constraints. If the maximum available power is limit-
ted, for example due to plant restrictions, the optimization for
determining the permitted violation probabilities for multiple
outputs must be performed with respect to complementary
constraints.

VII. DEMONSTRATION OF THE NOVEL PROCESS
AUTOMATION FRAMEWORK
The performance of the developed cooperation concept
(sensitivity-based) is demonstrated via simulation studies.
First, the settings of the process automation framework are
described. Then, the effectiveness of the stochastic control
concept is shown. Finally, simulations are performed using
the multi-layer control architecture with and without the
cooperation concept.

A. SETTINGS
1) SETTINGS OF THE EHO
The economic plant operation is optimized via the EHO
from Section III using the YALMIP [27] toolbox in
MATLAB R© [30] with the solver GUROBITM [15]. The
EHO’s optimization horizon is set to 12 h using hourly time-
steps, TEHO,s = 1 h. The optimization is performed under real
industrial constraints for district heating demand, production
schedules, the electricity market and cost factors.

2) SETTINGS OF THE CONTROL CONCEPT
The control concept from Section V follows the EHO’s set-
points with the permitted violation probability β computed
by the cooperation concept. The sampling time of the control
concept is chosen to be TMPC,s = 10 s. The observer for
disturbance estimation has a window size of ns = 3000 sim-
ulation steps. The MPC controls the water volume of the
drum boiler, as well as the enthalpy flow to the steam tur-
bine and the press. The weighting matrices of the MPC are
chosen diagonal. The entries of the output weighting matrix
QQQy are 105 for the water volume and 101 for the demanded
enthalpy flow. The entries of the input weighting matrix QQQu
are 104 for all steam/water valves and 106 for the utilization
factor of the furnace. The degrees of freedom of the Student’s
t-distribution are ν = ns−1. Nonlinear simulation results are
obtained via the MATLAB R© solver ode15s [30].

The optimization problems of the MPC are solved using
MOSEK R© [33] and YALMIP [27].

3) SETTINGS OF THE SIMULATION
The parameters of the simulated reality are chosen as
described in Section IV and V-A. A stochastic disturbance
with a standard deviation of σz = 0.15 is applied to the

FIGURE 6. The enthalpy flow to the steam turbine complies with the
permitted violation probability.

FIGURE 7. The observer estimates the disturbance covariance accurately.

input of the furnace uFN ∈ [0, 1], which is caused by a
fluctuating fuel quality (e.g., due to the unknown moisture
content of wood).

B. DEMONSTRATION OF THE STOCHASTIC
CONTROL CONCEPT
The performance of the stochastic control concept is demon-
strated using a stepwise heat demand of the steam turbine and
an chosen permitted violation probability of 10%.

In the case of a linear reference simulation, the system was
able to accurately meet the steam demand (realized violation
probability 9.8%). However, when considering the nonlinear
plant, the constraints get violated in 17.3% of the cases. The
deviations in the permitted violation probability occur due
to nonlinear plant behavior and the successive linearization.
Therefore, the chance constraints (45) are modified by adding
a nonlinear correction term 1nonlin,

ỹyyk+i+1,j ≥ rrrk+i+1,j + F
−1
k+i+1,j

(
1− βj

)
+1nonlin. (55)

The nonlinear correction term1nonlin is obtained from online
analyzing the last n1nonlin = 300 samples. With the proposed
correction term, a satisfying plant performance was achieved
and the constraints were violated in 10.2% of the cases, see
Figure 6. Tests with differently chosen permitted violation
probabilities lead to similar satisfactory results.

VOLUME 10, 2022 66857



D. Pernsteiner et al.: Efficient Sensitivity-Based Cooperation Concept

FIGURE 8. Total additional plant operating costs caused by disturbances (non-ideal plant operation).

FIGURE 9. Steam demand violation costs caused by disturbances (non-ideal plant operation).

Moreover, the observer performs well for the state esti-
mate, and the disturbance covariance is estimated accurately,
see Figure 7. The estimations quickly approache the actual
values and converge.

C. DEMONSTRATION OF THE COOPERATION CONCEPT
The process automation framework is tested with three dif-
ferent control concepts in the lower layer: (1) a standard
MPC corresponding to the stochastic MPC with a permitted
violation probability of 50 %, (2) a stochastic MPC with
a constant permitted violation probability of 3%, and (3) a
stochastic MPC in combination with the cooperation concept
resulting in an optimal permitted violation probability. The
constant permitted violation probability of 3% is chosen to
serve the overall optimum well and to strongly challenge the
cooperation concept.

In the upper layer, the EHO optimizes the economic plant
operation statically under real industrial constraints for dis-
trict heating demand, production schedules, the electricity
market, and cost factors. The EHO provides setpoints to the

MPC and the cost function sensitivities to the cooperation
concept. The disturbances act on the input of the furnace uFN
caused by fluctuating fuel quality and are only compensated
for in the MPC.

The simulation study is performed with 34 runs of ran-
domly generated disturbances to account for the stochastic
nature of the process. The simulation study is evaluated with
respect to three different cost factors: (1) total additional
plant operating costs, which can be broken down into (2) the
steam demand violation costs and (3) the additional fuel costs.
The additional plant operating costs result from the non-
ideal operation of the plant in the presence of disturbances.
If no disturbances were present, the steam demand could
be met exactly and the additional plant operating costs would
be zero.

D. RESULTS
Figure 8 shows the total additional plant operating costs
caused by the occurrence of disturbances. The MPC with the
novel cooperation concept is able to reduce the additional
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FIGURE 10. Additional fuel costs caused by disturbances (non-ideal plant operation).

plant operating costs by 55.4 % in comparison to the standard
MPC and by 11.1 % with respect to the stochastic MPC.
The solid lines in the figure show the mean values of the
34 simulation runs, whereas the statistics are given by the
box-and-whisker plots on the right.

The additional plant operating costs can be divided into
those arising from the violation of the required setpoints
(steam demand) and those arising from the fuel costs for
excess steam production. The steam demand violation costs
are slightly higher for the cooperation concept compared to
the stochastic MPC with a permitted violation probability
of 3%, see Figure 9. The standard MPC case causes the
highest steam demand violation costs. The additional fuel
costs are minimal if no measures are taken to stochastically
compensate for violations, as in the standard MPC case. Fuel
costs are significantly higher using the stochastic MPC with
the 3 % permitted violation probability than with the opti-
mal permitted violation probability (cooperation concept),
see Figure 10. Thus, in total, the additional plant operating
costs are the lowest with the developed cooperation concept,
optimally solving the trade-off between additional fuel costs
and violation costs.

As mentioned in the introduction (Section I-C), the imple-
mentation of DRTO-MPC methods is challenging in terms of
computational complexity [22], [52]. The concept presented
in this paper aims to outperform classical RTO-MPC meth-
ods while keeping the computational cost lower than with
DRTO-MPCmethods. The proposed stochasticMPCwith the
sensitivity-based cooperation concept only slightly increases
the computational effort compared to RTO-MPC methods,
but is able to realize an increase in system performance of
the same order of magnitude as with the DRTO-MPC meth-
ods of [48] in the present of disturbances. For future work,
it would be interesting to compare different methods with
the proposed cooperation concept using the same benchmark
process.

In summary, the developed cooperation concept is able to
achieve the cost-critical setpoints while efficiently limiting

additional fuel consumption and thus emissions to the neces-
sary level.

VIII. CONCLUSION
The developed process automation framework is able to
operate an industrial plant at optimal expected costs in the
presence of stochastic disturbances. The method is based
on a hierarchical structure in which a higher layer (EHO)
optimizes the economic costs and provides setpoints to a
lower layer (MPC) that compensates for disturbances and
considers dynamic performance. A novel cooperation con-
cept between the optimization layers is proposed to over-
come limitations due to mismatches caused by occuring
disturbances. In the cooperation concept, the EHO’s cost
function sensitivities and stochastic information about the
disturbances are exploited to compute an optimal permitted
violation probability of the setpoints. The MPC tracks the
desired setpoints with the permitted violation probability,
resulting in an optimal trade-off between additional fuel and
steam demand violation costs.

The operation optimization framework is tested usingmod-
els calibrated with industrial measurement data and in sim-
ulation scenarios under real industrial constraints for district
heating demand, production schedules, the electricity market,
and cost factors. It is seen that the stochastic control frame-
work can reliably realize setpoints with a given permitted
violation probability. Observers are able to accurately esti-
mate the true system states and the disturbance covariance
from measurements. The cooperation concept between the
hierarchical optimization layers leads to optimal plant oper-
ation in the presence of disturbances reducing the additional
plant operating costs by 55.4 % compared to a standard MPC
case. A stochastic control concept with a fixed permitted vio-
lation probability of 3% is outperformed by 11.1%. Using the
cooperation concept, no further expert knowledge is required
to control the plant, e.g., to adjust control parameters.

In real industrial processes, random disturbances always
occur, caused for example by imperfections of fuel
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compositions or reactions. The process automation frame-
work developed here can be applied to properly handle these
kinds of disturbances and to operate the entire plant in an opti-
mal and efficient way. A next step to improve the developed
method lies in the data-driven modeling of the disturbances
using generalized Gaussian mixture distributions, see [49].
This will help to better capture the probability distribution
of disturbances such as fluctuating fuel quality and will
make the framework even more significant for real-world
implementation.

ACKNOWLEDGMENT
The authors want to acknowledge the support provided
by the doctoral school Smart Industrial Concept [SIC!]
(https://sic.tuwien.ac.at). Our special thanks go to our
industrial partner FunderMax GmbH along with Eduard
Pleschutznig, who made the analysis of the chipboard pro-
duction plant possible and provided the necessary data. The
authors acknowledge TU Wien Bibliothek for financial sup-
port through its Open Access Funding Programme.

REFERENCES
[1] H. Abdi, ‘‘Profit-based unit commitment problem: A review of models,

methods, challenges, and future directions,’’ Renew. Sustain. Energy Rev.,
vol. 138, Mar. 2021, Art. no. 110504, doi: 10.1016/j.rser.2020.110504.

[2] I. Abdou and M. Tkiouat, ‘‘Unit commitment problem in electrical power
system: A literature review,’’ Int. J. Electr. Comput. Eng., vol. 8, no. 3,
p. 1357, Jun. 2018, doi: 10.11591/ijece.v8i3.

[3] R. Amrit, J. B. Rawlings, and L. T. Biegler, ‘‘Optimizing process
economics online using model predictive control,’’ Comput. Chem.
Eng., vol. 58, pp. 334–343, Nov. 2013, doi: 10.1016/j.compchemeng.
2013.07.015.

[4] K. J. Åström andR.D. Bell, ‘‘Drum-boiler dynamics,’’Automatica, vol. 36,
no. 3, pp. 363–378, 2000, doi: 10.1016/S0005-1098(99)00171-5.

[5] M. Baltes, R. Schneider, C. Sturm, and M. Reuss, ‘‘Optimal experi-
mental design for parameter estimation in unstructured growth mod-
els,’’ Biotechnol. Prog., vol. 10, no. 5, pp. 480–488, Sep. 1994, doi:
10.1021/bp00029a005.

[6] L. T. Biegler, ‘‘Technology advances for dynamic real-time optimiza-
tion,’’ Comput. Aided Chem. Eng., vol. 27, pp. 1–6, Jan. 2009, doi:
10.1016/S1570-7946(09)70220-2.

[7] K. Boman, J. Thomas, and J. Funkquist, ‘‘Model-based power plant master
control,’’ Varmeforsk Service AB, Stockholm, Sweden, Tech. Rep., 2021.
[Online]. Available: https://www.osti.gov/etdeweb/biblio/1004335

[8] G. W. Chang, Y.-D. Tsai, C.-Y. Lai, and J.-S. Chung, ‘‘A practical mixed
integer linear programming based approach for unit commitment,’’ inProc.
IEEE Power Eng. Soc. Gen. Meeting, vol. 1, Jun. 2004, pp. 221–225, doi:
10.1109/PES.2004.1372789.

[9] H. Cramer,MathematicalMethods of Statistics, vol. 9. Princeton, NJ, USA:
Princeton Univ. Press, 1999.

[10] M. Ellis, H. Durand, and P. D. Christofides, ‘‘A tutorial review of economic
model predictive control methods,’’ J. Process Control, vol. 24, no. 8,
pp. 1156–1178, Aug. 2014, doi: 10.1016/j.jprocont.2014.03.010.

[11] S. Engell, ‘‘Feedback control for optimal process operation,’’ J. Pro-
cess Control, vol. 17, no. 3, pp. 203–219, 2007, doi: 10.1016/j.
jprocont.2006.10.011.

[12] P. Favre-Perrod, ‘‘A vision of future energy networks,’’ in Proc.
Inaugural IEEE PES Conf. Expo. Afr., Jul. 2005, pp. 13–17, doi:
10.1109/PESAFR.2005.1611778.

[13] A. H. González and D. Odloak, ‘‘A stable MPC with zone con-
trol,’’ J. Process Control, vol. 19, no. 1, pp. 110–122, Jan. 2009, doi:
10.1016/j.jprocont.2008.01.003.

[14] J. H. A. Guillaume, J. D. Jakeman, S.Marsili-Libelli, M. Asher, P. Brunner,
B. Croke, M. C. Hill, A. J. Jakeman, K. J. Keesman, S. Razavi, and
J. D. Stigter, ‘‘Introductory overview of identifiability analysis: A guide
to evaluating whether you have the right type of data for your modeling
purpose,’’ Environ. Model. Softw., vol. 119, pp. 418–432, Sep. 2019, doi:
10.1016/j.envsoft.2019.07.007.

[15] Gurobi. (2021). Gurobi Optimizer Reference Manual. Accessed:
Sep. 2, 2021. [Online]. Available: https://www.gurobi.com

[16] V. Halmschlager, F. Birkelbach, and R. Hofmann, ‘‘Optimizing the uti-
lization of excess heat for district heating in a chipboard production
plant,’’ Case Stud. Thermal Eng., vol. 25, Jun. 2021, Art. no. 100900, doi:
10.1016/j.csite.2021.100900.

[17] V. Halmschlager and R. Hofmann, ‘‘Assessing the potential of com-
bined production and energy management in industrial energy hubs—
Analysis of a chipboard production plant,’’ Energy, vol. 226, Jul. 2021,
Art. no. 120415, doi: 10.1016/j.energy.2021.120415.

[18] T. A. N. Heirung, J. A. Paulson, J. O’Leary, and A. Mesbah, ‘‘Stochas-
tic model predictive control—How does it work?’’ Comput. Chem.
Eng., vol. 114, pp. 158–170, Jun. 2018, doi: 10.1016/j.compchemeng.
2017.10.026.

[19] A. I. Hinojosa, A. Ferramosca, A. H. González, and D. Odloak,
‘‘One-layer gradient-based MPC + RTO of a propylene/propane split-
ter,’’ Comput. Chem. Eng., vol. 106, pp. 160–170, Nov. 2017, doi:
10.1016/j.compchemeng.2017.06.006.

[20] R. Hofmann, V. Halmschlager, S. Knöttner, B. Leitner, D. Pernsteiner,
L. Prendl, C. Sejkora, G. Steindl, and A. Traupman. (2020). Digitalization
in industry—An Austrian perspective. Austrian Climate and Energy Funds
(Klimaund Energiefonds). Accessed: Sep. 2, 2021. [Online]. Available:
https://www.klimafonds.gv.at/publication/white-paper-digitalization-in-
industry-an-austrian-perspective/

[21] International Energy Agency. (2020). World Energy Outlook 2020.
Accessed: Sep. 2, 2021. [Online]. Available: https://www.iea.org/reports/
world-energy-outlook-2020

[22] M. Z. Jamaludin and C. L. E. Swartz, ‘‘Approximation of closed-
loop prediction for dynamic real-time optimization calculations,’’ Com-
put. Chem. Eng., vol. 103, pp. 23–38, Aug. 2017, doi: 10.1016/j.
compchemeng.2017.02.037.

[23] J. Kadam, M. Schlegel, W. Marquardt, R. Tousain, D. van Hessem,
J. van den Berg, and O. Bosgra, ‘‘A two-level strategy of integrated
dynamic optimization and control of industrial processes—A case study,’’
Comput. Aided Chem. Eng., vol. 10, pp. 511–516, Jan. 2002, doi:
10.1016/S1570-7946(02)80113-4.

[24] J. Kadam and W. Marquardt, ‘‘Integration of economical optimization
and control for intentionally transient process operation,’’ in Assessment
and Future Directions of Nonlinear Model Predictive Control, vol. 358.
Berlin, Germany: Springer, Sep. 2007, pp. 419–434, doi: 10.1007/978-3-
540-72699-9_34.

[25] M. Lawrynczuk, ‘‘Model predictive control with on-line optimal lin-
earisation,’’ in Proc. IEEE Int. Symp. Intell. Control (ISIC), Oct. 2014,
pp. 2177–2182, doi: 10.1109/ISIC.2014.6967645.

[26] L. Ljung, System Identification: Theory for the User. Hoboken, NJ, USA:
Prentice-Hall, 1999.

[27] J. Löfberg, ‘‘YALMIP: A toolbox for modeling and optimization
in MATLAB,’’ in Proc. CACSD Conf., Taipei, Taiwan, Sep. 2004,
pp. 284–289.

[28] H. Ma, L. Yan, Y. Xia, and M. Fu, ‘‘Kalman filter with recursive process
noise covariance estimation,’’ inKalman Filtering and Information Fusion.
Singapore: Springer, 2020, pp. 21–49, doi: 10.1007/978-981-15-0806-6_3.

[29] A. G. Marchetti, A. Ferramosca, and A. H. González, ‘‘Steady-state target
optimization designs for integrating real-time optimization and model pre-
dictive control,’’ J. Process Control, vol. 24, no. 1, pp. 129–145, Jan. 2014,
doi: 10.1016/j.jprocont.2013.11.004.

[30] MATLAB Version 9.5.0 (R2018b), MathWorks, Natick, MA, USA, 2018.
[31] H. Miao, X. Xia, A. S. Perelson, and H. Wu, ‘‘On identifiability of

nonlinear ODE models and applications in viral dynamics,’’ SIAM Rev.,
vol. 53, no. 1, pp. 3–39, 2011, doi: 10.1137/090757009.

[32] M. Mohammadi, Y. Noorollahi, B. Mohammadi-ivatloo, and H. Yousefi,
‘‘Energy hub: From a model to a concept—A review,’’ Renew. Sus-
tain. Energy Rev., vol. 80, pp. 1512–1527, Dec. 2017, doi: 10.1016/j.rser.
2017.07.030.

[33] MOSEK. (2019). The MOSEK optimization toolbox for MATLAB
Manual Version 9.0. [Online]. Available: http://docs.mosek.com/9.0/
toolbox/index.html

[34] K. R. Muske, ‘‘Steady-state target optimization in linear model predictive
control,’’ in Proc. Amer. Control Conf., vol. 6, 1997, pp. 3597–3601, doi:
10.1109/ACC.1997.609493.

[35] S. J. Qin and T. A. Badgwell, ‘‘A survey of industrial model predictive
control technology,’’ Control Eng. Pract., vol. 11, no. 7, pp. 733–764,
2003, doi: 10.1016/S0967-0661(02)00186-7.

[36] P. S. Ramesh, C. L. E. Swartz, and P. Mhaskar, ‘‘Closed-loop dynamic
real-time optimization with stabilizing model predictive control,’’ AIChE
J., vol. 67, no. 10, Oct. 2021, Art. no. e17308, doi: 10.1002/aic.17308.

66860 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.rser.2020.110504
http://dx.doi.org/10.11591/ijece.v8i3
http://dx.doi.org/10.1016/j.compchemeng.2013.07.015
http://dx.doi.org/10.1016/j.compchemeng.2013.07.015
http://dx.doi.org/10.1016/S0005-1098(99)00171-5
http://dx.doi.org/10.1021/bp00029a005
http://dx.doi.org/10.1016/S1570-7946(09)70220-2
http://dx.doi.org/10.1109/PES.2004.1372789
http://dx.doi.org/10.1016/j.jprocont.2014.03.010
http://dx.doi.org/10.1016/j.jprocont.2006.10.011
http://dx.doi.org/10.1016/j.jprocont.2006.10.011
http://dx.doi.org/10.1109/PESAFR.2005.1611778
http://dx.doi.org/10.1016/j.jprocont.2008.01.003
http://dx.doi.org/10.1016/j.envsoft.2019.07.007
http://dx.doi.org/10.1016/j.csite.2021.100900
http://dx.doi.org/10.1016/j.energy.2021.120415
http://dx.doi.org/10.1016/j.compchemeng.2017.10.026
http://dx.doi.org/10.1016/j.compchemeng.2017.10.026
http://dx.doi.org/10.1016/j.compchemeng.2017.06.006
http://dx.doi.org/10.1016/j.compchemeng.2017.02.037
http://dx.doi.org/10.1016/j.compchemeng.2017.02.037
http://dx.doi.org/10.1016/S1570-7946(02)80113-4
http://dx.doi.org/10.1007/978-3-540-72699-9_34
http://dx.doi.org/10.1007/978-3-540-72699-9_34
http://dx.doi.org/10.1109/ISIC.2014.6967645
http://dx.doi.org/10.1007/978-981-15-0806-6_3
http://dx.doi.org/10.1016/j.jprocont.2013.11.004
http://dx.doi.org/10.1137/090757009
http://dx.doi.org/10.1016/j.rser.2017.07.030
http://dx.doi.org/10.1016/j.rser.2017.07.030
http://dx.doi.org/10.1109/ACC.1997.609493
http://dx.doi.org/10.1016/S0967-0661(02)00186-7
http://dx.doi.org/10.1002/aic.17308


D. Pernsteiner et al.: Efficient Sensitivity-Based Cooperation Concept

[37] J. B. Rawlings, D. Angeli, and C. N. Bates, ‘‘Fundamentals of eco-
nomic model predictive control,’’ in Proc. IEEE 51st IEEE Conf. Decis.
Control (CDC), Dec. 2012, pp. 3851–3861, doi: 10.1109/CDC.2012.
6425822.

[38] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Santa Barbara, CA, USA: Nob Hill, Jan. 2009.

[39] D. Ritzberger, J. Höflinger, Z. P. Du, C. Hametner, and S. Jakubek, ‘‘Data-
driven parameterization of polymer electrolyte membrane fuel cell models
via simultaneous local linear structured state space identification,’’ Int.
J. Hydrogen Energy, vol. 46, no. 21, pp. 11878–11893, Mar. 2021, doi:
10.1016/j.ijhydene.2021.01.037.

[40] H. Sadeghi, M. Rashidinejad, M. Moeini-Aghtaie, and A. Abdollahi,
‘‘The energy hub: An extensive survey on the state-of-the-art,’’
Appl. Thermal Eng., vol. 161, Oct. 2019, Art. no. 114071, doi:
10.1016/j.applthermaleng.2019.114071.

[41] R. Scattolini, ‘‘Architectures for distributed and hierarchical model predic-
tive control—A review,’’ J. Process Control, vol. 19, no. 5, pp. 723–731,
May 2009, doi: 10.1016/j.jprocont.2009.02.003.

[42] D. Simon, Optimal State Estimation: Kalman, H∞ and Nonlin-
ear Approaches. Hoboken, NJ, USA: Wiley, 2006, doi: 10.1002/
0470045345.

[43] P. Tatjewski, ‘‘Advanced control and on-line process optimization in multi-
layer structures,’’ Annu. Rev. Control, vol. 32, no. 1, pp. 71–85, 2008, doi:
10.1016/j.arcontrol.2008.03.003.

[44] T. Tosukhowong, J. M. Lee, J. H. Lee, and J. Lu, ‘‘An introduc-
tion to a dynamic plant-wide optimization strategy for an integrated
plant,’’ Comput. Chem. Eng., vol. 29, no. 1, pp. 199–208, 2004, doi:
10.1016/j.compchemeng.2004.07.028.

[45] UN. (2015). Paris Agreement, United Nations Treaty Collection.
Accessed: Sep. 2, 2021. [Online]. Available: https://treaties.un.org/Pages/
ViewDetails.aspx?src=IND&mtdsg_no=XXVII-7-
d&chapter=27&clang=_en

[46] K. Van den Bergh, K. Bruninx, E. Delarue, and W. D’haeseleer. (2014).
A Mixed-Integer Linear Formulation of the Unit Commitment Problem.
Accessed: Sep. 2, 2021. [Online]. Available: https://www.mech.kuleuven.
be/en/tme/research/energy_environment/pdf/wpen2014-07-1.pdf

[47] H. Varella, M. Guérif, and S. Buis, ‘‘Global sensitivity analysis measures
the quality of parameter estimation: The case of soil parameters and a crop
model,’’ Environ. Model. Softw., vol. 25, no. 3, pp. 310–319, Mar. 2010,
doi: 10.1016/j.envsoft.2009.09.012.

[48] P. Vega, S. Revollar, M. Francisco, and J. M. Martín, ‘‘Integration of set
point optimization techniques into nonlinear MPC for improving the oper-
ation of WWTPs,’’ Comput. Chem. Eng., vol. 68, pp. 78–95, Sep. 2014,
doi: 10.1016/j.compchemeng.2014.03.027.

[49] A. Wasserburger, N. Didcock, and C. Hametner, ‘‘Efficient real driv-
ing emissions calibration of automotive powertrains under operat-
ing uncertainties,’’ Eng. Optim., pp. 1–18, Oct. 2021, doi: 10.1080/
0305215X.2021.1989589.

[50] M.Willis andM. Tham, ‘‘Advanced process control,’’ Dept. Chem. Process
Eng., Univ. Newcastle, Callaghan, NSW, Australia, Tech. Rep., Apr. 1994.
Accessed: Sep. 2021. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.462.7646&rep=rep1&type=pdf#page=2

[51] X. Wu, J. Shen, Y. Li, and K. Y. Lee, ‘‘Steam power plant configuration,
design, and control,’’Wiley Interdiscipl. Rev., Energy Environ., vol. 4, no. 6,
pp. 537–563, 2015, doi: 10.1002/wene.161.

[52] L. Würth, R. Hannemann, and W. Marquardt, ‘‘A two-layer archi-
tecture for economically optimal process control and operation,’’
J. Process Control, vol. 21, no. 3, pp. 311–321, Mar. 2011, doi:
10.1016/j.jprocont.2010.12.008.

[53] Y. Yang, Y. Zou, and S. Li, ‘‘Economic model predictive control of
enhanced operation performance for industrial hierarchical systems,’’
IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6080–6089, Jun. 2022, doi:
10.1109/TIE.2021.3088334.

[54] A. Zhakatayev, B. Rakhim, O. Adiyatov, A. Baimyshev, and H. A. Varol,
‘‘Successive linearization based model predictive control of vari-
able stiffness actuated robots,’’ in Proc. IEEE Int. Conf. Adv. Intell.
Mechatronics (AIM), Jul. 2017, pp. 1774–1779, doi: 10.1109/AIM.2017.
8014275.

[55] L. Zullo, ‘‘Computer aided design of experiments,’’ Ph.D. thesis, Dept.
Chem. Eng. Chem. Technol. (Imperial College Sci., Technol. Med.), Univ.
London, London, U.K., 1991.

DOMINIK PERNSTEINER received the master’s
degree in mechanical engineering, in 2018, and the
doctorate degree, in 2021. In his Diploma thesis,
he worked on the numerical modeling of fluidized
beds. In his Ph.D. thesis, he developed advanced
modeling, control, and observation concepts for
thermal energy systems. Since 2018, he has been
working as a Research Assistant with the Research
Unit for Control Engineering and Process Automa-
tion, Institute of Mechanics and Mechatronics,
Vienna University of Technology (TU Wien).

VERENA HALMSCHLAGER received the mas-
ter’s degree in process and chemical engineering,
in 2017, and the doctorate degree, in 2021. In her
Diploma thesis, she worked on the mathematical
description and experimental evaluation of carbon
dioxide transfer in a minimal ivasive liquid lung.
In her Ph.D. thesis, she developed an optimization
framework and grey-box modeling concepts for
industrial applications. Between 2018 and 2021,
she worked as a Research Assistant with the Indus-

trial Energy Systems Research Unit, Institute of Energy Systems and Ther-
modynamics, Vienna University of Technology (TU Wien).

ALEXANDER SCHIRRER received the M.S.
degree in mechanical engineering and the Ph.D.
and Habilitation degrees from the Vienna Univer-
sity of Technology (TU Wien), Vienna, Austria,
in 2007, 2011, and 2018, respectively. Since 2011,
he has been a Postdoctoral Researcher and a
Teacher of graduate-level lectures with the Insti-
tute of Mechanics and Mechatronics, TU Wien.
His research interests include modeling, simula-
tion, optimization, and control of complex and
distributed-parameter systems.

RENE HOFMANN is a Full Professor and the
Head of the Industrial Energy Systems Research
Unit, Institute for Energy Systems and Ther-
modynamics, Vienna University of Technology
(TU Wien). He has many years of experience and
publications in the field of thermal and indus-
trial engineering and gained industrial work expe-
rience as a Senior Process Engineer in research
and development at Josef Bertsch GmbH & Co.
KG, Austria. In 2019, he finalized his habilitation.

He teaches methods for modeling, simulation, and optimization of thermal
processes and components. His current research interests include design and
operational optimization of energy systems and digitalization aspects (digital
twins) for complex industrial and energy production systems.

STEFAN JAKUBEK received the M.S. degree in
mechanical engineering and the Ph.D. and Habil-
itation degrees from the Vienna University of
Technology (TU Wien), Vienna, Austria, in 1997,
2000, and 2007, respectively. From 2007 to 2009,
he was the Head of development for hybrid pow-
ertrain calibration and battery testing technology
with AVL List GmbH, Graz, Austria. He is cur-
rently a Professor and the Head of the Institute
of Mechanics and Mechatronics, TU Wien. His

research interests include model building; model reduction; and systems
analysis, optimization, and control.

VOLUME 10, 2022 66861

http://dx.doi.org/10.1109/CDC.2012.6425822
http://dx.doi.org/10.1109/CDC.2012.6425822
http://dx.doi.org/10.1016/j.ijhydene.2021.01.037
http://dx.doi.org/10.1016/j.applthermaleng.2019.114071
http://dx.doi.org/10.1016/j.jprocont.2009.02.003
http://dx.doi.org/10.1002/0470045345
http://dx.doi.org/10.1002/0470045345
http://dx.doi.org/10.1016/j.arcontrol.2008.03.003
http://dx.doi.org/10.1016/j.compchemeng.2004.07.028
http://dx.doi.org/10.1016/j.envsoft.2009.09.012
http://dx.doi.org/10.1016/j.compchemeng.2014.03.027
http://dx.doi.org/10.1080/0305215X.2021.1989589
http://dx.doi.org/10.1080/0305215X.2021.1989589
http://dx.doi.org/10.1002/wene.161
http://dx.doi.org/10.1016/j.jprocont.2010.12.008
http://dx.doi.org/10.1109/TIE.2021.3088334
http://dx.doi.org/10.1109/AIM.2017.8014275
http://dx.doi.org/10.1109/AIM.2017.8014275

