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ABSTRACT Assessment of Initial Coin Offerings (ICOs) is crucial for investment decisions in the ICO
market. Since most ICOs succeed in raising funds, failed ICOs must be discriminated against through
intelligent classification methods. In this context, this research proposes an intelligent decision model
for predicting ICOs’ success that merges both the Information Gain Directed Feature Selection (IGDFS)
technique as a features rank procedure to select the discriminative features representing the initial pool
of features for Genetic Algorithm (GA) to find the ICO’s optimal feature set and Fuzzy Support Vector
Machine for Class Imbalance Learning (FSVM-CIL) to tackle the problem of imbalanced classification.
Two benchmark datasets were used to examine the proposed hybrid model referred to as IGDFS-FSVM. The
experimental results reveal that the proposed model that employs an intelligent technique for ICO’s feature
selection outperforms state-of-the-art classifiers without features selection. In this regard, we conclude that
the proposed hybrid model is a practical approach to support investment decisions in the ICO market.

INDEX TERMS Initial coin offerings, fuzzy support vector machine, genetic algorithm, imbalanced
classification, feature selection.

I. INTRODUCTION
Initial Coin Offerings (ICOs) or token sales are smart
contracts on a blockchain that are used to obtain capital
by issuing coins or tokens. A blockchain is an open,
distributed ledger that can record transactions between two
parties efficiently and in a verifiable and permanent way [1].
In the case of ICOs, smart contracts are computer protocols
on current blockchains that automate transactions of the
subsequent form. Essentially, smart contracts replace the
intermediary, lowering the transaction costs for firms that
need to raise funds [2]. Though similar to crowdfunding
in their approach, an ICO’s peculiarity is selling tokens.
Tokens are cryptographically protected digital units of value
that offer benefit to investors in the form of a utility,
currency, or security function [3]. For example, utility
tokens can be used as a medium of exchange amongst
stakeholders on the ICO platform or can be used to buy
a product or service in the future. Alternatively, security
tokens act as investment resources and qualify their owners
for shareholdings, dividends, or alternate financial profits.
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Additionally, tokens can be traded publicly on a secondary
market once the ICO ends.

The significance of ICOs can be attributed to the fact
that ICOs have several privileges over traditional funding
methods. First, ICOs facilitate obtaining external funds at
close-to-zero transaction costs. ICOs enable disintermedi-
ation as they are blockchain-based smart contracts. The
intermediary’s margin can be redistributed as gains for all
platform users in the network. Second, the chance to list
issued tokens on token exchange platforms shortly after
concluding the ICO generates considerable market liquidity.
Liquidity helps attract investors that would otherwise avoid
investments with long lock-up periods. Moreover, investors
can benefit from a token price increase momentarily and
can observe the equilibrium price anytime. There is evidence
that ICO firms tend to underrate the token so as to attract
numerous prospective investors to deepen market liquidity,
which will eventually enhance platform success [2]. Third,
unlike traditional forms of funding, ICO investors are usually
stockholders and customers concurrently. Hence, ICOs assist
in capturing future market demand at an initial stage.
In addition, they help to generate customer commitment or
loyalty if they can gain from token price increases throughout
the development stage [4], [5].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58589

https://orcid.org/0000-0002-2503-5344
https://orcid.org/0000-0003-2723-1549
https://orcid.org/0000-0003-0621-9647


M. Gihan Ali et al.: Intelligent Model for Success Prediction of Initial Coin Offerings

Despite these advantages, ICOs have turned into a highly
controversial issue in the financial world [6]. Due to the
absence of regulation, they assist startups to raise funds, while
averting compliance costs and intermediaries. Contrarily,
being largely unregulated results in an increased investment
risk because of malignant behavior, as tokens often do
not have current counter-value and do not cause any legal
entitlement. For legitimate ventures, they offer equality in
crowdfunding, yet the absence of transparency, technical
understanding, and legitimacy induces deceitful actors to
initiate scam ICO ventures, leading to substantial losses to
individual investors and making the market for cryptofinance
subject to high-risk.

Although some studies have addressed the determinants
of ICO success, they have mostly employed statistical
models such as logit, probit, and ordinary least squares
regression in their empirical analyses. However, statistical
models are subject to several drawbacks. For example, they
are likely to be less accurate than machine learning-based
models, require a big dataset to attain good performance,
are highly sensitive and reactive to multicollinearity, have
high sensitivity to outliers, and need dataset to meet specific
restrictive assumptions [7]–[9]. In contrast, only a few studies
have developed a machine learning- based model to automate
the process of ICO success prediction.

Importantly, ICO success prediction involves a consider-
able number of features. Thus, a solution for dimensionality
reduction is necessary before searching for any intuitions
in the data. In particular, the objective of feature selection
is to address this issue by picking a minor segment of
related features from the original large feature set. Through
eliminating redundant and immaterial features, feature selec-
tion can reduce the dimensionality of the data, accelerate
the learning process, make the learned model simpler,
and/or boost the performance [10]. Feature selection can be
generally categorized into filter and wrapper methods [11].
The filter method is generally computationally efficient and
statistically scalable when there is a large set of features
under consideration [12]. However, the performance may be
low because it doesn’t take into account how the classifier
interacts with the features and doesn’t model how the features
depend on each other [13].

Wrapper-based feature selection approaches assess the
utility of feature subgroups for a specific classification
algorithm.This approach also accounts for the issue of
feature dependency. This approach also accounts for the issue
of feature dependency. As a result, the wrapper methods
typically include a searching procedure for a sound subset of
features and thus necessitate computational cost [11], [12].
To decrease the cost of computation, Jadhav et al. [14]
utilized information gain to direct the feature selection
primarily by eliminating features with small information
gain, and hence the wrapper method is executed on a reduced
space, and the time complexity is declined. Specifically, they
applied an information gain directed feature selection algo-
rithm (IGDFS) that ranks features depending on information

gain and disseminates the top m features using a genetic
algorithm (GA).

Several studies addressing ICO success prediction have
utilized imbalanced data (e.g., [15]–[18]). Moreover,
Sun et al. [9] suggested using imbalanced sampling as the
real-world data related to the ICO success prediction topic
is imbalanced. However, they suggested using techniques
for processing this imbalanced dataset. Handling imbalanced
datasets using a standard classifier tends toward the majority
data [19], where it assumes that the class distribution of the
training data is balanced [20]. Furthermore, the performance
measure of the standard classifier is provided with a higher
score in the majority class since it is adjusted using the
standard accuracy rate. Nevertheless, the significance of the
minority class is generally larger than the majority class in
imbalanced problems [21]. In addition, minority data is hard
to get and, if not properly classified, can result in significant
misclassification costs.

Numerous papers have demonstrated the merits of using
support vector machine (SVM) in various classification, as it
has high prediction accuracy and the capability to handle
small datasets while not being constrained by multicollinear-
ity and other statistical assumptions [7]. However, SVM
may yield suboptimal results when dealing with imbalanced
datasets. Specifically, a standard classification algorithm that
considers all training samples uniformly can generate amodel
that is biassed toward the majority class and has poor results
for the minority class. Besides, SVM is vulnerable to outliers
and noise in the data.

To address the issue of imbalanced data, the classifiers’
performance can be improved through class imbalance
learning approaches. These approaches consist of two
groups: internal approaches and external approaches. Internal
approaches amend the classification algorithms themselves
so as to be less sensitive to class imbalance. External methods
use the preprocessing of a dataset to make it balanced.
Regarding the issue of noise and outliers, Lin and Wang [22]
have utilized fuzzy support vector machines (FSVMs),
which is a variant of the SVM, to deal with the issue of
outliers and noise. However, FSVM can still be sensitive
to the problem of class imbalance like SVM. Significantly,
Batuwita and Palade [23] suggested a technique to upgrade
FSVMs for class imbalance learning (FSVM-CIL), that can
be utilized to deal with both the problems of class imbalance
and outliers/noise. In their suggested method, they assign
fuzzy-membership values to training examples so as to
decrease the influence of both of the previously mentioned
problems under the cost-sensitive learning principle.

A. MOTIVATION
The first motivation of this paper is to identify ICO success
determinants that can decrease the large investment risk
borne by investors using a careful evaluation of numerous
characteristics, such as the venture’s source code, white
paper, and social media. Identifying these determinants
and their influence on the ICO’s success enables investors

58590 VOLUME 10, 2022



M. Gihan Ali et al.: Intelligent Model for Success Prediction of Initial Coin Offerings

to evaluate ICOs more precisely despite the considerable
uncertainty that surrounds them, leading to better- informed
decision- making.

The second motivation for this paper is to develop a hybrid
machine learning-basedmodel to bypass the issues associated
with statistical models. A machine learning–based model can
add value to the cryptocurrency community in two facets.
First, it would bridge the gap in prior literature regarding
the design of reliable, automatic, and difficult-to- manipulate
systems to analyze and assess the performance level of ICO
projects. Second, a well-designed machine learning model
can provide early warning signs by integrating diverse kinds
of information regarding ICOs. Therefore, it can potentially
assist investors to identify fraudulent ICO ventures and make
rational investments in ICOs.

B. CONTRIBITION
Accordingly, there are numerous contributions to this
research. Firstly, the theoretical contribution of this research
is to determine ICO success factors by reviewing related
literature. Secondly, the practical contribution is through
offering a mechanism to automate ICO success prediction,
utilizing a hybrid machine learning model that is anticipated
to outperform statistical models. Finally, the technical contri-
bution of this paper is to further develop the prediction model
of ICO success via combining IGDFS with FSVM-CIL. This
integration is predicted to promote better informed decision
making.

The remainder of this research is arranged as follows.
Section II provides a brief overview of key related works;
Section III describes the proposed hybrid machine learning
model; Section IV discusses and analyses the empirical
findings; and Section V concludes the research.

II. RELATED WORK
Through low transaction charges similar to crowdfund-
ing [24], ICOs have become a substantial driver for financial
inclusion by unrestricted access to investments and funds.
Moreover, blockchain technologies can lower the entrance
barriers for new actors. In spite of the growing number of
ICOs in the last few years, there is an absence of a good
understanding of the determinants of their success. Such an
understanding is critical for ICOs to plan their blockchain-
based funding initiatives appropriately and enables prospec-
tive investors to search for major signs and driving factors of
current ventures. Furthermore, it can aid market participants
and regulators to understand how the present regulatory
framework is implemented on ICOs. To fill these knowledge
gaps, this paper reviews related literature on the success
factors of ICOs. Specifically, Table 1 demonstrates the
features determining ICO success based on related ICO
studies.

However, financial data commonly encompasses features
that are redundant and irrelevant [25]. The redundancy
and the deficiency in the dataset can decrease the predic-
tive accuracy and result in incorrect decisions [12], [26].

Feature selection eliminates irrelevant and redundant features
from data, hence increasing the classification accuracy and
decreasing the cost of computation [27], [28]. Due mainly
to the huge search space, feature selection is becoming a
more challenging task. Thus, an exhaustive search for the
optimal feature subset of a particular dataset is practically
unfeasible in the majority of situations. Various search
methods have been implemented in feature selection; for
instance, complete search, greedy search, heuristic search,
and random search. Nonetheless, many existing feature selec-
tion techniques are still subject to stagnation in local optima
and/or great computation cost [10]. Therefore, an efficient
global search method is required to better deal with feature
selection issues. Lately, great attention has been given by
the feature selection community to evolutionary computation
approaches as they are recognized for their global search
capacity.

More specifically, wrapper-based GA has turned out to
be the most established approach employed in the field
of feature selection, and it has revealed its efficiency in
numerous fields thanks to its capability to find good solutions
for complex searching and optimization problems [10], [14].
Nevertheless, the interpretation capacity of the prediction
power of every feature in the data is usually a requirement
in some applications, such as ICO investments. In these cir-
cumstances, a feature selection technique such as information
gain that returns a score, is superior to techniques that return
only a rank or a feature subset, where the feature significance
is not considered [29].

Toward that end, the authors in [14] presented a new tech-
nique for feature selection in credit assessment applications
that carries out the feature rank based on information gain
and propagates the top m features for the GA procedure
to select the optimal set. Thier approach uses information-
based ranking of features to decrease the feature set by
modifying the preliminary population pool of GA so that the
best individuals are picked. Furthermore, this measure is used
to guide the evolution of GA bymodifying the GA parameters
of population pool, crossover, and mutation.

Notably, only a few models have been developed for the
successful prediction of ICOs. For instance, a number of
studies [16], [18], [30], [31] analyzed the features explaining
the funding success of token offerings using logit models;
while other studies [38], [39], [42] applied probit regressions
to examine features predicting the success of ICOs; and
Perez, Sokolova, and Konate [43] attempted to explain the
role of digital social capital in ICO success by applying an
exploratory factor analysis to leverage the key latent features
and using structural equation modeling to test the hypotheses
and evaluate the model performance. Cerchiello, et al. [35]
used random forest to emphasize the more relevant predictors
and employed linear regression (LR) to differentiate between
successful, failed, and fraudulent ICOs.

As the ICO’s success prediction is similar to corporate
distress prediction and credit scoring, consequently, liter-
atures on the classification algorithms’ progress in these
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TABLE 1. Description of ICOs features.
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TABLE 1. (Continued.) Description of ICOs features.
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TABLE 1. (Continued.) Description of ICOs features.

fields is a promised model for the development of ICO
an success prediction model. A substantial concern that
relates to these areas is the implementation of imbalanced
classification. As an example, Sun et al. [44] used the
synthetic minority over-sampling technique (SMOTE) and
the bagging ensemble to predict financial distress based on
imbalanced data. They used the SVM as the base classifier
for this.

In this regard, SVM is an extensively used machine
learning algorithm that has been fruitfully employed for
numerous real-world classification issues in several domains,
because of its strong mathematical background, high gener-
alization power, and capacity to locate global classification
solutions [45], [46]. Nevertheless, it has been well-studied
that SVM can be susceptible to class imbalance [47]–[50],
i.e., the separating hyperplane of the SVM algorithm,
developed using imbalanced data, can be skewed toward the
minority (positive) class [48], [49]. This skewness generally
results in the generation of a large number of false-negative
predictions, which lowers the model’s predictive power on
the positive class in comparison to the predictive power on
the negative (majority) class. As mentioned earlier, there are
class imbalance learning (CIL) approaches that can be imple-
mented when developing SVM classifiers with imbalanced
datasets in order to decrease the influence of data imbalance.
Largely, these techniques can be divided into two categories:
external techniques and internal techniques [23], [50].

External techniques are independent from the learning
algorithm being applied, and they include preprocessing
of the training data to balance them prior to training the
classification algorithms. Various resampling techniques,
such as random and focused oversampling and undersam-
pling, are located in this group. For instance, SMOTE is
an oversampling method where new synthetic instances are
created in the neighborhood of the current minority-class
instances instead of directly replicating them [51]. Internal
methods handle modifications of a learning algorithm to
make it less susceptible to the class imbalance. For example,
Veropoulos et al. [47] have suggested an approach called
different error costs (DEC), where the SVM objective
function has been modified to allocate two misclassifica-
tion costs; through allocating a greater misclassification
cost for the positive (minority) class instances than the

negative (majority) class instances in order to reduce the
influence of class imbalance.

Recentlty, some significant research has been conducted
toward the integration of fuzzy logic and SVMs in diverse
ways, and the expression fuzzy SVMs (FSVM) has been used
to point to the majority of those different approaches. Lin
and Wang [22] applied a fuzzy membership value for every
training instance that is based upon the significance of that
instance in its class and reformulate the SVMclassifier so that
different input points can make different contributions when
locating the separating hyperplane. Wang et al. [52] added
to this method by giving two membership values for each
training example. These values determine which positive and
negative classes the example belongs to.

Moreover, there is a considerable amount of research on
how to allocate the fuzzy membership of FSVM. Dai [53]
evolved a fuzzy penalty in accordance with the distance
function and decaying function, and integrated a total margin
algorithm with SVM based on the penalty. Lee et al. [54]
altered weights in AdaBoost with a weak learner of weighted
SVM. The nearest neighbor concept has also been applied
to deal with the class imbalance problem. Ando [55]
employed class-wise weighting with nearest neighbor density
estimation and learned its weight parameters by convex opti-
mization. Fan et al. [56] suggested an entropy fuzzy support
vector machine (EFSVM) to deal with the issue of class
imbalance with the nearest neighbor entropy. Cho et al. [57]
introduced an instance-based entropy fuzzy support vector
machine (IEFSVM) that merges nearest neighbor entropies
that change in accordance with neighborhood size for every
data point, such that it can allocate the fuzzy membership by
reflecting all information of every instance efficiently.

Although the current CIL techniques present for SVMs
can overcome the class imbalance issue, they can still be
prone to the problem of outliers and noise. On the other
hand, FSVM can deal with the problem of outliers/noise;
but it can also suffer from the class imbalance problem.
Batuwita and Palade [23] presented an improvement to
FSVM, called FSVM-CIL, to surpass the issue of class
imbalance. In FSVMs, different membership values (or
weights) can be allocated to training instances in order to
reflect their different importance. Besides, they revealed
that this is similar to assigning different misclassification
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FIGURE 1. Block diagram of the proposed system.

costs for different training examples. Therefore, to reduce
the impact of class imbalance, higher misclassification costs
or higher membership values are allocated to the positive-
class examples, whereas lower misclassification costs or
lower membership values are allocated to the negative-class
examples.

III. METHODLOY
In this section, we first outline the dataset employed in this
study. Then, we introduce a hybrid model for investment
decisions in the ICOmarket. The block diagram that briefs the
key constituents of the suggested hybrid model is portrayed in
Fig.1. The model utilizes IGDFS to choose the optimal ICO
feature set and FSVM-CIL in the prediction of ICO success to
tackle the problem of imbalanced sampling. The system has
two major phases: the training and testing phases. The next
subsections discuss the system’s components in detail, with
clarification of the objective of each step.

A. DATASET DESCRIPTION
Two approaches exist for sampling for ICO success predic-
tion: balanced sampling and imbalanced sampling. In this
regard, the datasets used in this study are open source and
related to two published papers. The first dataset (dataset1)
is based on a sample collected and employed by Fahlenbrach
and Frattaroli [30]. This dataset is a hand-collected dataset
on token sales from primary sources such as whitepapers

or other documents published by issuers, archived issuer
websites, company announcements on social media, source
code on Github, company announcements on bitcointalk.org
message boards, and varied national commercial registers.
Table 1 defines the attributes selected from this dataset in
detail. This sample contains 306 ICOs. However, SMOTE
is utilized to increase the number of observations in the
minority class (failed ICOs), making the imbalance ratio
6 to 1. The final sample after implementing SMOTE is
351 observations. Features that have more than 30% missing
values are discarded. A median filter is applied to handle
missing values for the remaining features.

The second dataset (dataset 2) is based on a sam-
ple collected and employed by Cerchiello, et al. [35].
This dataset comprises 196 ICOs. Information is gathered
from web-based sources, mostly rating platforms such as:
icobench.com, TokenData.io, ICODrops.com, and Coin-
Desk.com. Table 1 defines the attributes chosen from this
dataset in detail. The imbalance ratio is 3 to 1 (success vs.
failed or scam ICOs).

B. FEATURE EXTRACTION
This step represents the main contribution of the research and
includes two stages: feature ranking and feature selection. It is
based on the features collected from previous studies shown
in Table 1.

C. FEATURE RANKING BASED ON INFORMATION GAIN
Firstly, the features are ranked in order of importance
to decision making and classification by measuring the
information gain. Several ways exist for feature scoring,
like information entropy, correlation, chi-squared test, and
Gini index [10], [11]. Entropy is one of numerous methods
to estimate diversity. The impurity of information can
be estimated via information entropy for quantifying the
uncertainty of forecasting the value of the goal feature [14].
Let y be a discrete random variable having two possible
outcomes. The binary entropy function H, expressed in
logarithmic base 2, i.e., Shannon unit, is defined:

H (y)=−p(+)log2p (+)−p(−)log2p (−) (1)

where (+, –) denote the classes, p(+) denotes the probability
that a sample y ∈ (+) and p(−) denotes the probability that
y ∈ (−). Entropy gauges the uncertainty of each variable in
the procedure of making decisions. The conditional entropy
of two events X and Y , when X has a value of x, can be
computed as:

H (Y |X) =
∑

xεX
px (x)H (Y |X = x)

= −

∑
xεX

px (x)
∑

yεY
px (y|x) log2px (y | x)

= −

∑
xεX

∑
yεY

pxy (x, y) log2py (y | x)

lim
x→0

x log2 (x) = 0 (2)

The lower the degree of impurity, the higher the skewness
of the class distribution. When the class distribution is
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uniform, the entropy and the misclassification error are
greatest. The lowest value of entropy is attained when all
the samples are members of the same class. Information
Gain (IG) is broadly applied to high- dimensional data to
assess the effectiveness of variables in classification. It is the
predicted volume of information, i.e., a decrease in entropy.
Specifically, the IG from a variable x is denoted by:

IG (y|x) = H (y)− H (y | x) (3)

Higher IG means better discriminative power for taking
decisions. IG is a good estimate to decide the relevance of
a variable for classification. The significance of variables
towards decision-taking in the model is established by
evaluating them using the IG measurement. Not all the data
attributes are generated evenly and not all of them contribute
evenly to the decision making. Therefore, it is possible to
sort the attributes in the order of their contribution in decision
making through listing the variables in a descendent order of
IG scores.

D. FEATURE SELECTION USING GENETIC ALGORITHM
The suggested model has to extract the best features that
optimize classification outcomes and highlight the discrep-
ancy among different classes. The optimization objective is
to discover the best likely solution or solutions to a problem,
regarding one or more criteria. Therefore, GA is used to pick
out the optimal ICO features and decrease the dimensionality
of the training dataset. Hence, the findings from the preceding
stage are integrated into the information directed feature
selection technique through GA.

GA is an adaptive mutation technique that performs
a heuristic search, inspired by the evolution process of
genetics. A population, consisting of competitive solutions,
is preserved. It is subject to selection, crossover, and mutation
to evolve and converge to the optimal solution. A parallel
search is executed on the solution space to find an optimal
solution while not getting stuck in a local optimum. GA can
be used to find good features in a high-dimensional space
because it can handle both the size of the search space and
the distributions of the features [63].

In the current research, IG is implemented to rank the
features and then uses the highest ranked features as an intail
population for GA procedure for optimal features selection.
GA utilizes the LR classifier as a fitness function. Generally,
the prerequisites for searching for an optimum solution in the
entire feature space involve a search engine with an initial
state, a state space, and a termination condition [64]. Given
n number of ranked features, the search space size is 2n − 1.
As every feature has two possible states: ‘‘1’’ or ‘‘0,’’ an n bit
string shall have 2n possible combinations. Assume τ features
that are not significant to decision-taking with regard to the
values of their information gains are removed. The length of
a binary string turns out to be n − τ . Even in the decreased
feature space (2n−τ ), a brute-force search for a big space of
2n−τ is yet unfeasible. Evidently, that decrease in space is
valuable for GA search. The GA components are:

1- Chromosome: GA preserves a diverse population
x1...n =< x1, . . . , xn > of n individuals xi, the
candidate solutions. The fitness of these individuals
is assessed through calculating an objective function
f (xi). These individual solutions are represented as
‘chromosomes’ that encompass the whole range of
possible outcomes. In this research, binary bit string
is utilized to represent a chromosome. The bit strings
that represent the genotype (abstract representation)
must be converted to phenotype (physical make-up),
i.e., feature index representation. The number n of bits
signifies the number of features. If the i-th bit is 1, the
feature xi is chosen in the subset, and if it is 0, the
feature xi is not chosen.

2- Selection operator: selection is the procedure of
assessing the fitness of individuals and selecting them
for reproduction. There are many methods to carry
out selection. A number of commonly employed
techniques include: tournament selection, roulette-
wheel selection, rank selection, hierarchical selection,
and elitist selection. The suggested model has utilized
tournament selection to pick adequately good individ-
uals for mating. It is efficient to code, works on parallel
architectures and allows the selection pressure to be
easily adjusted.

3- Crossover operator: a crossover operator produces two
offspring from the two chosen parent chromosomes
through the interchanging of portions of their genomes.
Crossover is the procedure of eliciting the best genes
from parents and reconstructing them into possibly
superior offspring. The simplest form of crossover
is single-point crossover. Other types are two-point
crossover, uniform crossover. A single point crossover
has been utilized in the current research. Using
1-point crossover means that offspring genomes will
be less diverse, they will be quite similar to their
parents.

4- Mutation operator: mutation keeps the genetic variation
of a population from one generation of chromosomes
to the subsequent generation and raises the potential of
the algorithm to produce fitter individuals. With minor
mutation likelihood, a character at every position in the
string is altered randomly. Mutation of bit strings flips
the bits with a small probability in random positions.
Uniform mutation has been utilized in the current
research.

5- Elitism: elitism ensures that the fittest members are
transmitted to the subsequent generation. The top
individual or a set proportion of the best fit members
exists to the subsequent generation. Low elitism in
comparison to the size of the population results in
a good balance between variation and non-overfitting
conditions. Large elitism makes the best-fit individuals
predominate in the population, leading to ineffectual
search. The current research ensures that two elite
offspring subsist into the subsequent generation.
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6- Diversity: population diversity is a substantial element
affecting the performance of the genetic search. Diver-
sity guarantees that the solution space is appropriately
explored, specifically in the earlier stages of the
process of optimization. Very small diversity leads to
the premature convergence of GA. The initial range
of the population and the mutation amount impact
the population’s diversity. This research has used
tournament selection and uniform mutation in the GA
evolutionary procedure.

7- Termination criteria: three potential termination criteria
might be utilized for the GA: attaining a satisfactory
solution, achieving a predetermined maximum number
of generations, the convergence of the population
to a particular level of genetic diversity [65]. The
algorithm convergence is sensitized to the mutation
probability: a very largemutation ratio averts the search
from convergence, while a very small ratio leads to
premature convergence of the search. The maximum
number of generations is employed as the termination
criterion in the current research.

8- Fitness function: a fitness function assesses the good-
ness of every individual in the population in every
generation compared to the optimization criterion.
To create the subsequent generation, the best-fit indi-
viduals are permitted to reproduce via the established
crossover and mutation rate. In the current research,
linear regression (LR) is employed as the induction
algorithm for fitness evaluation.

Suppose g(x) is the mapping function of machine learning
algorithm. Given an x, the state of the goal feature can be
assessed, i.e. y = g(x). Suppose A is the accuracy achieved
through the classification algorithm. It can be evaluated using
the function: A = ϕ (Ŷ,Y), where Y is the list of goal states,
and Ŷ is the list of predicted goal states for the whole test
points. As classification accuracy is utilized as the fitness
value f , then:

f = (g (x) |D,Y ) (4)

where D is the test set. The GA method with LR is indicated
as GA-LR. Algorithm 1 gives the operational steps of the
suggested approach of Information Gain Directed Feature
Selection (IGDFS).

E. CLASSIFICATION USING FSVM-CIL
Classification is the decision-making process that makes use
of the features extracted from the prior stage. The classifier is
taught with the training data and then tested with the testing
data to recognize the different classes. The suggested model
utilizes the FSVM-CIL classifier. FSVM-CIL is an SVM
classifier that weighs every data point in a different way so
as to accurately classify some significant training examples.
If FSVM-CIL is implemented on the imbalanced dataset,
it can increase the significance of the minority class data
through assigning a larger weight for the minority class.

Algorithm 1 Information Gain Directed Feature Selection.
1: Measure Information Gain of individual features from
the dataset
2: Rank the features In the dataset according to their
Importance F = (f1 > f2 > f3, . . . .)
3: Input Top m feature set Fr and class label C
4: Output S
5: S ← null
6: Procedure GA
7: Input: PopSize Ps, GenSize, GenomeLength N,
ProbMutation Pm

8: Output: The best individual in all generations
9: Initialize: Population: Ps∗N
10: Retain f1 from Fr
11: Ps← random binary chromosomes
12: For each chromosome do
13: Compute fitness function LR;
14: End for
15: Repeat
16: Select parents p1, p2 from population based on

its fitness;
17: For all new children do
18: retain f1 from Fr ;
19: Crossover pl, p2;
20: Mutate each gene in new child chromosome with

probability Pm;
21: End for
22: Evaluate fitness of new individuals
23: Replace least-fit population with new best

individuals
24: Until Stopping Criteria
25: End procedure

In the current study, we regard the FSVM model, which
was initially suggested by the authors in [22], as a solution to
the issue of outliers and noise. The FSVM model considered
uses fuzzy-membership functions to determine a different
misclassification cost for every training pattern. The normal
SVM-learning algorithm considers all the training points
uniformly, and thus, it may be sensitized to outliers and
noise [66], [67].

The FSVM sets different fuzzy-membership values mi (or
weights) for different instances to reflect their significance to
their own class, where more significant instances are allotted
higher membership values, whereas the less significant ones,
like outliers and noise, are allotted lower membership values.
The SVM soft-margin optimization problem is reformulated
as follows:

Min

(
1
2
w.w+ C

l∑
i=1

miεi

)
s.t. yi (w.8(x i)+ b) ≥ 1− εi

εi ≥ 0, i = 1, . . . . . . l. (5)

8(x i) is denote the corresponding feature space vector. The
membership mi of a data point xi is integrated into the
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objective function, and thus, a lower mi could decrease
the influence of the parameter εi in the objective function,
where the corresponding xi is treated as less important.
In another view, if we regard C as the cost allocated for a
misclassification, then each instance is allocated a different
misclassification cost value miC , so that more significant
instances are allocated higher costs, while less significant
instances are allocated lower costs. Therefore, SVM can
locate a more robust hyperplane through maximizing the
margin by allowing some misclassification of less-important
instances, like outliers and noise. For solving the FSVM
optimization problem, Eq.(5) is converted into the subsequent
dual Lagrangian [22]:

Max W (∝) =

l∑
i=1

∝i −
1
2

l∑
i=1

l∑
j=1

∝i ∝jyiyjK (xi.xj)

s.t.
l∑
i=1

yi ∝i= 0, 0 ≤∝i≤ C, i = 1, . . . . . . ..l. (6)

K (xi.xj) is a function called kernel that can compute the dot
product of the data points in feature space. The FSVMmodel
has been successfully implemented to decrease the impact of
outliers and noise in diverse domains with different means of
setting fuzzy-membership values (see [53]–[57]). However,
it can still be subject to the issue of class imbalance since
there is no modification in the FSVM model in comparison
to the original SVM to make it less sensitized to class
imbalance. Hence, FSVM-CIL was introduced to overcome
the issue of class imbalance. In the suggested FSVM-CIL
technique, the membership values for training samples are
allocated in such a manner to fulfil the following two
objectives: (1) suppressing the influence of class imbalance,
and (2) reflecting the within-class significance of different
training examples so as to repress the influence of outliers
and noise.

Let m+i denotes the membership value of a positive-class
example x+i , while m

−

i denotes the membership of a negative
class example x−i in their own classes. In the suggested
FSVM-CIL technique, these membership functions are
denoted as follows:

m+i = f
(
x+i
)
r+ (7)

m−i = f
(
x−i
)
r− (8)

where f (xi) outputs a value between 0 and 1, which
represents the significance of xi in its own class. Moreover,
the values for r+ and r− are allocated so as to represent
the class imbalance, such that r+ > r−, Hence, a positive-
class example can take a membership value in the

[
0, r+

]
interval, whereas a negative-class example can take a
membership value in the

[
0, r−

]
interval. This way of

assigning membership values can be used to deal with both
class imbalance and outliers/noise at the same time.

IV. EXPERIMENTAL RESULTS
In this part, we first show the chosen features and the exper-
imental set-up. Secondly, for comparison, we implement

several imbalanced classification algorithms, including the
suggested hybrid IGDFS-FSVM.

A. EXPLANATORY DATA ANALYSIS
The ICO success or failure is utilized as the dependent
variable for the imbalanced classification algorithm. Dataset
1 comprises a group of 57 features. Applying GA leads to
select15 features, whereas applying IGDFS leads for select-
ing 10 features. Dataset 2 involves a group of 22 features.
Applying GA leads for selecting 8 features, whereas applying
IGDFS leads to select 4 features. The selected features are
demonstrated in Table 2.

B. EXPERIMENTAL SET-UP
1) PARAMETERS FOR CLASSIFICATION METHODS
For the sake of demonstrating the efficacy of the suggested
FSVM-CIL in predicting ICO success, a comparison is made
between it and several state-of-the-art algorithms, including
Easy Ensemble [58], cost-sensitive adaptive boosting (cs-
AdaBoost) [59], cost-sensitive Random Forest (cs-RF) [60],
random under-sampling boosting (RUSBoost) [61], and
balanced bagging. The basis of the comparison is the
prediction accuracy, besides three other measures, precision,
and recall. AUC is utilized as a general evaluation criterion
for imbalanced classification whereas precision and recall are
additional ratios to examine if an imbalanced classification
exhibits a decent performance in ICO evaluation [62]. For
SVM-based learning machines, the radial basis function
kernel is employed. For the FSVM procedure, the gaus-
sian_kernel is used. For FSVM, the regularization parameter
C is set at 50, gamma is set at 0.00001, and sigma is set at
3. See [22] for FSVM parameters configuration. The data is
split into 80% training and 20% testing. Table 3 is a confusion
matrix that visualizes the classification performance.

- Accuracy is the ratio of correctly classified firms.
It is one of the most extensively employed evaluation
metrics.

Overall Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

where TP, TN, FP, and FN respectively represent true
positive, true negative, false positive, and false negative.
TP is the number of correctly classified failed ICOs. TN
is the number of correctly classified successful ICOs.
FP is the number of successful ICOs misclassified as
failed. FN is the number of failed ICOs misclassified as
successful.

- Precision Score is the number of classified failed ICOs
which actually failed.

Precision =
TP

TP+ FP
(10)

- Recall Score gauges how well a classification algorithm
can identify failed ICOs. It is also known as the
sensitivity metric. A classification algorithm with a
greater TP ratio is more valuable to investors in
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TABLE 2. The selected features set.

minimizing their possible investment loss.

Sensitivity =
TP

TP+ FN
(11)

- Area under ROC curve (AUC): The AUC of a clas-
sification algorithm is equal to the likelihood that the
classification algorithm will rank a randomly selected
positive example higher than a randomly selected
negative example. Then, AUC is employed as a com-
parison metric for the classification performance of
every learning machine [68]. AUC can be delineated as
follows.

AUC =
(1+ TPrate − FPrate)

2
(12)

where TPrate and FPrate are the percentage of positive
examples that are correctly classified and the percentage
of negative examples that are incorrectly classified.

C. ANALYSIS OF EXPERIMENTAL RESULTS
Table 4 demonstrates the confusion matrix of the prediction
outcomes of the FSVM-CIL classifier implemented on
various feature sets. For dataset 1, applying FSVM-CIL on

TABLE 3. Confusion matrix.

the entire feature set yields a 11.27% prediction error in the
minority class. On the contrary, the application of FSVM-CIL
on features selected by GA or features selected by IGDFS
results in no prediction errors. For dataset 2, applying
FSVM-CIL on the entire feature set yields a 12.5% prediction
error on the majority class and a 5% prediction error in
the minority class. On the contrary, applying FSVM-CIL on
features selected by GA or features selected via IGDFS yields
only a 2.5% prediction error in the majority class.

Table 5 gives full statistics of the performance measures
for the suggested hybrid IGDFS-FSVM algorithm in com-
parison with several state-of-the-art classifiers addressing
imbalanced data, SVM-based learning machines, and a
hybrid GA-FSVM. For dataset 1, the suggested model is
superior to all other algorithms. More specifically, hybrid
IGDFS-FSVM and hybrid GA-FSVM attain the best perfor-
mance (100%) in all measures. Nevertheless, the suggested
hybrid IGDFS-FSVM model relies on fewer features (10 vs.
15) in comparison with the hybrid GA-FSVM to attain
equivalent performance.

Taking a closer look at Table 5, the accuracy of the
eight other algorithms is in the range of 84.5% to 98.59%,
and AUC is in the range of 50% to 97.58%. The second
best model following the hybrid models with regard to
accuracy is RUSBoost, which achieves an accuracy of
98.59% and an AUC of 94.4%. Balanced Bagging attains
better outcomes than RUSBoost regarding AUC (97.58%)
because of maximum recall and accurate prediction of all
observations in the failed class. While Cs-AdaBoost and
Cs-RF have almost equal accuracy (97%), Cs-AdaBoost has
a higher AUC (93.6% vs. 88.8%) because of poor recall
of Cs-RF. In contrast, SVM and Cs-SVM have the poorest
performance in all measures, where they act as dummy
classifiers and cannot recognize failed ICOs (0% recall),
maximizing losses for potential investors.

Similarly, for dataset 2, the suggested model outperforms
all other algorithms except for the hybrid GA-FSVM. Sig-
nificantly, both hybrid IGDFS-FSVM and hybrid GA-FSVM
yield accuracy of 97.5%, AUC of 98.48%, precision of
87.5%, and recall of 100%. Nevertheless, the suggested
hybrid IGDFS-FSVM model relies on fewer features (4 vs.
8) than the hybrid GA-FSVM. The accuracy of the eight
other algorithms is in the range of 82.5% to 92.5%, and
AUC is in the range of 78% to 96.96%. More specifically,
Balanced Bagging performs second best subsequent to the
hybrid algorithms, achieving an accuracy of 95% and an
AUC of 96.96%. While Easy Ensemble, Cs-AdaBoost, and
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TABLE 4. Confusion matrix for the prediction results of fsvm-cil using various sets of features.

TABLE 5. Comparison between classifiers and the proposed hybrid igdfs-fsvm.

TABLE 6. The improvement ratio of the proposed hybrid igdfs–fsvm compared with other classifiers.

Cs-RF have equal accuracy of (92.5%) andAUC of (95.45%).
These models have zero misclassifications in the minority
class (failed class), achieving 100% recall but only 70%
precision. In contrast, SVM, Cs-SVM, as well as FSVM have
the poorest performance among all models.

Furthermore, the superiority of the suggested model is
demonstrated in Table 6, which outlines the decreased
error rates when comparing the suggested model with other
classifiers. For dataset 1, the accuracy improved by about
1.41% to 15.5%, and the AUC was improved by about
2.42% to 50%. For precision score, the proposed model
obtained higher results than other classifiers except for
Cs-RF, RUSBoost, and FSVM-CIL. For recall score, the

suggested model obtained superior results than all algorithms
except Balanced Bagging.

Similarly, for dataset 2, the accuracy improved by about
2.5% to 15%, and the AUC improved by about 1.52% to
20.48%. For precision score, the suggested model outper-
formed all other classifiers. For recall score, the suggested
model obtained superior results than FSVM-CIL. The results
indicate that the suggested model more precisely predicts
observations in the majority class (success) in comparison
with other algorithms. Collectively, it can be concluded
that the suggested hybrid model is a plausible and robust
classification algorithm with the highest performance on all
measures.
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V. CONCLUSION
This study presents a hybrid intelligent model for forecasting
the success/failure of ICOs. We first apply IGDFS to
select the optimum features, and thereafter, implement the
FSVM-CIL classifier to differentiate failed and successful
ICOs in two imbalanced datasets. The use of information
gain to direct GA in feature selection reduces the number
of features chosen while maintaining the same level of
performance.

To demonstrate the efficacy of the suggested IGDFS-FSVM
system, we compared it with several imbalanced classifier
benchmarks. The classification results reveal that the
suggested IGDFS-FSVM outperforms other classifiers. The
performance of IGDFS-FSVM is equal to that of GA-FSVM
in all evaluation measures. However, IGDFS-FSVM selects
fewer features from both datasets. Considering that the ICO
success prediction issue in the FinTech market separates the
minority class from the majority class, we infer that the
utilization of IGDFS-FSVM is successful since it improves
the classification performance and well detects failed ICOs.
Based on empirical findings, we draw the conclusion that
the hybrid IGDFS-FSVM model can be utilized as a decent
classifier for ICO investment decisions. Future work includes
utilizing other types of optimization for features selection
process.
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