
Received May 2, 2022, accepted May 19, 2022, date of publication May 26, 2022, date of current version June 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3178301

Security Assurance Model of Software
Development for Global Software
Development Vendors
RAFIQ AHMAD KHAN 1, SIFFAT ULLAH KHAN 1, MUSAAD ALZAHRANI 2,
AND MUHAMMAD ILYAS 1
1Software Engineering Research Group, Department of Computer Science and IT, University of Malakand, Chakdara 18800, Pakistan
2Department of Computer Science, Albaha University, Albaha 65799, Saudi Arabia

Corresponding author: Rafiq Ahmad Khan (rafiqahmadk@gmail.com)

This work was supported in part by the Department of Computer Science & IT, University of Malakand, Chakdara, Pakistan, and in part by
the Department of Computer Science, Albaha University, Albaha, Saudi Arabia.

ABSTRACT The number of security attacks and the impact has grown considerably in the recent several
years. As a result, new emerging software development models are required that assist in developing software
that is secure by default. This article reviews themost widely used security softwaremodels. It proposes a new
Security AssuranceModel (SAM) for Software Development that is adaptable to all contemporary scenarios,
emphasizing global software development (GSD) vendor companies. The SAM of Software Development
was developed after studying 11 well-known development models and analyzing results obtained from a
systematic literature review (SLR) and questionnaire survey. The SAM of Software Development consists
of seven security assurance levels: Governance and Security Threat Analysis, Secure Requirement Analysis,
Secure Design, Secure Coding, Secure Testing and Review, Secure Deployment, and Security Improvement.
The security assurance levels of SAM of software development consist of 46 critical software security
risks (CSSRs) and 388 practices for addressing these risks. The proposed SAM of Software Development
was assessed based on a tool created by Motorola, which is used to evaluate the present state of a company’s
software processes and find areas for improvement. We conducted 3 case studies on software development
companies, using data from real software projects to examine the results of a practical experiment in each
company. The results of the case studies indicate that the proposed SAM of Software Development helps
measure the security assurance level of an organization. In addition, it can potentially serve as a framework
for researchers to develop new software security measures.

INDEX TERMS Secure software engineering, software development life cycle, global software develop-
ment, systematic mapping study, systematic literature review, questionnaire survey, case study, security risks
and practices.

I. INTRODUCTION
Security for software has become increasingly important
since hacking and other attacks on computer systems have
grown in popularity in the last few years. As a result, several
researchers have examined security solutions as early as the
requirement engineering phase. With the growth of the soft-
ware business and the Internet, people are paying increasing
attention to software system security. Managers and users of
software systems may suffer enormous losses if the system’s
sensitive data is exposed or hacked and rendered inoperable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Weizhi Meng .

To incorporate security into the software engineering
paradigm, it should be considered from the start of the SDLC
[1], [2]. Secure software engineering (SSE) is the process of
designing, building, and testing software so that it becomes
secure; this includes secure SDLC processes and secure soft-
ware development (SSD) methods [3]–[5]. Most enterprises
typically view security as a post-development procedure [6].
No consideration is given to security before development [7].

Khan [8] stated that as software development becomes
more complex, distributed, and concurrent, security issues
greatly influence software quality. Insecure software harms
an organization’s reputation with customers, partners, and
investors; it increases costs, as companies are forced to repair
unreliable applications; and it delays other development

58458 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5983-9981
https://orcid.org/0000-0003-0339-7915
https://orcid.org/0000-0002-6585-4483
https://orcid.org/0000-0003-2531-6485
https://orcid.org/0000-0003-4384-5786


R. A. Khan et al.: SAM of Software Development for GSD Vendors

efforts as limited resources are assigned to address cur-
rent software deficiencies [8]. Most software programs
are designed and deployed without attention to protection
desires [9], [10].

Hidden attacking risks within or outside the organiza-
tion emerge day by day, resulting in substantial financial
loss and confidentiality and credibility losses by putting
the availability and integrity of organizational data at
risk [11], [12]. Numerous methodologies for assessing
software quality have been developed, including the fol-
lowing: ‘‘CMMI’’, ‘‘Microsoft Software Development Life
Cycle (MS-SDL)’’, ‘‘Misuse case modeling’’, ‘‘Abuse case
modeling’’, ‘‘Knowledge Acquisition for Automated Spec-
ification’’, ‘‘System Security Engineering-Capability Matu-
rity Model (SSE-CMM)’’, ‘‘OWASP’’, and ‘‘Secure Tropos
Methodology’’ [13].

The common phases of SDLC include requirement, design,
coding, testing, deployment, and maintenance [14]. The final
product will not be secure if security is not considered in all
phases of the SDLC. This is only possible if a secure SDLC
process is followed; secure SDLC ensures that security-
related activities are an integral part of the overall develop-
ment effort [15]–[17].

The literature [18]–[21] shows that the software indus-
try has implemented numerous software security techniques,
approaches, and solutions. There are a variety of maturity
models available for evaluating software security processes,
and many firms use these. However, our systematic mapping
study [22], [23] revealed several limitations in the existing
software security models. None of these is committed explic-
itly to identifying security risks and their practices in each
phase of the SDLC. For global software development (GSD)
vendor businesses, none of the existing models encompasses
all components and activities of a secure SDLC. GSD vendor
companies must be aware of the security threats while pro-
ducing secure applications and risk mitigation techniques to
ensure the SDLC’s integrity. To increase their SDLC secu-
rity, GSD vendors will measure their level of maturity and
assurance. It will also make GSD engineers more aware of
the issue.

This paper aims to develop a secure SDLC and Security
Assurance Model (SAM) of Software Development for GSD
vendor organizations to specify the requirements for secure
software development better. As a result, GSD vendors will
assess their level of security assurance and capacity to pro-
duce more secure software. To accomplish this, we investi-
gate the following research questions (RQs):

RQ1: How can a secure SDLC be developed for GSD
vendor companies that are both practical and robust?

RQ2: Is the proposed security assurance model capable
of assisting GSD organizations in determining their security
assurance to produce secure software?

This paper is organized as follows: Section II includes
an overview of the relevant work and its summary.
Section III goes into detail on how the study was con-
ducted. Section IV presents a secure SDLC for GSD vendor

businesses. Section V outlines the proposed SAM for soft-
ware development and the security assurance levels. The
validation of the model using case studies is presented
in Section VI. Section VII highlights the limitations of the
study. Section VIII concludes with a discussion of the find-
ings and directions for future research.

II. LITERATURE REVIEW
A review of software security research and maturity models
is presented in this section:

A. SOFTWARE SECURITY
Let’s a look at some of the concepts about software security
that have been discussed in the literature:
• ‘‘Software security is the software’s ability to resist, tol-

erate and recover from events that intentionally threaten
its dependability [24]’’.

• ‘‘Software security is about building secure software:
designing software to be secure, making sure that soft-
ware is secure, and educating software developers,
architects, and users about to build secure things [25]’’.

B. SECURE SOFTWARE DEVELOPMENT PROCESS
There are many different ways to include security into the
software development lifecycle (SDLC), and this section
explains some of the most prevalent security techniques
employed in these methodologies:
• McGraw [24], [26] recommends seven touchpoint

operations (Abuse cases, Security requirements, Archi-
tectural risk analysis, code review and repair, Pene-
tration testing, and security operations) for creating
secure software, all of which are connected to software
development artefacts.

• Gupta et al. [27] developed Team Software Process for
Secure Software Development (TSP) specifically for
software teams to help them create a high-performance
team and prepare their work to produce the best
results.

• Flechas et al. [28] developed AEGIS (Appropriate and
Effective Guidance for Information Security). It first
evaluated device assets and their relationships, then
moved on to risk analysis, definingweaknesses, threats,
and risks.

• Subedi et al. [29] present a security paradigm
that extends security development practices in agile
methodology to overcome this problem in web appli-
cation development.

• Sodiya [30] developed the Secure Software Devel-
opment Model (SSDM), which provides training to
stakeholders in software development with adequate
security education.

• Al-Matouq et al. [15] designed a framework Secure
Software Design Maturity Model (SSDMM), and the
results show that SSDMM helps measure the maturity
level of software development organizations.

VOLUME 10, 2022 58459



R. A. Khan et al.: SAM of Software Development for GSD Vendors

C. SOFTWARE MATURITY MODELS
Different models for assessing the maturity of software prod-
ucts have been created and implemented:

• The Software Engineering Institute (SEI) at Carnegie
Mellon University developed the Capability Maturity
Model Integration (CMMI) [31] process model, which
assists companies measure and improving their devel-
opment processes while also delivering high-quality
products.

• Alshayeb et al. [32], [33], proposed a framework
to evaluate the maturity of software products called
Technical-CMMI (T-CMMI).

• Eckert et al. [34] developed a model to measure the
maturity level of Inner Source implementation, which
is the process of adopting open-source software devel-
opment practices for the internal development activities
of an organization.

• Al-Qutaish and Abran [35] proposed the Software
Product Quality Maturity Model (SPQMM), which
measures the quality of a software product.

• The EuroScope consortium [36] developed a model
to assess software product quality called the SCOPE
Maturity Model (SMM).

• April et al. [37] proposed the Software Mainte-
nance Maturity Model (SMmm), based on the CMMI,
to assess and improve the quality of software mainte-
nance activities.

• Da Silva and de Barros [38] presented an information
security maturity model for software developers based
on ISO 27001; it was evaluated by subject experts
and utilized to measure the maturity level of several
organizations.

D. SECURITY IN SDLC PHASES
This section presents some well-known secure software mod-
eling processes that include security in software development
phases:

• S. R. Ahmed [39] identified security activities that
should be performed to build secure software and has
shown how the security activities are related to usual
activities in different phases of software development.

• Essafi et al. [40] developed the Secure Software
Development Process Model (S2D-ProM), a strategy-
oriented process model that offers guidance and
support to developers and software engineers, from
beginners to experts, to build secure software.

• Niazi et al. [41] conducted a systematic litera-
ture review (SLR) to pinpoint the required practices
for developing secure software and identifying best
requirement practices; a framework for secure require-
ment engineering named Requirements Engineering
Security Maturity Model (RESMM) was developed.

• Manico [42], designed the Comprehensive,
Lightweight Application Security Process (CLASP),
which consists of 24 high-level security activities that

can be entirely or partially integrated into software
during the SDLC.

• The Building Security In Maturity Model (BSIMM)
[43] quantifies numerous businesses’ security activities
and provides a common foundation for comparing their
security endeavours. There are 119 activities in the
BSIMM 10 software security framework. These activ-
ities are divided into twelve practices. Each practice’s
exercises are divided into three maturity levels.

• The Open Web Application Security Project (OWASP)
created the Software Assurance Maturity Paradigm
(SAMM) [42], which is a non-commercial model and
is an open platform that aids software companies in
developing and implementing software security poli-
cies. It contains resources that can help a business
assess its software security practices, develop a bal-
anced software security assurance program, and show
improvement programs.

E. SUMMARY
Recent software security research has concentrated on
offering technical solutions for security concerns; however,
a limited study examines security policies and processes in
the SDLC’s various phases. Little research has been con-
ducted to increase organizational maturity and assurance in
secure software development.
Despite the importance of identifying software security

risks and practices for addressing these risks in all the phases
of SDLC, there is no maturity, readiness, assurance, or secure
model for GSD vendor organizations that has been proposed.
Furthermore, multiple methodologies and strategies have
been established by various researchers; however, industry
developers have not adopted them. Existing industry matu-
rity, readiness, and assurance frameworks do not consider the
security procedures and techniques described in the literature.
GSD vendor organizations need to be more aware of the

security risks during the software development process. They
need to read up on the literature and follow industry best
practices. This will help that the project goes well and is
secure.

III. RESEARCH METHODOLOGY
We used a seven-step methodology to meet the study’s goals;
we also gathered information from the academic community
and the software business, as depicted in Figure 1.

A. SYSTEMATIC MAPPING STUDY (SMS)
The acquired data is more reliable because of this evidence-
based methodology. The following sections go over each of
these steps in-depth:
SMS is a literature study that focuses on selecting and

combining all high-quality research related to a specific topic
and provides a complete summary of current texts appli-
cable to specific map queries [44]. Additionally, it finds
gaps in existing subject areas and forecasts future research
trends [45]–[47].

58460 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

FIGURE 1. Research methodology.

The primary purpose of the first step (conducting SMS)
of this study is to know what is the state-of-the-art in
secure software engineering (SSE) [22], [23]. The final selec-
tion was among 116 studies that met the inclusion and
exclusion criteria [22], [23]. The SMS findings were catego-
rized based on the quality assessment, software security pro-
cesses/models/frameworks/methods, security stages of the
SDLC and the publication venue, and SWOT analysis of the
software security approaches [22], [23].

After reviewing the studies, we discovered 37 SSE
paradigms, frameworks, and models [22], [23]. The find-
ings indicate that the following SSE frameworks/models
are the most frequently employed: ‘‘Microsoft Software
Development Life Cycle (MS-SDL)’’, ‘‘Misuse case model-
ing’’, ‘‘Abuse case modeling’’, ‘‘Knowledge Acquisition for
Automated Specification’’, ‘‘System Security Engineering-
Capability Maturity Model (SSE-CMM)’’ and ‘‘Secure
Tropos Methodology’’ [22], [23].

This study’s findings suggest that this field is still in its
infancy. It is necessary to conduct sufficient research, mainly
focusing on empirically validated solutions, to identify soft-
ware security risks and strategies for managing these risks at
each stage of the software development lifecycle (SDLC).

B. SYSTEMATIC LITERATURE REVIEW (SLR)
‘‘An SLR is a secondary study in which primary studies are
examined impartially and iteratively to define, interpret, and
discuss evidence relevant to the research questions’’ [45].
SLR was used in the second phase of this study to clas-
sify the selected articles for identifying security risks and
practices [48]. A total of 121 papers were selected via the
tollgate technique [49] based on the inclusion, exclusion, and

quality rating criteria. Khan et al. [48] identified 145 security
risks and 424 best practices that help software development
organizations to manage security throughout the SDLC.

C. QUESTIONNAIRE SURVEY
An online questionnaire survey using Google Docs was cre-
ated to validate the SLR findings and discover other secu-
rity risks and their practices. The questionnaire methodology
is more effective than other observational methods because
it allows for a larger population to be targeted for data
gathering [50]–[58].

In the 3rd stage of this study, an online survey method is
employed for data collection [59]. The following steps were
used in the questionnaire survey:

1) DEVELOPMENT OF QUESTIONNAIRE SURVEY
The questionnaire primarily consists of closed-ended ques-
tions designed to extract specific information from experts.
There are a few open-ended questions in the questionnaire
to remove any other software security-related risks and prac-
tices that were not identified by the SLR. We employed a
five-point Likert scale to obtain survey participants’ obser-
vations regarding the software security risks and its practices
listed in the closed-ended section, i.e., ‘‘strongly agree, agree,
neutral, disagree, and strongly disagree.

2) PILOT OF QUESTIONNAIRE SURVEY
To conduct the pilot assessment of the questionnaire sur-
vey, we chose experts working in the GSD environment
(i.e. ‘‘Software Engineering Research Group (SERG UOM)
Pakistan’’, ‘‘King Fahd University of Petroleum and Miner-
als, Saudi Arabia’’, and ‘‘Qatar University, Doha, Qatar.’’).

VOLUME 10, 2022 58461



R. A. Khan et al.: SAM of Software Development for GSD Vendors

FIGURE 2. Secure SDLC for GSD vendor organizations.

This pilot assessment aims to address significant issues
(in terms of statistical variables) and improve the survey
questions’ understandability. Experts suggest improving the
questionnaire’s design, such as adding questions to obtain
more information about survey participants. The question-
naire survey was revised after taking into account the ideas
and recommendations of the experts.

At the beginning of the survey, a statement on the
researchers’ ethical responsibility was also added to assure
the participant’s confidentiality. This remark reassured the
participants that only the study team would access their infor-
mation. It was stated that the research team would not share
the data with anyone to reveal the identity of any participant
or organization.

3) DATA COLLECTION SOURCES
As previously indicated, our target population was large and
spread organizations across the globe. We decided to use
unusual methods to collect responses from SSD professionals
working in GSD. We used the snowball sampling technique
to gather data from the experts [50]. Snowballing is a low-cost
and straightforward strategy to reach a specific audience [50],
[54], [60]. We used social media networks such as Facebook,
LinkedIn, Research Gate, and email to contact the experts.
The empirical study’s data was collected online from June 01,

2021, to July 04, 2021, and the entire data gathering process
took one month and four days. During the survey’s imple-
mentation, 64 responses were collected.

All of the responses were manually reviewed.We excluded
14 responses because the expertise shared by these 14 persons
was unrelated to GSD and SSD. For analysis, the final 50 sur-
vey results were taken into account. We ensure survey partic-
ipants that the obtained data will only be used for research
purposes and that their identities will never be disclosed to a
third party.

For analysis, the final 50 survey results were taken into
account. This study empirically validated 145 software secu-
rity risks and 424 security practices that assist GSD vendor
organizations in managing the security activities in the SDLC
phases.

4) DATA ANALYSIS
The frequency analysis method was used to examine survey
participant replies in this study. This approach works well
for analyzing nominal and ordinal data over many variables
or groups of variables [61]. Because the survey responses
are nominal, we employed the chi-square (‘‘liner-by-linear
connection’’) technique to discover significant differences
across the variables. Various research with similar data types
has used the same analysis approach [60], [62].

58462 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 1. CSSRs and its practices in the governance and security threat analysis phase of the secure SDLC.

D. QUANTIFICATION OF SECURITY RISKS INTO CRITICAL
SOFTWARE SECURITY RISKS (CSSRs) USING FREQUENCY
AND RANKING ORDER
To identify the critical software security risks (CSSRs),
we used the criterion of 10% occurrences in both SLR
and survey findings. Other researchers have used a similar
approach [62]–[64]. However, secure software development
professionals and researchers might set their criteria for deter-
mining the importance of the stated software security risk.
Based on this criterion, we identified 46 critical software
security risks in the SDLC phases. The CSSRs and practices
for addressing these risks are presented in Section IV.We also
analyzed these CSSRs on GSD Experts’ views concerning
the impact of software security risks on secure software
development (SSD) based on survey respondents’ location,
GSD vendor organization size, and respondents’ experience
level in SSD projects (Accepted for publication in Security in
Communication Journal).

E. CASE STUDY
A case study is a suitable research methodology and an
effective validation tool in Software Engineering [65], [66].
In the last stage of this research, we have conducted three
case studies in software development companies to validate
our projected model, ‘‘Security Assurance Model (SAM)
of Software Development,’’ for GSD vendor organizations.

We conducted focus groups with case study applicants to get
feedback on our newly engineered model.

IV. SECURE SDLC FOR GSD VENDOR ORGANIZATIONS
The CSSRs and their practices collected via the SLR and
questionnaire survey were categorized into different SDLC
phases and used to develop the secure SDLC for GSD ven-
dor organizations. The structure of this SDLC is shown in
Figure 2.

It consists of seven stages: Governance and Security Threat
Analysis, Secure Requirement Analysis, Secure Design,
Secure Coding, Secure Testing and Review, Secure Deploy-
ment, and Security Improvement. Each of these phases con-
tains CSSRs and practices for addressing these risks. The
following sections briefly describe each stage:

A. GOVERNANCE AND SECURITY THREAT ANALYSIS
To give strategic direction, ensure that objectives are met,
ensure risk management is acceptable, and check resource
usage is responsible, security governance is the collection of
roles and procedures exercised by senior management. Effec-
tive security governance will allow your firm to efficiently
coordinate its security efforts when it is carried out correctly.

Table 1 presents the CSSRs and their practices in the
‘‘Governance and Security Threat Analysis’’ phase of the
secure SDLC for GSD vendor organizations [14], [17], [23],

VOLUME 10, 2022 58463



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 2. CSSRs and its practices in the secure requirements engineering phase of the secure SDLC.

58464 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 2. (Continued.) CSSRs and its practices in the secure requirements engineering phase of the secure SDLC.

VOLUME 10, 2022 58465



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 3. CSSRs and its practices in the secure design phase of the secure SDLC.

58466 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 3. (Continued.) CSSRs and its practices in the secure design phase of the secure SDLC.

[41], [67]–[72]. In the following tables, R1P1: Means Prac-
tice 1 for CSSR1, R1P2: Means Practice 2 for CSSR1, and
so on. . .

B. SECURE REQUIREMENTS ENGINEERING
Software development begins with a phase known as require-
ments analysis. During the requirements phase, the goal is
to define and communicate software requirements specific
to the customer’s needs. Additionally, security requirements
must be defined in addition to software requirements. Secu-
rity requirements arise from a variety of places and at various
periods. Security needs are more complicated to identify
than functional requirements since they are not as visible as
functional requirements.

Table 2 presents the CSSRs and their practices in the
‘‘Secure Requirement Engineering’’ phase of the secure
SDLC for GSD vendor organizations [14], [17], [23],
[41], [67]–[72].

C. SECURE DESIGN
Creating a software architecture is the first step in the
design process. The critical components of software and their
interactions are identified by software architecture. Software

design documents are then used to explain the security archi-
tecture in further depth.

Security design is constantly revised in light of this infor-
mation to incorporate security. Table 3 depicts the security
operations during the design [8], [17], [22], [72]–[79].

D. SECURE CODING
The implementation phase serves a dual purpose in terms of
security. The first task is to prevent software security issues
bywriting secure code. The second step is to look for software
flaws using an automated security analysis tool. Automated
tools are used to examine the source code created by the
development team. These tools are run by computers and
look for common security flaws. Manual reviews follow the
automatic static analysis. Finally, the software is ready for
testing. Table 4 presents the CSSRs and their practices in the
‘‘Secure Coding’’ phase of the secure SDLC for GSD vendor
organizations [3], [8], [17], [72], [80]–[83].

E. SECURE TESTING AND REVIEW
Test planning is the first step in the testing phase. The test-
ing team begins planning tests during the implementation
phase because test planning does not necessitate access to

VOLUME 10, 2022 58467



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 4. CSSRs and its practices in the secure coding phase of the secure SDLC.

58468 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 4. (Continued.) CSSRs and its practices in the secure coding phase of the secure SDLC.

program code. While the developers are working on code,
the testing team prepares for the testing activity later. The
security testing teams develop test cases based on design
papers, threat models, and misuse situations. Security test
cases aim to attack software successfully. Any modification
to the software design must be disclosed to the testing team
during the planning phase of the test. As a result, the testing
team may create test cases that aren’t relevant. Based on the
nature of the software and its threats, the severity of bugs
is adjusted. A minor bug in software code that isn’t very
important to how it works may only take a few minutes to fix,
but it can significantly affect how secure it is. A discussion of
the revised severities takes place with the development team.
Table 5 shows the security operations conducted during the
testing phase [3], [17], [80], [84]–[86].

F. SECURE DEPLOYMENT
Release and deployment are two distinct processes in the
project’s lifecycle. We still regard security activities as a

single phase, even though there isn’t much work to be done
in this phase. A security assessment is performed before the
release of the software. The evaluation’s purpose is to find
remaining security weaknesses. The study concludes with
a review report. The development team fixes the Security
flaws found in a review report. A security audit is carried
out following the evaluation. Based on the audit report, the
management decides on the software release. The software
is now available for deployment when it has been released.
Security activities are documented in Table 6 [3], [87]–[91]
during the release and deployment phases.

G. SECURITY IMPROVEMENT
The software becomes commercial after its release and
deployment. Some known security flaws may have been left
out while the software was made. The software was released
with some noncritical security flaws, but they were not dan-
gerous. In the future, the defects will be fixed at some point.
As a result, a patch is created to improve the discovered

VOLUME 10, 2022 58469



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 5. CSSRs and its practices in the secure testing and review phase of the secure SDLC.

security weaknesses. The patch is then tested and released.
The same steps are taken for new threats. Table 7 shows the
security measures taken throughout the maintenance phase
[89], [92], [93].

V. SECURITY ASSURANCE MODEL (SAM) OF SOFTWARE
DEVELOPMENT FOR GSD VENDORS
This section discusses building a suggested Software Devel-
opment Security Assurance Model (SAM) for GSD Vendor
Organizations. The structure of SAM of software develop-
ment and its dimensions, such as security assurance levels and
evaluation method, are discussed in the following sections:

A. STRUCTURE OF THE SAM OF SOFTWARE
DEVELOPMENT
We have developed SAM of Software Development for GSD
Vendors by studying various models frameworks [4], [8],

[13], [15], [16], [31], [35], [38], [39], [41], [43], [58], [68],
[81], [94] and the results obtained from the SLR [48] and
questionnaire survey. The process flow for SAM of software
development is depicted in Figure 3.

B. SECURITY ASSURANCE LEVELS OF SAM OF SOFTWARE
DEVELOPMENT
A security assurance level includes relevant specific security
practices for a specific process area: Governance and Security
Threat Analysis, Secure Requirement Engineering, Secure
Designing, Secure Coding, Secure Testing and Review,
Secure Deployment and Secure Improvement, that can
improve the organization’s software security processes asso-
ciated with that process area.

Software development Organizations that want to under-
stand better their software security practices need to compare
them with Software Security Assurance (SAM) of Software

58470 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 6. CSSRs and its practices in the secure deployment phase of the secure SDLC.

Development best practices. Implementing SAM practices
often starts with an initial Governance and Security Threat
Analysis level. Generally, a Software Development business
decides to be appraised for one or more reasons, including to:
• Evaluate how the organization’s processes compare to

SAM of Software Development’s best security practices
and determine areas of improvement

• Share information with customers or suppliers about
how the organization compares to SAM of Software
Development’s best security practices

• Comply with contractual terms of customers
It’s worth noting that while the goal of organizations is

to reach level 7 (Security Improvement), the model is still
applicable and beneficial for organizations that have achieved
this security assurance level. Organizations at this level are
primarily focused on maintenance and improvements, and
they also have the flexibility to focus on innovation and
respond to industry changes.

The CSSRs and practices for addressing these risks are
grouped into seven different levels, which we call security
assurance levels, e. g,
• Level-1: Governance and Security Threat Analysis
• Level-2: Secure Requirement Analysis
• Level-3: Secure Design
• Level-4: Secure Coding
• Level-5: Secure Testing and Review
• Level-6: Secure Deployment
• Level-7: Security Improvement
The security assurance levels of SAM of software develop-

ment for GSD vendor organizations are illustrated in Figure 4.

46 CSSRs and 388 practices (see Table 1-7) were identified
using SLR and questionnaire survey.

C. ASSESSMENT METHOD FOR SAM OF SOFTWARE
DEVELOPMENT
The SAM of Software Development assessment process is
based on the Motorola evaluation tool [95]. Motorola cre-
ated this tool to evaluate the present state of a company’s
software processes and find areas for improvement [95].
Other researchers have widely used it to assess their proposed
models’ maturity, readiness, or assurance [15], [41], [58],
[68], [96].
The following three measurement dimensions are used by

the Motorola instrument [95]:
1. Approach: This aspect is concerned with the willing-

ness and ability of the organization to implement a given
practice.

2. Deployment: This dimension looks at how well prac-
tices are used in different project parts.

3. Results: This indicator measures the success of projects
across domains.

Each dimension of practice is evaluated by providing a
score value (0, 2, 4, 6, 8, or 10). The given score value
relates to a specific dimension’s performance level and can
be assessed using the criteria listed in Table 8. To assess the
practice under specific security assurance level, the following
steps should be followed:

• Step 1: For each software security practice, compute
an average of the three-dimensional scores, then round
that result to the nearest whole integer.

VOLUME 10, 2022 58471



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 7. CSSRs and its practices in the security improvement phase of the secure SDLC.

• Step 2: Add Step 1 to the number of security practices
for a specific critical software security risk (CSSR).
Then divide by the total number of practices. This
determines the security assurance of the overall score
for a particular CSSR.

• Step 3: A security assurance score of less than seven is
deemed weak, while a score of 7 or greater is regarded
as strong.

D. VALIDATION OF THE SAM OF SOFTWARE
DEVELOPMENT USING CASE STUDIES
A case study is considered an appropriate research method in
software engineering and a highly effective tool for validation

purposes [65], [66]. In the last stage of this research, we have
conducted three case studies on software development
companies to validate our projected model (SAM of Software
Development). The SAM of Software Development assess-
ment process is based on the Motorola evaluation tool [95].
To get feedback on our suggested model, we convened focus
groups with the participants of the case studies. The key
objectives of performing case studies in this study are as
follows:
• Present that SAM of Software Development for GSD

Vendor Organizations may be employed in a real-world
setting.

• Know ease of learning of SAM of Software
Development are ease of learning

58472 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

FIGURE 3. SAM of software development for GSD vendors.

• Know user satisfaction of SAM of Software
Development

• Know whether there are any modifications or improve-
ments to the SAM of Software Development that the
case study participants suggest.

• To what extent can case study participants improve the
SAM of Software Development? Please also include the
reasons behind your suggestions.

• Present the applicability and utility of SAM of Software
Development.

We interacted with personnel software development com-
panies to perform the case study, explaining the SAM of Soft-
ware Development concept and inviting them to participate
in our research. They were instructed to apply the Motorola
assessment tool to analyze their software development secu-
rity procedures using SAM of Software Development. They

completed the examination at their place of business and
emailed the results and their feedback.

We chose one large, one medium-sized, and one small-
sized company for our case study to reduce the impact of their
size.

1) COMPANY A
Iflexion (https://www.iflexion.com/about) provides full-
cycle services in content management systems, portals,
eCommerce, web-based solutions for enterprise and media
content distribution, and social software worldwide. We have
been providing software development and related IT services
since we started in 1999. To deliver high-quality solutions,
they combine the expertise of 850+ trained software pro-
fessionals with tried-and-true techniques, business domain
knowledge, and technical competence.

VOLUME 10, 2022 58473



R. A. Khan et al.: SAM of Software Development for GSD Vendors

FIGURE 4. Security assurance levels of SAM of software development for GSD vendors.

58474 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 8. Motorola assessment tool.

VOLUME 10, 2022 58475



R. A. Khan et al.: SAM of Software Development for GSD Vendors

FIGURE 5. Iflexion covers the entire cycle of enterprise software development.

Iflexion US and UK Offices: IFlexion US (Head Office).
3900, S. Wadsworth Blvd., Denver, CO 80235. Iflexion UK.
3rd floor, 5-8 Dysart Street. Their clients and partners are
dispersed in 30+ countries. They cover the entire cycle of
enterprise software development, as depicted in Figure 5.

2) COMPANY B
Satsuma Droid Pvt Ltd (Islamabad, Pakistan) is dedicated
to bringing your organization to the forefront by delivering
cutting-edge IT services, Web Solutions, Mobile Solutions,
and Digital Marketing Strategies. As a result, they are com-
mitted to helping you achieve long-term leadership in your
industry by developing digital solutions specifically adapted
to your needs.
• With mobile items, you can gain new clients for your

firm. They create innovative iOS and Android apps that
meet market standards.

• Use our Website design and development services to
increase your company’s online presence. They can also
design interactive mobile web solutions to meet your
needs.

3) COMPANY C
Company C (Peshawar, Pakistan) is a CMMI Level-3 soft-
ware development firm based in Peshawar, Pakistan that
offers Information Technology products and services that
integrate applications and data within an enterprise and across
the industry. The firm provides a complete spectrum of ser-
vices ranging from Financial Systems, Enterprise Resource
Planning (ERP), Monitoring & Evaluation (M&E) Systems
to Business Process Re-Engineering (BPR), Mobile based

Information Systems, and eGovernment Information and
services automation.

Our team of highly experienced and qualified professionals
provides practical solutions to organizations in both the Pub-
lic and Private sectors. We build cohesive, flexible, and cost-
effective IT solutions and guarantee their delivery on time and
within budget. While ensuring timely and efficient delivery
of services, they are not daunted by new technologies and
always strive to stay ahead of the technological advances in
other parts of the world.

Their services include an online web-based software appli-
cation, Desktop, and Mobile development. They also design
and develop embedded systems. They integrate different sys-
tems and implement an e-payments gateway. They think
and innovate for you with new ideas to solve unsolved
problems.

They combine Design Thinking, Agile Practices, Software
Quality Processes, and Innovation Management to create
and build digital transformation solutions. It offers five
service pillars: Software Solution Design, Agile Software
Development, Software Testing, Agile Team Allocation, and
Professional Allocation.

E. ANALYSIS
The data collected during the case studies were analyzed in
the following ways:

• To assess company security assurance level for CSSRs
faced by GSD vendor organizations in secure software
development.

• To calculate the score for each CSSR and practice of
each company, see Tables 9, 10, and 11.

58476 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 9. Assessment results of company A.

• The CSSR will be recognized as ‘‘Strong’’ (strongly
addressed) if the overall score is greater or equal to 7.
Otherwise, ‘‘Weak’’ (weakly addressed)

• To examine whether SAM of Software Development
needs any improvement, we conducted a focus group
session with the participants to get feedback

The focus session aims:
• To determine whether or not SAM of Software Devel-

opment can be used effectively in an organization to
identify strong and weak CSSRs in the context of
Secure Software Development.

• Identify whether SAM of Software Development is
evident, easy to use, and specifically helpful in measur-
ing and eliminating security risks in Secure Software
Development.

• To assess the participant’s satisfaction with the SAM of
Software Development assessment outcomes.

• Verify that each CSSR’s practices are easy to follow.
• Validate SAMof Software Development generalization

and applicability for GSD vendor companies.
• They identify strong and weak software security activ-

ities in Secure Software Development using SAM soft-
ware development.

F. ASSESSMENT RESULTS OF COMPANY A
We have used Motorola Assessment Tool [95] for the assess-
ment results of each company. A score of 7 or above for
each CSSR indicates a specific company had successfully
addressed the risk. Any CSSR with a score of less than seven
is considered a weakness. The Company-A participant has

VOLUME 10, 2022 58477



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 10. Assessment results of company B.

measured his security assurance for these CSSRs using SAM
of Software Development. Table 9 presents the Company-A
assessment results. The assessment will focus on the follow-
ing points:

• Table 9 presents that Company-A stands at Level-4
‘‘Security Coding’’ of the SAM of Software Develop-
ment and comprehensively addresses the security risks
of the previous three levels (Governance and Security
Analysis, Secure Requirement Engineering, and Secure
Desing) since almost it achieved a score greater than 7.

• Company-A is weak in addressing the CSSR38 ‘‘Messy
code, code bad smells, dead code’’, since the score
values are less than 7.

However, Company A should focus more on monitoring
the success of practice implementation rather than organiza-
tional commitment. This will aid in creating secure software
by enhancing its security assurance:

G. ASSESSMENT RESULTS OF COMPANY B
Table 10 presents the Company-B assessment results. The
assessment will focus on the following points:
• Table 10 presents that Company-B stands at Level-3

‘‘Secure Design’’ of the SAM of Software Develop-
ment. It has fully addressed the security risks of the
other two levels (Governance and Security Threat Anal-
ysis and Secure Requirement Engineering) since almost

58478 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 11. Assessment results of company C.

it achieved a score greater than 7 in the first three
levels.

• Company-B is weak in achieving Level-4 ‘‘Secure Cod-
ing’’ since the score values of ‘‘CSSR17: Improper
secure design documentation’’ and ‘‘CSSR21: Improper
conduction of design and architecture security review’’
are less than 7.

• Each of the practices for which Company-B has a score
of less than 7 requires improvement.

• It should prioritize Level-4 ‘‘Secure Coding’’ practices.
This will help achieve a high-security assurance level in
secure software development.

The results show that Company-B is doing very little in
security activities in secure coding, which is an area for
improvement.

H. ASSESSMENT RESULTS OF COMPANY C
Table 11 presents the Company-C assessment results. The
assessment will focus on the following points:
• Table 11 presents that Company-C achieved all the

security assurance levels of SAM of Software Develop-
ment and comprehensively addresses the security risks
of all levels since almost it achieved a score greater
than 7.

VOLUME 10, 2022 58479



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 12. Feedback of the case studies participants (company-A, B and C).

58480 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 12. (Continued.) Feedback of the case studies participants (company-A, B and C).

However, Company C should focus more on monitoring the
success of practice implementation rather than organizational
commitment. This will aid in creating secure software by
enhancing its security assurance.

I. FEEDBACK FROM CASE STUDY PARTICIPANTS
The case study enabled us to evaluate the practicability of the
SAM of Software Development for GSD vendor organiza-
tions. To get feedback, we asked 30 questions from the case
study participants, which are summarized in Table 12.

VI. THREATS TO VALIDITY
This section underlines the threats to validity. And how
we overcome them to strengthen our confidence in our
investigation’s conclusions. According to [97], internal,
external, and conclusion-validity threats are all examples of
risk categories.

A. CONSTRUCT VALIDITY
One of the possible concerns is the lack of sources available in
other databases or after the research was completed. We used
an SLR to find all of the relevant articles in the formal

literature, and we searched six different databases to make
sure we found everything.

We also collected the data through a questionnaire survey
from software development organizations. This ensured that
all relevant sources were covered completely. As a result,
we have sufficient evidence that SAM of Software Develop-
ment covers most software security procedures.

There is also a problem with assigning practices to CSSRs
when making a SAM of Software Development. This can be
subjective. We carried out the assignment based on our expe-
riences and what we learned from the SLR and questionnaire
survey.

Three university professors (2nd Co-Author (Supervisor),
3rd Co-Author, and 4th Co-Author (Co-Supervisor)) repeat-
edly validated the structure of SAMof SoftwareDevelopment
and its security assurance levels and activities to reduce this
threat.

B. INTERNAL VALIDITY
The techniques we discovered from our SLR and question-
naire survey are a good approximation of current secure
software development methods. SLR data extraction and
source selection are prone to human error because not
all sources give sufficient or explicit information about

VOLUME 10, 2022 58481



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 13. Compairison of our study with other relevant studies.

58482 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 13. (Continued.) Compairison of our study with other relevant studies.

our research topics. The sources were thoroughly reviewed
and chosen based on quality criteria to minimise this
limitation.

We have concerns regarding the accuracy of the assessment
results because the participants in our case study appraised
the organization’s activities. The assessment may be subjec-
tive because adhering to the requirements of the Motorola
assessment instrument necessitates the assessor’s close atten-
tion to acquiring correct results.

In addition to existing software security experience, mem-
bers’ roles within the firm are also factors.

C. EXTERNAL VALIDITY
The study’s findings may not apply to all software develop-
ment firms. Only three companies took part in the case studies
we used to determine how well SAM of Software Develop-
ment worked. Consequently, it is essential to be careful when
making decisions about the SAM of Software Development’s
applicability.

D. CONCLUSION VALIDITY
We gathered adequate information to support our conclusions
about existing CSSRs and practices for addressing these
risks of secure software development by conducting the SLR
and questionnaire survey. The SLR and questionnaire were
meticulously carried out methodically, and the sources were
assessed using quality standards. This increases our confi-
dence in SAM of Software Development and decreases the
risk of jeopardizing conclusion validity.

VII. CONCLUSION AND FUTURE WORK
This section outlines our study’s effort and main contribu-
tions. It also outlines the research directions that should be
pursued in the future.

A. CONCLUSION AND DISCUSSION
This study’s primary purpose is to develop a Security
Assurance Model (SAM) of Software Development for
GSD Vendors. In the SDLC phases, this model will assist
software development firms in reviewing and enhancing
their security processes. The primary goal of the first phase

(doing SMS) is to determine what the current state-of-
the-art is in terms of secure software engineering (SSE)
[22], [23]. The final selection was made from 116 stud-
ies that met the inclusion and exclusion criteria [22], [23].
After extracting data from the selected articles, they were
classified according to their quality, software security pro-
cesses/models/frameworks, software security methodologies,
SDLC phases, publication venue, and SWOT analysis of the
software security approaches [22], [23].

SLR was used to classify key papers to identify secu-
rity threats and practices during the second phase of this
research [48]. The tollgate [49] approach was used to choose
121 papers based on inclusion, exclusion, and quality rat-
ing criteria. This study identified 145 security risks and
424 best practices that can assist software development busi-
nesses in managing security throughout the SDLC’s various
phases [48].

In the 3rd stage of this study, an online survey method
is employed for data collection [59]. During the survey’s
implementation, a total of 64 responses were collected. All
of the responses were manually reviewed. We excluded
14 responses because the expertise shared by these 14 persons
was unrelated to GSD and/or SSD. For analysis, the final
50 survey results were taken into account. This study empir-
ically validated 145 software security risks and 424 security
practices that assist GSD vendor organizations in managing
the security activities in the SDLC phases.

In the 4th stage of this research, we identify the critical
software security risks (CSSRs); we used the criterion of 10%
occurrences in both SLR and survey findings. Based on this
criterion, we identified 46 critical software security risks in
the SDLC phases.

In the 5th stage of this research, we have developed SAM
of Software Development for GSD Vendors by studying var-
ious models frameworks [4], [8], [13], [15], [16], [31], [35],
[38], [39], [41], [43], [58], [68], [81], [94] and the results
obtained from the SLR [48] and questionnaire survey. The
CSSRs and practices for addressing these risks are grouped
into seven different levels, which we call security assurance
levels: ‘‘Level-1: Governance and Security Threat Analy-
sis, Level-2: Secure Requirement Analysis, Level-3: Secure

VOLUME 10, 2022 58483



R. A. Khan et al.: SAM of Software Development for GSD Vendors

Design, Level-4: Secure Coding, Level-5: Secure Testing
and Review, Level-6: Secure Deployment, Level-7: Secu-
rity Improvement’’. A total of 46 CSSRs and 388 practices
(see Table 1-7) were identified using SLR and questionnaire
survey.

The SAM of Software Development assessment process is
based on the Motorola evaluation tool [95]. Motorola created
this tool to evaluate the present state of a company’s software
processes and find areas for improvement [95].

In the last stage of this research, the model is tested as a
case study in a software development company, using data
from real software projects to examine the results of a prac-
tical experiment in that company. On compares the results in
two development scenarios: one with reactive security and
one with proactive security in all phases of software devel-
opment (SDLC). The case study results indicate that SAM of
Software Development helps measure the security assurance
level of an organization. It will also serve as a framework for
researchers to develop new software security measures.

This study recommended various security practices to fol-
low in each phase of the SDLC to achieve a secure SDLC.
The successful integration of these operations reduces effort,
time, and cost while creating secure software applications.
It helps software development businesses improve their soft-
ware security and efficiency. This will also raise the devel-
oper’s knowledge of the importance of secure development
techniques.

We have briefly answered the research questions men-
tioned in Section-I in the following paragraphs:

RQ1: How can a secure SDLC be developed for GSD
vendor companies that are both practical and robust?

We have developed SAM of Software Development for
GSD Vendors by studying various models and frameworks
[4], [8], [13], [15], [16], [31], [35], [38], [39], [41], [43], [58],
[68], [81], [94] and the results obtained from the SLR [48] and
questionnaire survey. The process flow for SAM of software
development is depicted in Section V (see Figure 3).

The CSSRs and practices for addressing these risks are
grouped into seven different levels, which we call security
assurance levels, e. g,

• Level-1: Governance and Security Threat Analysis
• Level-2: Secure Requirement Analysis
• Level-3: Secure Design
• Level-4: Secure Coding
• Level-5: Secure Testing and Review
• Level-6: Secure Deployment
• Level-7: Security Improvement

The security assurance levels of SAM of software devel-
opment for GSD vendor organizations are illustrated in
Section V-D (see Figure 4). 46 CSSRs and 388 practices
(see Section IV, Table 1-7) were identified using SLR and
questionnaire survey.

We have developed SAM of Software Development for
GSD Vendors by studying various models frameworks [4],
[8], [13], [15], [16], [31], [35], [38], [39], [41], [43], [58],

[68], [81], [94] and the results obtained from the SLR [48] and
questionnaire survey. The process flow for SAM of software
development is depicted in Figure 3.

The SAM of Software Development assessment process is
based on the Motorola evaluation tool [95]. Motorola cre-
ated this tool to evaluate the present state of a company’s
software processes and find areas for improvement [95].
Other researchers have widely used it to assess their proposed
models’ maturity, readiness, or assurance [15], [41], [58],
[68], [96].

RQ2: Is the proposed security assurance model capable
of assisting GSD organizations in determining their security
assurance to produce secure software?

A case study is considered an appropriate research method
in software engineering and a highly effective tool for vali-
dation purposes. In the last stage of this research, we have
conducted three case studies on software development com-
panies to validate our projected model (SAM of Software
Development). To get feedback on our suggested model,
we convened focus groups with the participants of the case
studies. We chose one large, one medium-sized, and one
small-sized company for our case study to reduce the impact
of their size.

We have used Motorola Assessment Tool for the assess-
ment results of each company. A score of 7 or above for
each CSSR indicates a specific company had successfully
addressed the risk. Any CSSR with a score of less than seven
is considered a weakness. The Company-A participant has
measured his security assurance for these CSSRs using SAM
of Software Development.

Table 9 presents the Company-A assessment results. The
assessment will focus on the following points:
• Table 9 presents that Company-A stands at Level-4

‘‘Security Coding’’ of the SAM of Software Develop-
ment and comprehensively addresses the security risks
of the previous three levels (Governance and Security
Analysis, Secure Requirement Engineering, and Secure
Desing) since almost it achieved a score greater than 7.

• Company-A is weak in addressing the CSSR38 ‘‘Messy
code, code bad smells, dead code’’, since the score val-
ues are less than 7.

Table 10 presents the Company-B assessment results. The
assessment will focus on the following points:
• Table 10 presents that Company-B stands at Level-3

‘‘Secure Design’’ of the SAMof Software Development.
It has fully addressed the security risks of the other
two levels (Governance and Security Threat Analysis
and Secure Requirement Engineering) since almost it
achieved a score greater than 7 in the first three levels.

• Company-B is weak in achieving Level-4 ‘‘Secure Cod-
ing’’ since the score values of ‘‘CSSR17: Improper
secure design documentation’’ and ‘‘CSSR21: Improper
conduction of design and architecture security review’’
are less than 7.

• Each of the practices for which Company-B has a score
of less than 7 requires improvement.

58484 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

Table 11 presents the Company-C assessment results. The
assessment will focus on the following points:
• Table 11 presents that Company-C achieved all the secu-

rity assurance levels of SAM of Software Development
and comprehensively addresses the security risks of all
levels since almost it achieved a score greater than 7.

However, Company C should focus more on monitoring
the success of practice implementation rather than organiza-
tional commitment. This will aid in creating secure software
by enhancing its security assurance.

The case study enabled us to evaluate the practicability of
the SAM of Software Development for GSD vendor orga-
nizations. To get feedback, we asked 30 questions from the
case study participants, which are summarized in Section V-I
(see Table 12) for details.

We compare the goals of our research work with other
relevant studies, as depicted in Table 12.

B. FUTURE RESEARCH DIRECTIONS
With the increasing number of software security threats,
regularly upgrade software security processes and practices.
This study project can be improved in a variety of ways.
The following are some of the open study directions that
researchers can look into:
• To improve the outcomes of SAM of Software Devel-

opment, collaboration with software development orga-
nizations is required. Depending on the facilities and
methods used, it might be adapted to meet the needs of
various organizations.

• The SAM of Software Development might include char-
acteristics relating to specific technologies like the Inter-
net of Things (IoT), blockchain, and cloud computing.

• The SAM) of Software Development might be made
available as an online repository (tool) updated regularly
with new academic and industry practices. The SAM of
Software Development will become a reliable resource
for scholars and practitioners.

REFERENCES
[1] M. Zhang, X. de Carné de Carnavalet, L. Wang, and A. Ragab, ‘‘Large-

scale empirical study of important features indicative of discovered vul-
nerabilities to assess application security,’’ IEEE Trans. Inf. Forensics
Security, vol. 17, no. 9, pp. 2315–2330, Sep. 2019.

[2] G. McGraw, ‘‘Six tech trends impacting software security,’’ Computer,
vol. 50, no. 5, pp. 100–102, May 2017.

[3] J. C. S. Nunez, A. C. Lindo, and P. G. Rodriguez, ‘‘A preventive secure
software development model for a software factory: A case study,’’ IEEE
Access, vol. 8, pp. 77653–77665, 2020.

[4] S. Von Solms and L. A. Futcher, ‘‘Adaption of a secure software develop-
ment methodology for secure engineering design,’’ IEEE Access, vol. 8,
pp. 125630–125637, 2020.

[5] M. Z. Gunduz and R. Das, ‘‘Cyber-security on smart grid: Threats and
potential solutions,’’ Comput. Netw., vol. 169, Mar. 2020, Art. no. 107094.

[6] J. Li, Y. Zhang, X. Chen, and Y. Xiang, ‘‘Secure attribute-based data
sharing for resource-limited users in cloud computing,’’ Comput. Secur.,
vol. 72, pp. 1–12, Jan. 2018.

[7] A. Sharma and M. P. Kumar, ‘‘Aspects of enhancing security in soft-
ware development life cycle,’’ Adv. Comput. Sci. Technol., vol. 10, no. 2,
pp. 203–210, 2017.

[8] R. Khan, ‘‘Secure software development: A prescriptive framework,’’
Comput. Fraud Secur., vol. 2011, no. 8, pp. 12–20, Aug. 2011.

[9] A. K. Srivastava and S. Kumar, ‘‘An effective computational technique
for taxonomic position of security vulnerability in software development,’’
J. Comput. Sci., vol. 25, pp. 388–396, Mar. 2018.

[10] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, ‘‘A sys-
tematic review of security requirements engineering,’’ Comput. Standards
Interfaces, vol. 32, no. 4, pp. 153–165, 2010.

[11] I. Velásquez, A. Caro, and A. Rodríguez, ‘‘Authentication schemes and
methods: A systematic literature review,’’ Inf. Softw. Technol., vol. 94,
pp. 30–37, Feb. 2018.

[12] Y. Lee and G. Lee, ‘‘HW-CDI: Hard-wired control data integrity,’’ IEEE
Access, vol. 7, pp. 10811–10822, 2019.

[13] R. A. Khan and S. U. Khan, ‘‘A preliminary structure of software security
assurancemodel,’’ inProc. 13th Int. Conf. Global Softw. Eng., Gothenburg,
Sweden, May 2018, pp. 137–140.

[14] S. Z. Hlaing and K. Ochimizu, ‘‘An integrated cost-effective secu-
rity requirement engineering process in SDLC using FRAM,’’ in
Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Dec. 2018,
pp. 852–857.

[15] H. Al-Matouq, S. Mahmood, M. Alshayeb, and M. Niazi, ‘‘A maturity
model for secure software design: A multivocal study,’’ IEEE Access,
vol. 8, pp. 215758–215776, 2020.

[16] M. Khari, Vaishali, and P. Kumar, ‘‘Embedding security in software devel-
opment life cycle (SDLC),’’ inProc. 3rd Int. Conf. Comput. Sustain. Global
Develop. (INDIACom), Mar. 2016, pp. 2182–2186.

[17] N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, ‘‘The prac-
tice of secure software development in SDLC: An investigation through
existing model and a case study,’’ Secur. Commun. Netw., vol. 9, no. 18,
pp. 5333–5345, Dec. 2016.

[18] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, ‘‘Exploring
software security approaches in software development lifecycle: A system-
atic mapping study,’’ Comput. Standards Interface, vol. 50, pp. 107–115,
Feb. 2017.

[19] P. Silva, R. Noël, M. Gallego, S. Matalonga, and H. Astudillo, ‘‘Software
development initiatives to identify and mitigate security threats: A system-
atic mapping,’’ in Proc. CIBSE, 2016, pp. 257–270.

[20] A. S. Guinea, G. Nain, and Y. L. Traon, ‘‘A systematic review on the
engineering of software for ubiquitous systems,’’ J. Syst. Softw., vol. 118,
pp. 251–276, Aug. 2016.

[21] R. Kumar, A. Baz, H. Alhakami, W. Alhakami, M. Baz, A. Agrawal,
and R. A. Khan, ‘‘A hybrid model of hesitant fuzzy decision-making anal-
ysis for estimating usable-security of software,’’ IEEE Access, vol. 8,
pp. 72694–72712, 2020.

[22] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, ‘‘Systematic map-
ping study on security approaches in secure software engineering,’’ IEEE
Access, vol. 9, pp. 19139–19160, 2021.

[23] R. A. Khan, S. U. Khan, M. Ilyas, and M. Y. Idris, ‘‘The state of
the art on secure software engineering: A systematic mapping study,’’
in Proc. Eval. Assessment Softw. Eng., Trondheim, Norway, 2020,
pp. 487–492.

[24] D. Verdon and G. McGraw, ‘‘Risk analysis in software design,’’ IEEE
Security Privacy, vol. 2, no. 4, pp. 79–84, Jul. 2004.

[25] N. R. Mead and G. McGraw, ‘‘A portal for software security,’’ IEEE
Security Privacy, vol. 3, no. 4, pp. 75–79, Jul. 2005.

[26] B. Potter and G. McGraw, ‘‘Software security testing,’’ IEEE Security
Privacy, vol. 2, no. 5, pp. 81–85, Sep. 2004.

[27] S. Gupta,M. Faisal, andM.Husain, ‘‘Secure software development process
for embedded systems control,’’ Int. J. Eng. Sci. Emerg. Technol., vol. 4,
pp. 133–143, Dec. 2012.

[28] I. Flechais, C. Mascolo, and M. A. Sasse, ‘‘Integrating security and usabil-
ity into the requirements and design process,’’ Int. J. Electron. Secur. Digit.
Forensic, vol. 1, no. 1, pp. 12–26, 2007.

[29] B. Subedi, A. Alsadoon, P. W. C. Prasad, and A. Elchouemi, ‘‘Secure
paradigm for web application development,’’ in Proc. 15th RoEduNet
Conf., Netw. Educ. Res., Sep. 2016, pp. 1–6.

[30] A. S. Sodiya, S. A. Onashoga, and O. B. Ajayi, ‘‘Towards building secure
software systems,’’ Issues Informing Sci. Inf. Technol., vol. 3, pp. 635–646,
Jan. 2006.

[31] C. P. Team, ‘‘CMMI for development, version 1.3,’’ Softw.
Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep., CMU/SEI-2010-TR-033, 2010.

[32] M. Alshayeb, A. Abdellatif, S. Zahran, and M. Niazi, ‘‘Towards a frame-
work for software product maturity measurement,’’ in Proc. 10th Int. Conf.
Softw. Eng. Adv., 2015, pp. 7–11.

VOLUME 10, 2022 58485



R. A. Khan et al.: SAM of Software Development for GSD Vendors

[33] A. Abdellatif, M. Alshayeb, S. Zahran, and M. Niazi, ‘‘A measurement
framework for software product maturity assessment,’’ J. Softw., Evol.
Process, vol. 31, no. 4, p. e2151, Apr. 2019.

[34] R. Eckert, S. K. Meyer, and M. Stuermer, ‘‘How are open source practices
possible within a medical diagnostics company? Developing and testing a
maturity model of inner source implementation,’’ in Proc. 13th Int. Symp.
Open Collaboration, Galway, Ireland, Aug. 2017, pp. 1–8.

[35] R. Qutaish and A. Abran, ‘‘A maturity model of software product quality,’’
J. Res. Pract. Inf. Technol., vol. 43, no. 4, pp. 307–327, 2011.

[36] A. B. Jakobsen, M. O’Duffy, and T. Punter, ‘‘Towards a maturity model
for software product evaluations,’’ in Proc. 10th Eur. Conf. Softw. Cost
Estimation (ESCOM), 1999, pp. 329–333.

[37] A. April, J. H. Hayes, A. Abran, and R. Dumke, ‘‘Software maintenance
maturity model (SMmm): The software maintenance process model,’’
J. Softw. Maintenance Evol., Res. Pract., vol. 17, no. 3, pp. 197–223, 2005.

[38] M. Pereira da Silva and R. Miranda de Barros, ‘‘Maturity model of infor-
mation security for software developers,’’ IEEE Latin Amer. Trans., vol. 15,
no. 10, pp. 1994–1999, Oct. 2017.

[39] S. R. Ahmed, ‘‘Secure software development: Identification of secu-
rity activities and their integration in software development lifecycle,’’
M.S. thesis, Softw. Eng. Inst., CarnegieMellonUniv., Pittsburgh, PA,USA,
2007.

[40] M. Essafi, L. Labed, and H. B. Ghezala, ‘‘S2D-ProM: A strategy oriented
process model for secure software development,’’ in Proc. Int. Conf. Softw.
Eng. Adv. (ICSEA), Aug. 2007, p. 24.

[41] M. Niazi, A. M. Saeed, M. Alshayeb, S. Mahmood, and S. Zafar,
‘‘A maturity model for secure requirements engineering,’’ Comput. Secur.,
vol. 95, Aug. 2020, Art. no. 101852.

[42] J. Manico, ‘‘Application security verification standard 3.0.1,’’ OWASP,
USA, Tech. Rep., Version 3.0, 2016, pp. 1–70.

[43] Building Security in Maturity Model (BSIMM), BSIMM12, USA, 2022.
[44] B. A. Kitchenham, D. Budgen, and O. P. Brereton, ‘‘Usingmapping studies

as the basis for further research—A participant-observer case study,’’ Inf.
Softw. Technol., vol. 53, pp. 638–651, Jun. 2011.

[45] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—A
systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
Jan. 2009.

[46] J. Morán, C. Riva, and J. Tuya, ‘‘Testing MapReduce programs: A sys-
tematic mapping study,’’ J. Softw., Evol. Process, vol. 31, no. 3, p. e2120,
Mar. 2019.

[47] R. E. Lopez-Herrejon, S. Illescas, and A. Egyed, ‘‘A systematic mapping
study of information visualization for software product line engineering,’’
J. Softw., Evol. Process, vol. 30, no. 2, p. e1912, Feb. 2018.

[48] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, ‘‘Systematic literature
review on security risks and its practices in secure software development,’’
IEEE Access, vol. 10, pp. 5456–5481, 2022.

[49] W. Afzal, R. Torkar, and R. Feldt, ‘‘A systematic review of search-based
testing for non-functional system properties,’’ Inf. Softw. Technol., vol. 51,
no. 6, pp. 957–976, 2009.

[50] B. Kitchenham and S. L. Pfleeger, ‘‘Principles of survey research part 6:
Data analysis,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 28, pp. 24–27,
Mar. 2003.

[51] H. U. Khan, M. Niazi, M. El-Attar, N. Ikram, S. U. Khan, and A. Q. Gill,
‘‘Empirical investigation of critical requirements engineering practices for
global software development,’’ IEEE Access, vol. 9, pp. 93593–93613,
2021.

[52] H. U. Rahman, M. Raza, P. Afsar, and H. U. Khan, ‘‘Empirical investi-
gation of influencing factors regarding offshore outsourcing decision of
application maintenance,’’ IEEE Access, vol. 9, pp. 58589–58608, 2021.

[53] J. A. Khan, S. U. R. Khan, J. Iqbal, and I. U. Rehman, ‘‘Empirical inves-
tigation about the factors affecting the cost estimation in global software
development context,’’ IEEE Access, vol. 9, pp. 22274–22294, 2021.

[54] M. A. Akbar, W. Naveed, A. A. Alsanad, L. Alsuwaidan, A. Alsanad,
A. Gumaei, M. Shafiq, and M. T. Riaz, ‘‘Requirements change manage-
ment challenges of global software development: An empirical investiga-
tion,’’ IEEE Access, vol. 8, pp. 203070–203085, 2020.

[55] M. A. Akbar, S. Mahmood, A. Alsanad, M. Shafiq, A. Gumaei, and
A. A.-A. Alsanad, ‘‘Organization type and size based identification of
requirements change management challenges in global software develop-
ment,’’ IEEE Access, vol. 8, pp. 94089–94111, 2020.

[56] S. Beecham, T. Clear, R. Lal, and J. Noll, ‘‘Do scaling agile frameworks
address global software development risks? An empirical study,’’ J. Syst.
Softw., vol. 171, Jan. 2021, Art. no. 110823.

[57] M. A. Akbar, H. Alsalman, A. A. Khan, S. Mahmood, C. Meshram,
A. H. Gumaei, and M. T. Riaz, ‘‘Multicriteria decision making taxonomy
of cloud-based global software development motivators,’’ IEEE Access,
vol. 8, pp. 185290–185310, 2020.

[58] R. A.Khan,M.Y. Idris, S. U. Khan,M. Ilyas, S. Ali, A. U. Din, G.Murtaza,
and A. W. Wahid, ‘‘An evaluation framework for communication and
coordination processes in offshore software development outsourcing rela-
tionship: Using fuzzy methods,’’ IEEE Access, vol. 7, pp. 112879–112906,
2019.

[59] T. C. Lethbridge, S. E. Sim, and J. Singer, ‘‘Studying software engineers:
Data collection techniques for software field studies,’’ Empirical Softw.
Eng., vol. 10, pp. 311–341, Jul. 2005.

[60] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad,
‘‘Systematic literature review and empirical investigation of barriers
to process improvement in global software development: Client-
vendor perspective,’’ Inf. Softw. Technol., vol. 87, pp. 180–205,
Jul. 2017.

[61] B. Martin, Introduction to Medical Statistics, 4th ed. Oxford, U.K.: Oxford
Univ. Press, 2015, pp. 1–464.

[62] S. U. Khan, M. Niazi, and R. Ahmad, ‘‘Factors influencing clients in the
selection of offshore software outsourcing vendors: An exploratory study
using a systematic literature review,’’ J. Syst. Softw., vol. 84, pp. 686–699,
Apr. 2011.

[63] S. U. Khan, M. Niazi, and R. Ahmad, ‘‘Critical success factors for off-
shore software development outsourcing vendors: An empirical study,’’
in Proc. Int. Conf. Product Focused Softw. Process Improvement, 2010,
pp. 146–160.

[64] S. U. Khan, M. Niazi, and R. Ahmad, ‘‘Barriers in the selection of offshore
software development outsourcing vendors: An exploratory study using a
systematic literature review,’’ Inf. Softw. Technol., vol. 53, pp. 693–706,
Jul. 2011.

[65] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, ‘‘Empirical evidence in
global software engineering: A systematic review,’’ Empirical Softw. Eng.,
vol. 15, no. 1, pp. 91–118, 2010.

[66] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[67] M. Younas, D. N. A. Jawawi, M. A. Shah, A. Mustafa, M. Awais,
M. K. Ishfaq, and K. Wakil, ‘‘Elicitation of nonfunctional requirements
in agile development using cloud computing environment,’’ IEEE Access,
vol. 8, pp. 209153–209162, 2020.

[68] Y. Mufti, M. Niazi, M. Alshayeb, and S. Mahmood, ‘‘A readiness
model for security requirements engineering,’’ IEEE Access, vol. 6,
pp. 28611–28631, 2018.

[69] I. Keshta, M. Niazi, and M. Alshayeb, ‘‘Towards implementation of
requirements management specific practices (SP 1.3 and SP 1.4) for Saudi
Arabian small and medium sized software development organizations,’’
IEEE Access, vol. 5, pp. 24162–24183, 2017.

[70] W. S. Al-Shorafat, ‘‘Security in software engineering requirement,’’
in Proc. IEEE 3rd Int. Conf. Inf. Sci. Technol. (ICIST), Dec. 2013,
pp. 666–673.

[71] P. Salini and S. Kanmani, ‘‘Survey and analysis on security require-
ments engineering,’’ Comput. Electr. Eng., vol. 38, no. 6, pp. 1785–1797,
Nov. 2012.

[72] A.-U.-H. Yasar, D. Preuveneers, Y. Berbers, and G. Bhatti, ‘‘Best practices
for software security: An overview,’’ in Proc. IEEE Int. Multitopic Conf.,
Dec. 2008, pp. 169–173.

[73] V. Maheshwari and M. Prasanna, ‘‘Integrating risk assessment and threat
modeling within SDLC process,’’ in Proc. Int. Conf. Inventive Comput.
Technol. (ICICT), Aug. 2016, pp. 1–5.

[74] L. Y. Banowosari and B. A. Gifari, ‘‘System analysis and design using
secure software development life cycle based on ISO 31000 and STRIDE.
Case study Mutiara Ban workshop,’’ in Proc. 4th Int. Conf. Informat.
Comput. (ICIC), Oct. 2019, pp. 1–6.

[75] A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen, ‘‘Design
notations for secure software: A systematic literature review,’’ Softw. Syst.
Model., vol. 16, no. 3, pp. 809–831, Jul. 2017.

[76] O. M. Surakhi, A. Hudaib, M. AlShraideh, and M. Khanafseh, ‘‘A survey
on design methods for secure software development,’’ Int. J. Comput.
Technol., vol. 16, no. 7, pp. 7047–7064, Dec. 2017.

[77] G. Pedraza-Garcia, H. Astudillo, and D. Correal, ‘‘A methodological
approach to apply security tactics in software architecture design,’’ in
Proc. IEEE Colombian Conf. Commun. Comput. (COLCOM), Jun. 2014,
pp. 1–8.

58486 VOLUME 10, 2022



R. A. Khan et al.: SAM of Software Development for GSD Vendors

[78] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl, ‘‘MAC and UML for
secure software design,’’ in Proc. ACM Workshop Formal Methods Secur.
Eng. (FMSE), Washington, DC, USA, 2004, pp. 75–85.

[79] L. B. Othmane, P. Angin, H. Weffers, and B. Bhargava, ‘‘Extending
the agile development process to develop acceptably secure software,’’
IEEE Trans. Dependable Secure Comput., vol. 11, no. 6, pp. 497–509,
Nov. 2014.

[80] Y.-H. Tung, S.-C. Lo, J.-F. Shih, and H.-F. Lin, ‘‘An integrated security
testing framework for secure software development life cycle,’’ in Proc.
18th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Oct. 2016,
pp. 1–4.

[81] E. Venson, X. Guo, Z. Yan, and B. Boehm, ‘‘Costing secure software devel-
opment: A systematic mapping study,’’ inProc. 14th Int. Conf. Availability,
Rel. Secur., Canterbury, U.K., Aug. 2019, pp. 1–11.

[82] M. Sodanil, G. Quirchmayr, N. Porrawatpreyakorn, and A. M. Tjoa,
‘‘A knowledge transfer framework for secure coding practices,’’ in Proc.
12th Int. Joint Conf. Comput. Sci. Softw. Eng. (JCSSE), Jul. 2015,
pp. 120–125.

[83] E. Venson, R. Alfayez, M. M. F. Gomes, R. M. C. Figueiredo, and
B. Boehm, ‘‘The impact of software security practices on development
effort: An initial survey,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Sep. 2019, pp. 1–12.

[84] H. Nina, J. A. Pow-Sang, and M. Villavicencio, ‘‘Systematic mapping
of the literature on secure software development,’’ IEEE Access, vol. 9,
pp. 36852–36867, 2021.

[85] C. Camacho, S. Marczak, and T. Conte, ‘‘On the identification of best
practices for improving the efficiency of testing activities in distributed
software projects: Preliminary findings from an empirical study,’’ in Proc.
IEEE 8th Int. Conf. Global Softw. Eng. Workshops, Aug. 2013, pp. 1–4.

[86] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, ‘‘A threat model-
based approach to security testing,’’ Softw., Pract. Exper., vol. 43, no. 2,
pp. 241–258, Feb. 2013.

[87] M. Asad and S. Ahmed, ‘‘Model driven architecture for secure software
development life cycle,’’ Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 6,
pp. 649–661, 2016.

[88] A. R. S. Farhan and G. M. M. Mostafa, ‘‘A methodology for enhancing
software security during development processes,’’ in Proc. 21st Saudi
Comput. Soc. Nat. Comput. Conf. (NCC), Apr. 2018, pp. 1–6.

[89] D. Hein and H. Saiedian, ‘‘Secure software engineering: Learning from
the past to address future challenges,’’ Inf. Secur. J., A Global Perspective,
vol. 18, no. 1, pp. 8–25, Feb. 2009.

[90] S. Velmourougan, P. Dhavachelvan, R. Baskaran, and B. Ravikumar,
‘‘Software development life cycle model to improve maintainability of
software applications,’’ in Proc. 4th Int. Conf. Adv. Comput. Commun.,
Aug. 2014, pp. 270–273.

[91] L. Catuogno, C. Galdi, and G. Persiano, ‘‘Secure dependency enforcement
in package management systems,’’ IEEE Trans. Dependable Secure Com-
put., vol. 17, no. 2, pp. 377–390, Mar. 2020.

[92] G. Pedraza-García, R. Noël, S. Matalonga, H. Astudillo, and
E. B. Fernandez, ‘‘Mitigating security threats using tactics and patterns: A
controlled experiment,’’ in Proc. 10th Eur. Conf. Softw. Archit. Workshops,
Copenhagen, Denmark, Nov. 2016, p. 37.

[93] S. Islam and W. Dong, ‘‘Human factors in software security risk man-
agement,’’ in Proc. 1st Int. Workshop Leadership Manage. Softw. Archit.
(LMSA), Leipzig, Germany, 2008, pp. 13–16.

[94] Microsoft Security Development Lifecycle, Microsoft, Redmond, WA,
USA, 2022.

[95] M. K. Daskalantonakis, ‘‘Achieving higher SEI levels,’’ IEEE Softw.,
vol. 11, no. 4, pp. 17–24, Jul. 1994.

[96] S. Ali and S. U. Khan, ‘‘Software outsourcing partnership model: An eval-
uation framework for vendor organizations,’’ J. Syst. Softw., vol. 117,
pp. 402–425, Jul. 2016.

[97] J. Rogers and A. Révész, ‘‘Experimental and quasi-experimental designs,’’
in The Routledge Handbook of Research Methods in Applied Linguistics.
London, U.K.: Routledge, 2019.

[98] B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, ‘‘The state of the art
on design patterns: A systematic mapping of the literature,’’ J. Syst. Softw.,
vol. 125, pp. 93–118, Mar. 2017.

[99] P. Morrison, D. Moye, R. Pandita, and L. Williams, ‘‘Mapping the field
of software life cycle security metrics,’’ Inf. Softw. Technol., vol. 102,
pp. 146–159, Oct. 2018.

[100] R. Jain and U. Suman, ‘‘A systematic literature review on global software
development life cycle,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 40, no. 2,
pp. 1–14, Apr. 2015.

[101] P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, ‘‘An extensive
systematic review on the model-driven development of secure systems,’’
Inf. Softw. Technol., vol. 68, pp. 62–81, Dec. 2015.

[102] V. R. Mouli and K. P. Jevitha, ‘‘Web services attacks and security—A
systematic literature review,’’ Proc. Comput. Sci., vol. 93, pp. 870–877,
Jan. 2016.

RAFIQ AHMAD KHAN received the M.Phil.
degree in computer science with a specialization
in software engineering from the University of
Malakand, Khyber Pakhtunkhwa, Pakistan, under
the research supervision of Dr. Siffat Ullah Khan,
where he is currently pursuing the Ph.D. degree,
under the supervision of the same supervisor.

He has authored several articles in well-reputed
international conferences and journals, including
ICGSE and IEEE ACCESS. His research interests

include software security, global software engineering, secure software
engineering, empirical software engineering, systematic literature review,
requirements engineering, green computing, software testing, and agile
software development.

SIFFAT ULLAH KHAN received the Ph.D. degree
in computer science from Keele University, U.K.,
in 2011.

He was the Head of the Department of Software
Engineering, University of Malakand, Pakistan,
for three years, where he was also the Chairperson
of the Department of Computer Science and IT.
He is currently an Associate Professor in computer
science. He is also the Founder and the Leader of
the Software Engineering Research Group, Uni-

versity of Malakand. He has successfully supervised 10 M.Phil. and four
Ph.D. scholars. He has authored over 100 articles, so far, in well-reputed
international conferences and journals. His research interests include soft-
ware outsourcing, empirical software engineering, agile software devel-
opment, systematic literature review, software metrics, cloud computing,
requirements engineering, and green computing/IT. He received the Gold
Medal (Dr. M. N. Azam Prize 2015) from the Pakistan Academy of Sciences
in recognition of his research achievements in the field of computer (soft-
ware).

MUSAAD ALZAHRANI received the B.Sc.
degree from King Abdulaziz University, Jeddah,
Saudi Arabia, in 2008, and the M.Sc. and Ph.D.
degrees from Kent State University, Kent, OH,
USA, in 2013 and 2017, respectively, all in com-
puter science. He is currently an Assistant Pro-
fessor with the Faculty of Computer Science
and Information Technology, Albaha University,
Al-Bahah, Saudi Arabia. His research interests
include software engineering, software metrics

and qualities, software maintenance, and machine learning.

MUHAMMAD ILYAS received the Ph.D. degree
in computer science from the University of
Malakand, Pakistan. He is currently an Assis-
tant Professor with the Computer Science and IT
Department, University of Malakand. His research
interests include software outsourcing, empirical
software engineering, systematic literature review,
cloud computing, requirements engineering, and
green computing/IT.

VOLUME 10, 2022 58487


