IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received May 2, 2022, accepted May 19, 2022, date of publication May 26, 2022, date of current version June 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3178301

Security Assurance Model of Software
Development for Global Software

Development Vendors

RAFIQ AHMAD KHAN", SIFFAT ULLAH KHAN"'!, MUSAAD ALZAHRANI"2,

AND MUHAMMAD ILYAS “!

ISoftware Engineering Research Group, Department of Computer Science and IT, University of Malakand, Chakdara 18800, Pakistan

2Department of Computer Science, Albaha University, Albaha 65799, Saudi Arabia
Corresponding author: Rafiq Ahmad Khan (rafiqgahmadk @ gmail.com)

This work was supported in part by the Department of Computer Science & IT, University of Malakand, Chakdara, Pakistan, and in part by

the Department of Computer Science, Albaha University, Albaha, Saudi Arabia.

ABSTRACT The number of security attacks and the impact has grown considerably in the recent several
years. As aresult, new emerging software development models are required that assist in developing software
that is secure by default. This article reviews the most widely used security software models. It proposes a new
Security Assurance Model (SAM) for Software Development that is adaptable to all contemporary scenarios,
emphasizing global software development (GSD) vendor companies. The SAM of Software Development
was developed after studying 11 well-known development models and analyzing results obtained from a
systematic literature review (SLR) and questionnaire survey. The SAM of Software Development consists
of seven security assurance levels: Governance and Security Threat Analysis, Secure Requirement Analysis,
Secure Design, Secure Coding, Secure Testing and Review, Secure Deployment, and Security Improvement.
The security assurance levels of SAM of software development consist of 46 critical software security
risks (CSSRs) and 388 practices for addressing these risks. The proposed SAM of Software Development
was assessed based on a tool created by Motorola, which is used to evaluate the present state of a company’s
software processes and find areas for improvement. We conducted 3 case studies on software development
companies, using data from real software projects to examine the results of a practical experiment in each
company. The results of the case studies indicate that the proposed SAM of Software Development helps
measure the security assurance level of an organization. In addition, it can potentially serve as a framework
for researchers to develop new software security measures.

INDEX TERMS Secure software engineering, software development life cycle, global software develop-
ment, systematic mapping study, systematic literature review, questionnaire survey, case study, security risks
and practices.

I. INTRODUCTION

Security for software has become increasingly important
since hacking and other attacks on computer systems have
grown in popularity in the last few years. As a result, several
researchers have examined security solutions as early as the
requirement engineering phase. With the growth of the soft-
ware business and the Internet, people are paying increasing
attention to software system security. Managers and users of
software systems may suffer enormous losses if the system’s
sensitive data is exposed or hacked and rendered inoperable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Weizhi Meng

58458

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

To incorporate security into the software engineering
paradigm, it should be considered from the start of the SDLC
[1], [2]. Secure software engineering (SSE) is the process of
designing, building, and testing software so that it becomes
secure; this includes secure SDLC processes and secure soft-
ware development (SSD) methods [3]-[5]. Most enterprises
typically view security as a post-development procedure [6].
No consideration is given to security before development [7].

Khan [8] stated that as software development becomes
more complex, distributed, and concurrent, security issues
greatly influence software quality. Insecure software harms
an organization’s reputation with customers, partners, and
investors; it increases costs, as companies are forced to repair
unreliable applications; and it delays other development

VOLUME 10, 2022

https://orcid.org/0000-0002-5983-9981
https://orcid.org/0000-0003-0339-7915
https://orcid.org/0000-0002-6585-4483
https://orcid.org/0000-0003-2531-6485
https://orcid.org/0000-0003-4384-5786

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

efforts as limited resources are assigned to address cur-
rent software deficiencies [8]. Most software programs
are designed and deployed without attention to protection
desires [9], [10].

Hidden attacking risks within or outside the organiza-
tion emerge day by day, resulting in substantial financial
loss and confidentiality and credibility losses by putting
the availability and integrity of organizational data at
risk [11], [12]. Numerous methodologies for assessing
software quality have been developed, including the fol-
lowing: “CMMI”, “Microsoft Software Development Life
Cycle (MS-SDL)”, “Misuse case modeling”, “Abuse case
modeling”, “Knowledge Acquisition for Automated Spec-
ification”, “System Security Engineering-Capability Matu-
rity Model (SSE-CMM)”’, “OWASP”’, and ““Secure Tropos
Methodology™ [13].

The common phases of SDLC include requirement, design,
coding, testing, deployment, and maintenance [14]. The final
product will not be secure if security is not considered in all
phases of the SDLC. This is only possible if a secure SDLC
process is followed; secure SDLC ensures that security-
related activities are an integral part of the overall develop-
ment effort [15]-[17].

The literature [18]-[21] shows that the software indus-
try has implemented numerous software security techniques,
approaches, and solutions. There are a variety of maturity
models available for evaluating software security processes,
and many firms use these. However, our systematic mapping
study [22], [23] revealed several limitations in the existing
software security models. None of these is committed explic-
itly to identifying security risks and their practices in each
phase of the SDLC. For global software development (GSD)
vendor businesses, none of the existing models encompasses
all components and activities of a secure SDLC. GSD vendor
companies must be aware of the security threats while pro-
ducing secure applications and risk mitigation techniques to
ensure the SDLC’s integrity. To increase their SDLC secu-
rity, GSD vendors will measure their level of maturity and
assurance. It will also make GSD engineers more aware of
the issue.

This paper aims to develop a secure SDLC and Security
Assurance Model (SAM) of Software Development for GSD
vendor organizations to specify the requirements for secure
software development better. As a result, GSD vendors will
assess their level of security assurance and capacity to pro-
duce more secure software. To accomplish this, we investi-
gate the following research questions (RQs):

RQ1: How can a secure SDLC be developed for GSD
vendor companies that are both practical and robust?

RQ2: Is the proposed security assurance model capable
of assisting GSD organizations in determining their security
assurance to produce secure software?

This paper is organized as follows: Section II includes
an overview of the relevant work and its summary.
Section III goes into detail on how the study was con-
ducted. Section IV presents a secure SDLC for GSD vendor

VOLUME 10, 2022

businesses. Section V outlines the proposed SAM for soft-
ware development and the security assurance levels. The
validation of the model using case studies is presented
in Section VI. Section VII highlights the limitations of the
study. Section VIII concludes with a discussion of the find-
ings and directions for future research.

II. LITERATURE REVIEW
A review of software security research and maturity models
is presented in this section:

A. SOFTWARE SECURITY
Let’s a look at some of the concepts about software security
that have been discussed in the literature:

e “Software security is the software’s ability to resist, tol-
erate and recover from events that intentionally threaten
its dependability [24]”.

e “Software security is about building secure software:
designing software to be secure, making sure that soft-
ware is secure, and educating software developers,
architects, and users about to build secure things [25]”.

B. SECURE SOFTWARE DEVELOPMENT PROCESS

There are many different ways to include security into the
software development lifecycle (SDLC), and this section
explains some of the most prevalent security techniques
employed in these methodologies:

e McGraw [24], [26] recommends seven touchpoint
operations (Abuse cases, Security requirements, Archi-
tectural risk analysis, code review and repair, Pene-
tration testing, and security operations) for creating
secure software, all of which are connected to software
development artefacts.

e Gupta et al. [27] developed Team Software Process for
Secure Software Development (TSP) specifically for
software teams to help them create a high-performance
team and prepare their work to produce the best
results.

e Flechas et al. [28] developed AEGIS (Appropriate and
Effective Guidance for Information Security). It first
evaluated device assets and their relationships, then
moved on to risk analysis, defining weaknesses, threats,
and risks.

e Subedi er al. [29] present a security paradigm
that extends security development practices in agile
methodology to overcome this problem in web appli-
cation development.

e Sodiya [30] developed the Secure Software Devel-
opment Model (SSDM), which provides training to
stakeholders in software development with adequate
security education.

e Al-Matouq et al. [15] designed a framework Secure
Software Design Maturity Model (SSDMM), and the
results show that SSDMM helps measure the maturity
level of software development organizations.

58459

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

C. SOFTWARE MATURITY MODELS
Different models for assessing the maturity of software prod-
ucts have been created and implemented:

e The Software Engineering Institute (SEI) at Carnegie
Mellon University developed the Capability Maturity
Model Integration (CMMI) [31] process model, which
assists companies measure and improving their devel-
opment processes while also delivering high-quality
products.

e Alshayeb et al. [32], [33], proposed a framework
to evaluate the maturity of software products called
Technical-CMMI (T-CMMI).

e Eckert er al. [34] developed a model to measure the
maturity level of Inner Source implementation, which
is the process of adopting open-source software devel-
opment practices for the internal development activities
of an organization.

e Al-Qutaish and Abran [35] proposed the Software
Product Quality Maturity Model (SPQMM), which
measures the quality of a software product.

e The EuroScope consortium [36] developed a model
to assess software product quality called the SCOPE
Maturity Model (SMM).

e April et al. [37] proposed the Software Mainte-
nance Maturity Model (SMmm), based on the CMMI,
to assess and improve the quality of software mainte-
nance activities.

e Da Silva and de Barros [38] presented an information
security maturity model for software developers based
on ISO 27001; it was evaluated by subject experts
and utilized to measure the maturity level of several
organizations.

D. SECURITY IN SDLC PHASES

This section presents some well-known secure software mod-
eling processes that include security in software development
phases:

e S. R. Ahmed [39] identified security activities that
should be performed to build secure software and has
shown how the security activities are related to usual
activities in different phases of software development.

e Essafi et al. [40] developed the Secure Software
Development Process Model (S2D-ProM), a strategy-
oriented process model that offers guidance and
support to developers and software engineers, from
beginners to experts, to build secure software.

e Niazi et al. [41] conducted a systematic litera-
ture review (SLR) to pinpoint the required practices
for developing secure software and identifying best
requirement practices; a framework for secure require-
ment engineering named Requirements Engineering
Security Maturity Model (RESMM) was developed.

e Manico [42], designed the Comprehensive,
Lightweight Application Security Process (CLASP),
which consists of 24 high-level security activities that

58460

can be entirely or partially integrated into software
during the SDLC.

e The Building Security In Maturity Model (BSIMM)
[43] quantifies numerous businesses’ security activities
and provides a common foundation for comparing their
security endeavours. There are 119 activities in the
BSIMM 10 software security framework. These activ-
ities are divided into twelve practices. Each practice’s
exercises are divided into three maturity levels.

e The Open Web Application Security Project (OWASP)
created the Software Assurance Maturity Paradigm
(SAMM) [42], which is a non-commercial model and
is an open platform that aids software companies in
developing and implementing software security poli-
cies. It contains resources that can help a business
assess its software security practices, develop a bal-
anced software security assurance program, and show
improvement programs.

E. SUMMARY

Recent software security research has concentrated on
offering technical solutions for security concerns; however,
a limited study examines security policies and processes in
the SDLC’s various phases. Little research has been con-
ducted to increase organizational maturity and assurance in
secure software development.

Despite the importance of identifying software security
risks and practices for addressing these risks in all the phases
of SDLC, there is no maturity, readiness, assurance, or secure
model for GSD vendor organizations that has been proposed.
Furthermore, multiple methodologies and strategies have
been established by various researchers; however, industry
developers have not adopted them. Existing industry matu-
rity, readiness, and assurance frameworks do not consider the
security procedures and techniques described in the literature.

GSD vendor organizations need to be more aware of the
security risks during the software development process. They
need to read up on the literature and follow industry best
practices. This will help that the project goes well and is
secure.

lll. RESEARCH METHODOLOGY

We used a seven-step methodology to meet the study’s goals;
we also gathered information from the academic community
and the software business, as depicted in Figure 1.

A. SYSTEMATIC MAPPING STUDY (SMS)

The acquired data is more reliable because of this evidence-
based methodology. The following sections go over each of
these steps in-depth:

SMS is a literature study that focuses on selecting and
combining all high-quality research related to a specific topic
and provides a complete summary of current texts appli-
cable to specific map queries [44]. Additionally, it finds
gaps in existing subject areas and forecasts future research
trends [45]-[47].

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

Secure Software

Boeineciing Systematic Systematic Questionnaire
. Literature y
(Broad Research Mapping Study Review (SLR) Survey
Area) *
Identlfy the gap Valldate the findings of SLR
Secure Software Development gznc:lﬁsczﬁt;)\:’a::
Life Cycle for GSD Vendor Security Risks (CSSRs)
Organizations and Practices
Analysis
Validation of SAM of
Software Development of CSSRs
using Case Studies

FIGURE 1. Research methodology.

The primary purpose of the first step (conducting SMS)
of this study is to know what is the state-of-the-art in
secure software engineering (SSE) [22], [23]. The final selec-
tion was among 116 studies that met the inclusion and
exclusion criteria [22], [23]. The SMS findings were catego-
rized based on the quality assessment, software security pro-
cesses/models/frameworks/methods, security stages of the
SDLC and the publication venue, and SWOT analysis of the
software security approaches [22], [23].

After reviewing the studies, we discovered 37 SSE
paradigms, frameworks, and models [22], [23]. The find-
ings indicate that the following SSE frameworks/models
are the most frequently employed: ‘“Microsoft Software
Development Life Cycle (MS-SDL)”’, “Misuse case model-
ing”, “Abuse case modeling”, “Knowledge Acquisition for
Automated Specification”, “System Security Engineering-
Capability Maturity Model (SSE-CMM)” and ‘‘Secure
Tropos Methodology” [22], [23].

This study’s findings suggest that this field is still in its
infancy. It is necessary to conduct sufficient research, mainly
focusing on empirically validated solutions, to identify soft-
ware security risks and strategies for managing these risks at
each stage of the software development lifecycle (SDLC).

B. SYSTEMATIC LITERATURE REVIEW (SLR)

“An SLR is a secondary study in which primary studies are
examined impartially and iteratively to define, interpret, and
discuss evidence relevant to the research questions” [45].
SLR was used in the second phase of this study to clas-
sify the selected articles for identifying security risks and
practices [48]. A total of 121 papers were selected via the
tollgate technique [49] based on the inclusion, exclusion, and

VOLUME 10, 2022

quality rating criteria. Khan et al. [48] identified 145 security
risks and 424 best practices that help software development
organizations to manage security throughout the SDLC.

C. QUESTIONNAIRE SURVEY
An online questionnaire survey using Google Docs was cre-
ated to validate the SLR findings and discover other secu-
rity risks and their practices. The questionnaire methodology
is more effective than other observational methods because
it allows for a larger population to be targeted for data
gathering [50]-[58].

In the 3rd stage of this study, an online survey method is
employed for data collection [59]. The following steps were
used in the questionnaire survey:

1) DEVELOPMENT OF QUESTIONNAIRE SURVEY

The questionnaire primarily consists of closed-ended ques-
tions designed to extract specific information from experts.
There are a few open-ended questions in the questionnaire
to remove any other software security-related risks and prac-
tices that were not identified by the SLR. We employed a
five-point Likert scale to obtain survey participants’ obser-
vations regarding the software security risks and its practices
listed in the closed-ended section, i.e., “‘strongly agree, agree,
neutral, disagree, and strongly disagree.

2) PILOT OF QUESTIONNAIRE SURVEY

To conduct the pilot assessment of the questionnaire sur-
vey, we chose experts working in the GSD environment
(i.e. “Software Engineering Research Group (SERG UOM)
Pakistan”, “King Fahd University of Petroleum and Miner-
als, Saudi Arabia”, and ‘““‘Qatar University, Doha, Qatar.””).

58461

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

Governance and Security Threat Analysis

Brainstorming ideas that solve a particular problem &—#
faced by target users.

Security Improvement

Securely update and support the
software after it has been delivered
to the market

Secure

SDLC

for G5D Vendors

Secure Requirement Engineering

% Interacting with stakeholders and users to collect

security documents and project requirements

Secure Design

—
Creating secure architecture of 3
software system and its elements

Organization

Secure Deployment

—0
Preparing the software to securely run
and operate in a specific environment

Secure Testing and Review
|

Evaluating the quality of a software with the aim of finding
security threats/risks and fixing defects

FIGURE 2. Secure SDLC for GSD vendor organizations.

This pilot assessment aims to address significant issues
(in terms of statistical variables) and improve the survey
questions’ understandability. Experts suggest improving the
questionnaire’s design, such as adding questions to obtain
more information about survey participants. The question-
naire survey was revised after taking into account the ideas
and recommendations of the experts.

At the beginning of the survey, a statement on the
researchers’ ethical responsibility was also added to assure
the participant’s confidentiality. This remark reassured the
participants that only the study team would access their infor-
mation. It was stated that the research team would not share
the data with anyone to reveal the identity of any participant
or organization.

3) DATA COLLECTION SOURCES

As previously indicated, our target population was large and
spread organizations across the globe. We decided to use
unusual methods to collect responses from SSD professionals
working in GSD. We used the snowball sampling technique
to gather data from the experts [50]. Snowballing is a low-cost
and straightforward strategy to reach a specific audience [50],
[54], [60]. We used social media networks such as Facebook,
LinkedIn, Research Gate, and email to contact the experts.
The empirical study’s data was collected online from June 01,

58462

Secure Coding
B—
Building the software using a secure
programming language by the development

team

2021, to July 04, 2021, and the entire data gathering process
took one month and four days. During the survey’s imple-
mentation, 64 responses were collected.

All of the responses were manually reviewed. We excluded
14 responses because the expertise shared by these 14 persons
was unrelated to GSD and SSD. For analysis, the final 50 sur-
vey results were taken into account. We ensure survey partic-
ipants that the obtained data will only be used for research
purposes and that their identities will never be disclosed to a
third party.

For analysis, the final 50 survey results were taken into
account. This study empirically validated 145 software secu-
rity risks and 424 security practices that assist GSD vendor
organizations in managing the security activities in the SDLC
phases.

4) DATA ANALYSIS

The frequency analysis method was used to examine survey
participant replies in this study. This approach works well
for analyzing nominal and ordinal data over many variables
or groups of variables [61]. Because the survey responses
are nominal, we employed the chi-square (‘‘liner-by-linear
connection”) technique to discover significant differences
across the variables. Various research with similar data types
has used the same analysis approach [60], [62].

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 1. CSSRs and its practices in the governance and security threat analysis phase of the secure SDLC.

Secure SDLC
Phase

Critical Software
Security Risks
(CSSRs)

Practices for CSSRs

CSSR1: Lack of
security document
checklist

R1P1: Make use of checklists to analyze security requirements

R1P2: Develop security guidelines (collection of practices, checklists, code style, specification, security
function, etc.)

R1P3: Check that the identification security requirement meets your standard

R1P4: Check the documentation against the security requirements documentation acceptance test
parameters

R1P5: Check that authentication, authorization, immunity, privacy, integrity, non-repudiation, intrusion
detection, and system maintenance security requirement meets your standard

R1P6: Use checklists for secure auditing requirements

CSSR2: Lack of
experience,
knowledge, guidance,
and security training
during security

R2P1: All security team members have adequate security training

R2P2: Develop security guidelines (collection of practices, checklists, code style, security specification,
security function, etc.)

R2P3: Specify security policies, standards, and reference guidelines for security requirements

R2P4: Identify system stakeholders to improve the knowledge of identification of security requirements

Govel:nance and requirements R2P5: Explain how to use the security document
Security Threats documentation
Analysis R3P1: All stakeholders, customers, clients need to be agreed on the security requirements definition

CSSR3: Lack of
shared understanding
of security
requirements
definitions

R3P2: Capture and define non-functional security requirements as attributes of the software

R3P3: Define the system boundaries regarding privacy and system maintenance security requirements
such as sensitive data and communication.

R3P4: Define specialized security terms

R3P5: A acceptable security threshold can be defined using a security index.

R3P6: Specifically define each security requirement

R3P7: Define policies for change management

R3P8: Define standard templates for describing authentication, authorization, immunity, privacy,
integrity, non-repudiation, intrusion detection, and system maintenance security requirements

R3P9: Define the system's operation environment to gain survivability security requirements

R3P10: Define change management policies for authentication, authorization, immunity, privacy,
integrity, non-repudiation security, and system maintenance requirements

R3P11: Define operational processes to gain non-repudiation, integrity, immunity, intrusion detection,

and security requirements

D. QUANTIFICATION OF SECURITY RISKS INTO CRITICAL
SOFTWARE SECURITY RISKS (CSSRs) USING FREQUENCY
AND RANKING ORDER

To identify the critical software security risks (CSSRs),
we used the criterion of 10% occurrences in both SLR
and survey findings. Other researchers have used a similar
approach [62]-[64]. However, secure software development
professionals and researchers might set their criteria for deter-
mining the importance of the stated software security risk.
Based on this criterion, we identified 46 critical software
security risks in the SDLC phases. The CSSRs and practices
for addressing these risks are presented in Section I'V. We also
analyzed these CSSRs on GSD Experts’ views concerning
the impact of software security risks on secure software
development (SSD) based on survey respondents’ location,
GSD vendor organization size, and respondents’ experience
level in SSD projects (Accepted for publication in Security in
Communication Journal).

E. CASE STUDY

A case study is a suitable research methodology and an
effective validation tool in Software Engineering [65], [66].
In the last stage of this research, we have conducted three
case studies in software development companies to validate
our projected model, “Security Assurance Model (SAM)
of Software Development,” for GSD vendor organizations.

VOLUME 10, 2022

We conducted focus groups with case study applicants to get
feedback on our newly engineered model.

IV. SECURE SDLC FOR GSD VENDOR ORGANIZATIONS
The CSSRs and their practices collected via the SLR and
questionnaire survey were categorized into different SDLC
phases and used to develop the secure SDLC for GSD ven-
dor organizations. The structure of this SDLC is shown in
Figure 2.

It consists of seven stages: Governance and Security Threat
Analysis, Secure Requirement Analysis, Secure Design,
Secure Coding, Secure Testing and Review, Secure Deploy-
ment, and Security Improvement. Each of these phases con-
tains CSSRs and practices for addressing these risks. The
following sections briefly describe each stage:

A. GOVERNANCE AND SECURITY THREAT ANALYSIS
To give strategic direction, ensure that objectives are met,
ensure risk management is acceptable, and check resource
usage is responsible, security governance is the collection of
roles and procedures exercised by senior management. Effec-
tive security governance will allow your firm to efficiently
coordinate its security efforts when it is carried out correctly.
Table 1 presents the CSSRs and their practices in the
“Governance and Security Threat Analysis” phase of the
secure SDLC for GSD vendor organizations [14], [17], [23],

58463

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 2. CSSRs and its practices in the secure requirements engineering phase of the secure SDLC.

Critical Software

Requirements Analysis
and negotiation

Secure SDLC Security Risks Practices for CSSRs
Phase (CSSRs)
R4P1: Identify functional and non-functional security requirements
CSSR4: Security R4P2: Identify high-level functional security objectives, requirements
. : R4P3: For each security objective, security requirements are identified along with the functional and non-
requirements are often . -
neglected or considered functional requirements
non-functional R4P4: Capture and define no_n—functlongl securl_ty requlrﬁ:men_ts as atFrlbutes gf the softyvare
requirements R4P5: Map all the non-functional security requirements identified with functional requirements
R4P6: Develop security guidelines (collection of practices, checklists, code style, specification, security
function, etc.)
R5P1: Review documentation against the objectives and needs
R5P2: Check the documentation against the security requirements documentation acceptance test
parameters
. . R5P3: Perform Secure Requirements Review
Cizﬁf&;icnkts()frzs?:\gty R5P4: Soft‘ware products should be certified according to security requirements)
assessment z,malysis’ R5P5: Vahdgte that software artefacts and processes no lo_nger bear the unacceptable r%sk
verification ,vali da tio’n R5P6: Identification of attackers' interest and capabilities in the resources/assets of a piece of software
? R5P7: A threshold of acceptable security can be defined by using the security index
R5P8: Identify validation checklists
R5P9: Specify low-level security requirements to remove security errors
R5P10: Use multi-disciplinary teams to assess security requirements
R6P1: Assess physical protection, survivability, and secure auditing requirement risks
CSSR6: Lack of R6P2: Be sensitive to organizational and political considerations in gaining physical protection of security
assessment of physical | requirements
protection, survivability, | R6P3: Use checklists for secure auditing requirements
and secure auditing R6P4: Define the system's operation environment to gain survivability security requirements
requirement risks R6P5: Institute accountability for security issues
R6P6: Assess system feasibility in terms of survivability security requirements
R7P1: The primary responsibility is to conduct product security risk analysis to identify potential security
requirements and constraints early.
R7P2: Attack trees modeling is one of the techniques suggested to be used for analyzing security risks
R7P3: Analyze tradeoffs between cost and protection provided by security controls
R7P4: Identify security issues with STRIDE by classifying attacker goals
R7P5: Security Risk Assessment: use DREAD model
Secure R7P6: Perform threat landscaping
Requi CSSR7: Improper plan | R7P7: Data comprehensiveness
equirements . . .
Engineerin for Security R7P8: Grouping of Requirements
gineering

R7P9: Write down the misuse cases for each secure requirement identified

R7P10: Define security of system boundaries

R7P11: Perform risk analysis to address the security issues in requirements development
R7P12: Make use of checklists to analyze security requirements

R7P13: Conflicts Resolution: Consider conflicts and how to resolve them

R7P14: Sort out security requirements through a multi-dimensional approach

R7P15: Identify priorities in security requirements

R7P16: Provide software to support negotiations

R7P17: Verify the misuse case strength in understanding possible attacks

CSSR8:Lack of
developing threat
modeling

R8P1: Identify threat origin with the help of threat modeling in the requirement phase
R8P2: Follow STRIDE Threat Model for developing threat modeling

R8P3: Follow DREAD Threat Model for developing threat modeling

R8P4: Analyze the threats faced at the time of requirements development

R8PS5: Illustrate threat landscaping, risk likelihood, and mitigation strategy

CSSR9:Lack of security
requirements elicitation
activity

ROIP1: Elicit and categorize safety and security requirements

R9P2: Take into consideration organizational and political issues

R9P3: Use scenarios to elicit sensitive data and communication in terms of authentication, authorization,
privacy, system maintenance, security requirements

RYP4: Identify stakeholders

RYPS5: Identify the operating environment of the system

RIP6: Use concerns related to business to motivate security requirements elicitation
RYP7: Identify information assets

R9P8: Identify functional and non-functional security requirements

R9YP9: Search for domain constraints

RI9P10: Record rationale for security requirements

R9P11: Gather security requirements from various views

R9P12: Use hypothetical cases to elicit security requirements

R9P13: Remove any ambiguous requirements

R9P14: Identify operational process

RIP15: Reuse security requirements

R9P16: Determine and consult stakeholders of the system

R9P17: Record security requirements sources

RIP18: Assess system security feasibility

58464

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 2. (Continued.) CSSRs and its practices in the secure requirements engineering phase of the secure SDLC.

CSSR10:Improper
security requirements
identification and
inception

R10P1: All stakeholders, customers, clients need to be agreed on the requirements definition

R10P2: Illustrate the security needs with different perspectives, analyze them, priorities and then specify
R10P3: Identify high-level functional security objectives, requirements

R10P4: Identification of security goals

R10PS5: Utilize brainstorming technique to aggregate identification security requirements

R10P6: Identification of potential attackers of the software

R10P7: Check that the identification security requirement meets your standard

R10P8: Set forth the security objectives to address the needs identified

R10PY: For each security objective, security requirements are identified along with the functional and
non-functional requirements

R10P10: Capture and define non-functional security requirements as attributes of the software

R10P11: Identify system stakeholders to improve identification of security requirements

CSSR11:Lack of secure
requirements
documentation

R11P1: Incorporate security needs, objectives, and requirements in the final documentation
R11P2: Explain how to use the security document

R11P3: Specify security policies, standards, and reference guidelines for security requirements
R11P4: Make a business case for the system concerning security

R11PS5: Define specialized security terms

R11P6: Help readers find information

R11P7: Make the document easy to change

R11P8: Illustrate threat landscaping, risk likelihood, and mitigation strategy

R11P9: Include a summary of the security requirements

CSSR12:Lack of
security requirements
prioritization,
management, and
categorization

R12P1: Incorporate security needs, objectives, and requirements in the final documentation
R12P2: Explain how to use the security document

R12P3: Specify security policies, standards, and reference guidelines for security requirements
R12P4: Make a business case for the system concerning security

R12PS5: Define specialized security terms

R12P6: Help readers find information

R12P7: Make the document easy to change

R12P8: Illustrate threat landscaping, risk likelihood, and mitigation strategy

R12P9: Include a summary of the security requirements

R12P10: Perform Requirements Specification

R12P11: Identify policies for management of security requirements

R12P12: Specifically define each security requirement

R12P13: Risk mitigation should be conducted in a coherent and a cost-effective manner
R12P14: Governance: Practice that helps organize, manage, and measure a software security initiative
R12P15: Evaluate and manage product security risks throughout the project

R12P16: Risk ranking to prioritize and determine the risks that should be avoided

R12P17: Define and maintain traceability manual

R12P18: Establish and manage the project's secure development process

R12P19: Preservation of confidentiality, Integrity, Availability, Usability should be specified to mitigate
identified threats

R12P20: Identify viewpoint

R12P21: Define policies for change management

R12P22: Identify global system security requirements

R12P23: Asset Rating

R12P24: Risk estimation

R12P25: Identify volatile security requirements

R12P26: Record rejected security requirements

R12P27: Vulnerability measurement

R12P28: Perform Requirements Elaboration

R12P29: Threat evaluation & prioritization

CSSR13:Improper plan
for secure requirements
authentication,
authorization, and
privacy

R13P1: Plan for conflicts and conflict resolution for authentication, authorization, immunity security, non-
repudiation, and system maintenance requirements in terms of multiple accounts

R13P2: Define standard templates for describing authentication, authorization, immunity, privacy,
integrity, non-repudiation, intrusion detection, and system maintenance security requirements

R13P3: Use concise and straightforward language to explain authentication, authorization, immunity,
privacy, integrity, non-repudiation, intrusion detection, and system maintenance security requirements
R13P4: Check that authentication, authorization, immunity, privacy, integrity, non-repudiation, intrusion
detection, and system maintenance security requirement meets your standard

R13P5: Define change management policies for authentication, authorization, immunity, privacy,
integrity, non-repudiation security, and system maintenance requirements

R13P6: Use interaction matrices to find conflicts and overlaps in terms of intrusion detection security
requirements

R13P7: Define the system boundaries in terms of privacy and system maintenance security requirements
such as sensitive data and communication

R13P8: Define operational processes to gain non-repudiation, integrity, immunity, intrusion detection, and
security requirements

VOLUME 10, 2022

58465

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 3. CSSRs and its practices in the secure design phase of the secure SDLC.

Secure
SDLC
Phase

Critical Software Security Risks
(CSSRs)

Practices for CSSRs

Secure
Design

CSSR14: Lack of developing threat
modeling during the design phase

R14P1: Analyze and Minimize Attack Surface

R14P2: Enumerate threats and prioritize the threat based on the potential impact
R14P3: Verify whether the threat is mitigated with a security control

R14P4: Identify areas that could be of interest to attackers

R14P5: There could be multiple design decisions to mitigate any threat

R14P6: Secure design decisions to remove threats can be prioritized based on a
cost/benefit analysis

R14P7: Secure design decisions must be identified for threats that violate any of the high-
level security requirements.

R14P8: Risk analysis should be performed on the identified threats to calculate the
potential damage

CSSR15: Lack of attention to following
security design principles

R15P1: Implement Least Privilege

R15P2: Implement a defence-in-depth policy, which includes multilevel security

R15P3: Keep your design as simple as you can by applying the economy of mechanism
policy

R15P4: Correctness by Construction (CbyC)

R15PS5: Fail Securely: The system does not disclose any data that should not be disclosed
ordinarily at system failure

R15P6: Apply false-safe default principles to make sure that the failure of any activity will
prevent unsafe operation

R15P7: Separation of Privilege

R15P8: Reluctance to Trust

R15P9: Use a Positive Security

R15P10: Establish Secure Defaults

R15P11: Never assumes that your secrets are safe

R15P12: Securing the Weakest Link

R15P13: Proactive, not Reactive

R15P14: Privacy as the Default

R15P15: Privacy Embedded into Design

R15P16: Full Functionality

R15P17: End-to-End Security

R15P18: Visibility, Usability, and Transparency

R15P19: Intrusion Detect System (IDS): An IDS is a monitoring system that detects
suspicious activities and generates alerts when they are detected. Based upon these alerts, a
security operations center (SOC) analyst or incident responder can investigate the issue and
take the appropriate actions to remediate the threat.

R15P20: Follow the psychological acceptability principle of design to incorporate basic
security automatically

R15P21: Follow the least common mechanism to restrict shared resource access

R15P22: Respect for User Privacy

CSSR16: Lack of security design
awareness, guidance, and training

R16P1: All security team members have adequate security training in secure design
R16P2: Develop security design awareness guidelines (collection of practices, checklists,
code style, security specification, security function, etc.)

R16P3: Specify security policies, standards, and reference guidelines for security design
awareness

R16P4: Identify system stakeholders to improve the knowledge of identification of security
design

CSSR17: Improper secure design
documentation

R17P1: Develop a Test plan

R17P2: Document each identified threat along with its description, risk, defensive
technique, and risk management strategy

R17P3: Secure document design

R17P4: Remove unimportant features

R17P5: Identify design attributes

R17P6: Use security diagram classes

R17P7: Remember that hiding secrets are hard

R17P8: Avoiding logs from external data

R17P9: Map security requirements with cryptographic services (Authentication,
Confidentiality, Integrity, and Non-Repudiation)

R17P10: Identify environmental and device security constraints

R17P11: A threshold of acceptable security can be defined by using a security index.
R17P12: Perform cost/benefit analysis (CBA) & Security planning (based on risks &
CBA)

CSSR18: Lack of building and
maintaining abuse case models and attack
patterns

R18P1: Write down the misuse cases for each secure requirements
R18P2: Verify the misuse case strength in understanding possible attacks
R18P3: Make the mapping explicit, identify the use cases adapted to misuse cases

CSSR19: Improper security design review
and its verification

R19P1: Revise or review design implementation
R19P2: External examination of the design

58466

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 3. (Continued.) CSSRs and its practices in the secure design phase of the secure SDLC.

R19P3: Establish secure design requirements

R19P4: Plan and implement secure supplier and third-party component selection
R19P5: The design must be inspected (multiple times if required) to identify and remove
software errors

R19P6: Remember that backward compatibility will always give your grief

R19P7: The expert also needs to verify the interface and mediator between product
management and development

CSSR20: Lack of developing data flow
diagram

R20P1: Establish security improvement goals

R20P2: Map out the process Value Stream.

R20P3: Collect time and waste data.

R20P4: Conduct Kaizen event (5 days). Understand the current work processes (Sub
Process Map and & Going to the Gemba) Identified, analyzed wastes, and prioritized.
improvement focus

R20P5: Install solutions.

CSSR21: Lack of establishing security
design requirements

R21P1: Establish secure design requirements

R21P2: Secure design decisions must be identified for threats that violate any of the high-
level security requirements

R21P3: Map security requirements with cryptographic services (Authentication,
Confidentiality, Integrity, and Non-Repudiation)

CSSR22: Improper restriction to share
resource access

R22P1: Develop complex Encryption methods

R22P2: Perform security certification and accreditation of target system

R22P3: All legitimate users must have the privileges and minimum access needed

R22P4: Choose a proper and hard to guess location for temporary files and apply an access
control mechanism

R22P5: Provide data protection services

R22P6: Mask the problem by applying filters to either block or modify user input

R22P7: Use Logging and Tracing

CSSR23: Lack of implementation of
security design decisions: (Cryptographic
protocols, standards, services,
frameworks, and mechanisms

R23P1: Implement security design decisions: (Security Cryptographic protocols, standards,
services, and mechanisms)

R23P2: Use of security patterns

R23P3: Guide those involved in designing or enhancing security design decisions

CSSR24: Lack of defence in depth

R24P1: Identify security threats, Characterize risks and Maintain asset inventory

R24P2: Implement standard security recommendations, policies, and procedures

R24P3: Implement physical security (field electronics locked down, control center access
controls, remote site video, access controls, and remove barriers)

R24P4: Implement security monitoring (intrusion detection systems, security audit
logging, security incident, and event monitoring)

[41], [67]-[72]. In the following tables, R1P1: Means Prac-
tice 1 for CSSR1, R1P2: Means Practice 2 for CSSR1, and
soon...

B. SECURE REQUIREMENTS ENGINEERING

Software development begins with a phase known as require-
ments analysis. During the requirements phase, the goal is
to define and communicate software requirements specific
to the customer’s needs. Additionally, security requirements
must be defined in addition to software requirements. Secu-
rity requirements arise from a variety of places and at various
periods. Security needs are more complicated to identify
than functional requirements since they are not as visible as
functional requirements.

Table 2 presents the CSSRs and their practices in the
“Secure Requirement Engineering” phase of the secure
SDLC for GSD vendor organizations [14], [17], [23],
[41], [67]-[72].

C. SECURE DESIGN

Creating a software architecture is the first step in the
design process. The critical components of software and their
interactions are identified by software architecture. Software

VOLUME 10, 2022

design documents are then used to explain the security archi-
tecture in further depth.

Security design is constantly revised in light of this infor-
mation to incorporate security. Table 3 depicts the security
operations during the design [8], [17], [22], [72]-[79].

D. SECURE CODING

The implementation phase serves a dual purpose in terms of
security. The first task is to prevent software security issues
by writing secure code. The second step is to look for software
flaws using an automated security analysis tool. Automated
tools are used to examine the source code created by the
development team. These tools are run by computers and
look for common security flaws. Manual reviews follow the
automatic static analysis. Finally, the software is ready for
testing. Table 4 presents the CSSRs and their practices in the
“Secure Coding” phase of the secure SDLC for GSD vendor
organizations [3], [8], [17], [72], [80]-[83].

E. SECURE TESTING AND REVIEW

Test planning is the first step in the testing phase. The test-
ing team begins planning tests during the implementation
phase because test planning does not necessitate access to

58467

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 4. CSSRs and its practices in the secure coding phase of the secure SDLC.

Secure

Critical Software Security Risks

SDLC (CSSRs) Practices for CSSRs
Phase
R25P1:Acquisition of log
R25P2: Appropriate authorization
R25P3:Apply Hashes, message authentication codes
CSSR25: Tampering: is the unauthorized | R25P4:Incorporate Digital Signatures
modification of data R25P5:Communication connections between system components must be ensured using
protocols that provide confidentially
R25P6:Recording of user ID, Date, type of operation, name of AP at time of operation
execution
R26P1: Use of parameterized queries or stored procedures (OWASP)
R26P2: SQL injection prevention cheat sheet
R26P3: Input sanitization: User inputs are sanitized to ensure that they contain no
dangerous code
R26P4: Security privileges. Setting security privileges on the database to the least required.
For example, the delete rights to a database for end-users are seldom needed.
CSSR26: SQL Injection R26P5: Disabling literals. SQL injection can be avoided if the database engine supports
disabling literals, where text and number literals are not allowed as part of SQL statements.
R26P6: Avoid string concatenation for dynamic SQL statements
R26P7: Check the query if they exist in the query pool. Only they are permitted
R26P8: You can replace the single quote with double-quotes. This blocks the SQL
insertion attack
R26P9: Use of prepared Statement and "ORM"
R27P1: Design libraries and templates that minimize unfiltered input (OWASP XSS
Prevention Cheat Sheet)
R27P2: DNS rebinding
R27P3: Using ESAPI safety mechanism can eliminate detected XSS vulnerabilities in web
application
R27P4: HTML Purifier eliminates XSS vulnerabilities
CSSR27: Cross-Site Scripting, cross-site R27P5§ Check input with \}llglidalt(ion function' in CakePHP " - . §
request forgery R27P6: Use a cryptographic token to associate a request wit | specific action. The token
can be regenerated at every request. (OWASP CSRF Prevention Cheat Sheet; encrypted
token)
R27P7: Confirm action every time potentially sensitive data is invoked
R27P8: Use of the optional HTTP Referrer header
233‘:; eg R27P9: Normalize all inputs, including those not expected to have any scripting content.

R27P10: "Sanitizing" is one way to prevent XSS attacks
R27P11: Use of h() function and security component in CakePHP

CSSR28: Denial of Services: is the
process of making a system or application
unavailable

R28P1:Restrict number of accesses per hour
R28P2:Appropriate authentication and authorization
R28P3:Appropriate filtering, throttling, quality of service

CSSR29: Repudiation: is the ability of
users (legitimate or otherwise) to deny that
they performed specific actions or
transactions

R29P1: Every activity related to essential and sensitive data must be recorded

R29P2: Incorporate Digital Signatures, timestamps, audit trails

R29P3: Ensure that the sender of a message does not deny having sent the message, and
the receiver does not deny receiving the message

CSSR30: Information Disclosure: is the
unwanted exposure of private data

R30P1: Ensure that only selected accounts can access essential data
R30P2: Implement an encryption mechanism and protect secrets

CSSR31: Elevation of privilege: occurs
when a user with limited privileges
assumes the identity of a privileged user

R31P1: Physical security techniques, such as locking doors, alarms, and monitoring
targets, should be implemented

R31P2: Hashing of password (OWASP password storage cheat sheet)

R31P3: Confidentiality: Protect data or services from unauthorized access

R31P4: Integrity: Avoid unauthorized manipulation of data or services

R31P5: Availability: Assure that the system works promptly and services are not denied to
an authorized user

R31P6: Authentication: Identify the actors involved in a transaction and verify that they
are who claim to be

R31P7: Use a firewall, VPN, and SSL techniques

R31P8: Hashing of password using "Auth" component in CakePHP

CSSR32: Spoofing: An attempt to gain
access to a system by using a fake identity

R32P1: Declaration of accessible IP addresses by using .htaccess file

R32P2: Customers must use a strong password or use a multi-login mechanism
R32P3: Restriction of access

R32P4: Do not store secrets in plain text

R32PS5: Protect secret data

CSSR33: Password Conjecture: Lack of
password complexity enforcement

R33P1: Delete all default account credentials that product vendor may put in

R33P2: Strengthen the password

R33P3: Implementation of password throttling mechanism (OWASP Authentication Cheat
Sheet-prevent brute force attack)

R33P4: Implement the Account lockout procedure

R33P5: Establishment of a firm password policy and check of its observance (OWASP

58468

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 4. (Continued.) CSSRs and its practices in the secure coding phase of the secure SDLC.

Authentication Cheat Sheet-password complexity, use multi-factor authentication)

R33P6: Implement count number of login trial and set a flag that shows account lock to
"True" if the number exceeds the threshold

R33P7: Enhancement of specification regarding password

R33P8: Checking of input with validation function in CakePHP

R33P9: Use of solid input validation (OWASP SQL injection prevention cheat sheet)
R33P10: User of error handler in CakePHP (core.php)

R33P11: Recycle password

CSSR34: Buffer and Array Overflow

R34P1: Choosing a type-safe programming language can avoid many buffer overflow
problems.

R34P2: Correct use of safe libraries of an unsafe language can prevent most buffer
overflow vulnerabilities.

R34P3: Normalize strings before validating them

R34P4: Executable space protection can prevent code execution on the stack or the heap.
R34P5: Stack-smashing protection can detect the most common buffer overflow by
checking that the stack has not been altered when a function returns.

R34P6: Deep packet inspection attempts to block packets that have the signature of a
known attack or have a long series of no-operation instruction

R35P1: Encryption of communication using cryptography (Mozilla guideline-secure
transmission)

CSSR35: Weak encryption, insecure
communication

R35P2: Acquisition of public key signed by Certificate Authority
R35P3: Intrusion detection system

R35P4: Exchange of public keys using a secure channel

R35P5: Develop complex Encryption methods

R35P6: Secure the weakest link

R35P7: Eliminate weak cryptography

R36P4:

heap

CSSR36: Messy code, code bad smells,
dead code

smell

R36P1: Prevent execution of illegitimate code

R36P2: Remove debugging code and flags in code

R36P3: Apply Hashes, message authentication codes

Input sanitization: User inputs are sanitized to ensure that they contain no
dangerous code

R36P5: Do not code to send session ID with GET method

R36P6: Executable space protection can prevent the execution of code on the stack or the

R36P7: Perform Code Review

R36P8: Implement static code analysis

R36P9: Apply secure coding standards such as CERT, MISRA, and AUTOSAR

R36P10: Expert need to ensure that secure coding practices are followed and conducts
code analysis to identify security vulnerabilities

R36P11: Implement dynamic code analysis

R36P12: Remove debugging code and flags in code

R36P13: Refactoring can improve the security of an application by removing code bad

R36P14: Code-level hardening is a way that prevents vulnerabilities
R36P15: Secure code writing

R36P16: Develop threat modeling: It helps to do threat analysis into
R36P17: Secure code review

R36P18: Code must be inspected to identify software and security errors

program code. While the developers are working on code,
the testing team prepares for the testing activity later. The
security testing teams develop test cases based on design
papers, threat models, and misuse situations. Security test
cases aim to attack software successfully. Any modification
to the software design must be disclosed to the testing team
during the planning phase of the test. As a result, the testing
team may create test cases that aren’t relevant. Based on the
nature of the software and its threats, the severity of bugs
is adjusted. A minor bug in software code that isn’t very
important to how it works may only take a few minutes to fix,
but it can significantly affect how secure it is. A discussion of
the revised severities takes place with the development team.
Table 5 shows the security operations conducted during the
testing phase [3], [17], [80], [84]-[86].

F. SECURE DEPLOYMENT
Release and deployment are two distinct processes in the
project’s lifecycle. We still regard security activities as a

VOLUME 10, 2022

single phase, even though there isn’t much work to be done
in this phase. A security assessment is performed before the
release of the software. The evaluation’s purpose is to find
remaining security weaknesses. The study concludes with
a review report. The development team fixes the Security
flaws found in a review report. A security audit is carried
out following the evaluation. Based on the audit report, the
management decides on the software release. The software
is now available for deployment when it has been released.
Security activities are documented in Table 6 [3], [87]-[91]
during the release and deployment phases.

G. SECURITY IMPROVEMENT

The software becomes commercial after its release and
deployment. Some known security flaws may have been left
out while the software was made. The software was released
with some noncritical security flaws, but they were not dan-
gerous. In the future, the defects will be fixed at some point.
As a result, a patch is created to improve the discovered

58469

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 5. CSSRs and its practices in the secure testing and review phase of the secure SDLC.

zeszlg Critical Software Security Risks Practices for CSSRs
(CSSRs)
Phase
R37P1: Perform Penetration Testing
R37P2: Validate correct use of security testing tools
R37P3: Planning and reconnaissance
R37P4: Static analysis — Inspecting an application's code to estimate how it behaves while
running. These tools can scan the entirety of the code in a single pass.
R37P5: Dynamic analysis — Inspecting an application's code in a running state. This is a
more practical way of scanning, as it provides a real-time view of an application's
CSSR37: Lack of Penetration Security performance.
Testing Analysis R37P6: Gaining Access: This stage uses web application attacks, such as cross-site
scripting, SQL injection, and backdoors, to uncover a target's vulnerabilities.
R37P7: Maintaining access: The goal of this stage is to see if the vulnerability can be
used to achieve a persistent presence in the exploited system— long enough for a bad actor
to gain in-depth access
R37P8: Risk analysis and reporting: The results of the penetration test are then compiled
into a report detailing
R38P1: Use advanced Security Testing Tools, such as Fortify SCA, Checkmark code
analysis, HP Web Inspect, Acunetix wen, IBM AppScan
R38P2:Finalize the tool. Select a static analysis tool that can perform code reviews of
applications written in the programming languages you use
X . . R38P3: Create the scanning infrastructure, and deploy the tool
. CSSRggélh?t;k,[?efstsingiZ?yzznam1C R38P4:Customize the tool. Fine-tune the tool to suit the needs of the organization
Security R38PS:Prioritize and onboard applications. Once the tool is ready, onboard your
Testing and applications. If you have a large number of applications, prioritize the high-risk
Review applications to scan first

R38P6: Analyze scan results
R38P7:Provide governance and training

validation.

CSSR39: Lack of final security review

R39P1: Understand the developers' approach: Before starting a secure code review, talk to
the developers and understand their approaches to mechanisms like authentication and data

R39P2: Use multiple techniques: If possible, use manual and automated techniques for the
review because each method will find things that the other doesn't.

R39P3: Do not assess the level of risk

R39P4: Focus on the big picture. When performing a manual review, resist trying to
understand the details of every line of code

R39P5: Follow up on review points

R39P6: Stick to the intent of the review

R39P7: Test security audit and final review

R39P8: Review unfixed security bugs

R39P9: Perform a final security review to find any remaining security flaws

R39P10: Review the weakness of all such areas about new threats identified

CSSR40: Lack of Fuzz Testing Analysis

R40P1:Rebuild the System from Source

R40P2:Transform Fuzzing Driver from Unit Tests and Sample Code
R40P3:Develop Automatic Toolchain to Support Complex Compilation and Build
R40P4:Shallow Bugs Repair with Developers

R40P5:Patch the Program and the Fuzzer to Detect Hiding Bugs

security weaknesses. The patch is then tested and released.
The same steps are taken for new threats. Table 7 shows the
security measures taken throughout the maintenance phase
[89], [92], [93].

V. SECURITY ASSURANCE MODEL (SAM) OF SOFTWARE
DEVELOPMENT FOR GSD VENDORS

This section discusses building a suggested Software Devel-
opment Security Assurance Model (SAM) for GSD Vendor
Organizations. The structure of SAM of software develop-
ment and its dimensions, such as security assurance levels and
evaluation method, are discussed in the following sections:

A. STRUCTURE OF THE SAM OF SOFTWARE
DEVELOPMENT

We have developed SAM of Software Development for GSD
Vendors by studying various models frameworks [4], [8],

58470

[13], [15], [16], [31], [35], [38], [39], [41], [43], [58], [68],
[81], [94] and the results obtained from the SLR [48] and
questionnaire survey. The process flow for SAM of software
development is depicted in Figure 3.

B. SECURITY ASSURANCE LEVELS OF SAM OF SOFTWARE
DEVELOPMENT
A security assurance level includes relevant specific security
practices for a specific process area: Governance and Security
Threat Analysis, Secure Requirement Engineering, Secure
Designing, Secure Coding, Secure Testing and Review,
Secure Deployment and Secure Improvement, that can
improve the organization’s software security processes asso-
ciated with that process area.

Software development Organizations that want to under-
stand better their software security practices need to compare
them with Software Security Assurance (SAM) of Software

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 6. CSSRs and its practices in the secure deployment phase of the secure SDLC.

Secure
SDLC
Phase

Critical Software Security Risks
(CSSRs)

Practices for CSSRs

CSSR41: Lack of default software
configuration

R41P1: Perform Security Assessment and Secure Configuration

R41P2:Configure the monitoring and logging

R41P3:Analyze the overall state of the software

R41P4:1dentify security breaks

R41P5:Ensure that work products meet their specified security requirements
R41P6:Document Technical Stack: Document the components used to build, test, deploy,
and operate the software

Secure CSSR42: Logout incorrectly implemented

Deployment

messages

R42P1: Configure the monitoring and logging

R42P2: Prevent the browsers from caching

R42P3: The user must be able to log out of a single service (local logout)

R42P4: Fixing and avoiding obvious bugs

R42P5: Enhanced cookie management in browsers to enable group deletion,

R42P6: Unified and standardized process for ending service sessions,

R42P7: Clearer and uniform user interface for logout and browser-sent keep-alive

R42P8: Polling mechanisms to check for the IP session

CSSR43: Improperly enabled services and
ports

R43P1:Associate Active Ports, Services, and Protocols to Asset Inventory
R43P2:Ensure Only Approved Ports, Protocols, and Services Are Running
R43P3:Perform Regular Automated Port Scans

R43P4:Apply Host-Based Firewalls or Port-Filtering

R43P5:Implement Application Firewalls

R43P6: Identify When a Service is Necessary

R43P7: Harden Operating Systems

R43P8: Beware of User-installed Software

R43P9: Reduce Attack Surface

Development best practices. Implementing SAM practices
often starts with an initial Governance and Security Threat
Analysis level. Generally, a Software Development business
decides to be appraised for one or more reasons, including to:

e Evaluate how the organization’s processes compare to

SAM of Software Development’s best security practices
and determine areas of improvement

e Share information with customers or suppliers about

how the organization compares to SAM of Software
Development’s best security practices

e Comply with contractual terms of customers

It’s worth noting that while the goal of organizations is
to reach level 7 (Security Improvement), the model is still
applicable and beneficial for organizations that have achieved
this security assurance level. Organizations at this level are
primarily focused on maintenance and improvements, and
they also have the flexibility to focus on innovation and
respond to industry changes.

The CSSRs and practices for addressing these risks are
grouped into seven different levels, which we call security
assurance levels, e. g,

e Level-1: Governance and Security Threat Analysis
Level-2: Secure Requirement Analysis
Level-3: Secure Design
Level-4: Secure Coding
Level-5: Secure Testing and Review
Level-6: Secure Deployment
Level-7: Security Improvement

The security assurance levels of SAM of software develop-
ment for GSD vendor organizations are illustrated in Figure 4.

VOLUME 10, 2022

46 CSSRs and 388 practices (see Table 1-7) were identified
using SLR and questionnaire survey.

C. ASSESSMENT METHOD FOR SAM OF SOFTWARE
DEVELOPMENT

The SAM of Software Development assessment process is
based on the Motorola evaluation tool [95]. Motorola cre-
ated this tool to evaluate the present state of a company’s
software processes and find areas for improvement [95].
Other researchers have widely used it to assess their proposed
models’ maturity, readiness, or assurance [15], [41], [58],
[68], [96].

The following three measurement dimensions are used by
the Motorola instrument [95]:

1. Approach: This aspect is concerned with the willing-
ness and ability of the organization to implement a given
practice.

2. Deployment: This dimension looks at how well prac-
tices are used in different project parts.

3. Results: This indicator measures the success of projects
across domains.

Each dimension of practice is evaluated by providing a
score value (0, 2, 4, 6, 8, or 10). The given score value
relates to a specific dimension’s performance level and can
be assessed using the criteria listed in Table 8. To assess the
practice under specific security assurance level, the following
steps should be followed:

e Step 1: For each software security practice, compute
an average of the three-dimensional scores, then round
that result to the nearest whole integer.

58471

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 7. CSSRs and its practices in the security improvement phase of the secure SDLC.

Secure SDLC Critical Software Security Risks

Phase (CSSRs) Practices for CSSRs
R44P1: Make sure institutions are effective and deliver real benefits for people.
R44P2: Develop future leaders who work for the greater good, not for themselves.
R44P3: Strengthen accountability and transparency.
R44P4: Engage citizens in solving community and societal challenges.
R44PS5: Strengthen social inclusion.
R44P6: Establish real commitment.
CSSR44: Lack of security trust R44P7: A high-level view of how security trust will be maintained
R44P8: Identity and access management — who has access to specific information and
how identity is authenticated and authorized
R44P9: Confidentiality and sensitivity —objective analysis of the confidentiality of
particular data sets, applications, and other security trust elements
R44P10: Acceptable use — the standards that you expect end-users, developers, and other
authorized users to abide by
R45P1: Antivirus software is designed to detect, remove and prevent malware infections
on a device or network.
R45P2: To prevent spyware, network administrators should require remote workers to
access resources over a network through a virtual private network that includes a security
scan component.
R45P3: Security policy first
CSSR45: Lack of proper methods to find | R45P4: Don't neglect physical security
out the attack surface for new threats in | R45P5: Screen new hires
the system R45P6: Use strong authentication
R45P7: Secure your desktops
R45P8: Segment LANs
Security R45P9: Plug information leaks
R45P10: Investigate anomalous activities
Improvement

R45P11: Refocus perimeter tools and strategies
R45P12: Monitor for misuse

CSSR46: Not developing security
patches for the threats

R46P1: Set clear expectations and hold teams accountable

R46P2: Work collaboratively with technical teams to ensure a common language

R46P3: Establish a disaster recovery process

R46P4: Install a patch for the vulnerability, if available, to fix the issue

R46P5: Implement compensating controls so the vulnerability is mitigated without being
fully patched

R46P6: Accept the risk posed by that vulnerability and do nothing

R46P7: Establish asset management

R46P8: Priorities the vulnerabilities

R46P9: Remediate the vulnerabilities to reduce the risks

R46P10: Measure the success of your vulnerability management program

R46P11: Where possible, create a backup/archive and verify its integrity by deploying it
on a standby system

R46P12: Create a checklist/procedure for patch activities and deploy the patch on the
standby system

R46P13: Test the patched standby system for operational functionality and compatibility
with other resident applications.

R46P14: Swap the patched standby system into production and keep the previous
unpatched production system as a standby for emergency patch regression

R46P15: Closely monitor the patched production system for any issues not identified
during testing

R46P16: Patch the standby system (old production) after confidence is established with the
production unit. Update related records and software configuration management plan.

e Step 2: Add Step 1 to the number of security practices
for a specific critical software security risk (CSSR).
Then divide by the total number of practices. This
determines the security assurance of the overall score
for a particular CSSR.

o Step 3: A security assurance score of less than seven is
deemed weak, while a score of 7 or greater is regarded
as strong.

D. VALIDATION OF THE SAM OF SOFTWARE
DEVELOPMENT USING CASE STUDIES

A case study is considered an appropriate research method in
software engineering and a highly effective tool for validation

58472

purposes [65], [66]. In the last stage of this research, we have
conducted three case studies on software development
companies to validate our projected model (SAM of Software
Development). The SAM of Software Development assess-
ment process is based on the Motorola evaluation tool [95].
To get feedback on our suggested model, we convened focus
groups with the participants of the case studies. The key
objectives of performing case studies in this study are as
follows:

e Present that SAM of Software Development for GSD
Vendor Organizations may be employed in a real-world
setting.

e Know ease of learning of SAM of Software
Development are ease of learning

VOLUME 10, 2022

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

SoftwareSecurity Risks
and Practices for
addressing these Risks
in the SDLC phases

Stage 4:
Quantification
of Software
Security Risks
into Critical
Software
Security Risks
(CSSRs) using
Frequency and

\ Ranking Order

Identify

Stage 1:
Systematic

Stage 2:
Systematic

Stage 3:
Questionnaire

Mapping Study Literature Review Survey

/ Stage 5:

Level 7: Security Improvement

Identify Research Questions

Level 6: Secure Deployment
Development for GSD

Vendors Validation Using

Case Studies Level 5: Secure Testing and Review

Guidance

Level 4: Secure Coding

Existing Models/Framework s
(OWASP, SAMM, CMMI,
MS-DLC, BSIMM, SOVRM,

Level 3: Secure Design
Security Assurance Model (SAM)

of Software Development Levels
Measurement
* Secure Software Assurance
level of an organization
+ Weak areas that need
improvement

SSDMM) and Supervisor
Level 2: Secure Requirement Engineering inputs

Level1: Governance and Threat Analysis

Security Assurance Model (SAM) of
K Software Development Levels

FIGURE 3. SAM of software development for GSD vendors.

e Know wuser satisfaction of SAM of Software

Development

completed the examination at their place of business and

emailed the results and their feedback.

e Know whether there are any modifications or improve- We chose one large, one medium-sized, and one small-
ments to the SAM of Software Development that the sized company for our case study to reduce the impact of their
case study participants suggest. size.

e To what extent can case study participants improve the
SAM of Software Development? Please also include the
reasons behind your suggestions.

e Present the applicability and utility of SAM of Software
Development.

1) COMPANY A

Iflexion (https://www.iflexion.com/about) provides full-
cycle services in content management systems, portals,
eCommerce, web-based solutions for enterprise and media

We interacted with personnel software development com- content distribution, and social software worldwide. We have

panies to perform the case study, explaining the SAM of Soft-
ware Development concept and inviting them to participate
in our research. They were instructed to apply the Motorola
assessment tool to analyze their software development secu-
rity procedures using SAM of Software Development. They

VOLUME 10, 2022

been providing software development and related IT services
since we started in 1999. To deliver high-quality solutions,
they combine the expertise of 850+ trained software pro-
fessionals with tried-and-true techniques, business domain
knowledge, and technical competence.

58473

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

Secure Software
Engineering
(Broad Research Area)

) Systematic Mapping | Systematic Literature Questionnaire
J > Study J > L Review (SLR) J Survey
Identify the gap Validate the findings of SLR
Critical Software Security
Risks (CSSRs) and
Practices

—\

LEVEL 7: SECURITY IMPROVEMENT
Critical Software Security Risks (CSSRs)
CS5R44
CSSR45
CSSR46

LEVEL 6: SECURE DEPLOYMENT

Critical Software Security Risks (CS5Rs)
CSSR41
CSSR42
CSSR43

'LEVEL 5: SECURE TESTING AND REVIEW
Critical Software Security Risks (CSSRs)
CSSR37
CSSR38
CSSR39
CSSR40

R37P1 - R37P8
R38P1 - R38P7
R39P1 - R39P10
R40P1 - R40P5

LEVEL 4: SECURE CODING
Critical Software Security Risks (CS5Rs) Practices for CSSRs
CSSR25 R25P1 - R25P6
CSSR26 R26P1 - R26P9
CSSR27 R27P1 - R27P11
CSSR28 R28P1 - R28P3
CSSR29 R29P1 - R29P3
CSSR30 R30P1 - R30P2
C55R31 R31P1 - R31P8
CSSR32 R32P1 - R32P5
CSSR33 R33P1 - R33P11
CSSR34 R34P1 - R34P0
CSSR35 R35P1 - R35P7
CSSR36 R36P1 - R36P18

LEVEL 3: SECURE DESIGNING
Critical Software Security Risks (CSSRs) Practices for CSSRs

CSSR14 R14P1 - R14P8
CSSR15 R15P1 - R15P22
CSSR16 R16P1 - R16P4
CSSR17 R17P1 -R17P12
CSSR18 R18P1 - R18P3
CSSR19 R19P1 - R19P7
CS5R20 R20P1 - R20P5
CSS5R21 R21P1 - R21P3
CSSR22 R22P1 - R22P7
CSSR23 R23P1 - R23P3
CSSR24 R24P] - R24P4

LEVEL 2: SECURE REQUIREMENT ENGINEERING

Critical Software Security Risks (CSSRs) Practices for CSSRs
CSSR4 R4P] - R4P7
CSSR5 R5P1 - R5P10
CSSR6 R6P1 - R6PH
CSSR7 R7P1-R7P17
CSSR8 R8P1 - R8PS
CSSR9 R9P1 - ROP7

CSSR10 RI10P1 - R10P11
CSSR11 R11P1-R11P9
CSSR12 R12P1 - R12P29
CSSR13 R13P1 - R13P8

LEVEL 1: GOVERNANCE AND SECURITY THREAT ANALYSIS
Critical Software Security Risks (CSSRs) Practices for CSSRs
CSSR1 R1P1 - R1PG
CSSR2 R2P1 - R2P5
CSSR3 R3P1 - R3P11

FIGURE 4. Security assurance levels of SAM of software development for GSD vendors.

58474

Practices for CS5Rs
R44P1 - R44P10
R45P1 - R45P12
R46P1 - R46P16

Practices for CSSRs
R41P1 - R41P6
R42P1 - R42P8
R43P1 - R43P9

Practices for CSSRs

Analysis of
CSSRs

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 8. Motorola assessment tool.

Motorola Assessment Instrument

Key Activity Evaluation Dimensions

well under way across parts
of the organization (OR)
Supporting items in place

Monitoring / Verification of
use for many parts of the

Approach Deployment Results
Score (Score Rangleoz)O, 2,4.6,8, (Score Range: 0, 2, 4, 6, 8, 10) | (Score Range: 0, 2, 4, 6, 8, 10)
No management recognition
N of n.eed. (OR) - No part of the organization
o organizational ability :
) uses the practice (OR) .
Poor (0) (OR) ‘ A Ineffective
o No part of the organization
No organizational shiows inferest
commitment (OR)
Practice not evident
Management begins to
l’CCOgm‘Z.C used (OR) Fragm;nted use (OR) Spotty results (OR)
Support items for the Inconsistent use (OR) .
s : . i Inconsistent results (OR)
practice start to be created Deployed in some parts of the ; ‘
Weak (2) s Some evidence of
(OR) organization (OR) "
o . Y effectiveness for some parts of
A few parts of organization Limited to monitoring/ o
] s s o the organization
are able to implement the verification of use
practice
Wide l?ut not complete Less fragmented use (OR)
commitment by . : . . .
Some consistency in use (OR) | Consistent and positive results
management (OR) . . ‘)) :
A Deployed in some major parts for several parts of the
: Road map for practice it s s L
Fair (4) : . of the organization (OR) organization (OR)
implementation defined e b = o)
(OR) Monitoring / Verification of Inconsistent results for other
s use for several parts of the parts of the organization
Several supporting items for !
LR organization
the practice in place
Some management Deployed in- mz.my parts of the
commitment; some organization (OR) Positive measurable results in
management becomes Mostly consistent use across | most parts of the organization
Marginally proactive (OR) many parts of the organization (OR)
Qualified (6) Practice implementation (OR) Consistently positive results

over time across many parts of
the organization

all parts of the organization

organization
Total management
commitment (OR) Deployed in almost all parts of
Majority of management is the organization (OR) Positive measurable results in
proactive (OR) Consistent use across almost almost all parts of the
- Practice established as an all parts of the organization organization (OR)
Qualified (8) : : .. _
integral part of the process (OR) Consistency positive results
(OR) Monitoring / Verification of over time across almost all
Supporting items encourage | use for almost all parts of the parts of the organization
and facilitate the use of organization
practice
Pervasive and consistent
Management provides deployed across all parts of the
zealous leadership and organization (OR) Requirement exceeded (OR)
Outstanding commitment (OR) Consistent use over time Consistently world-class
(10) Organizational excellence in across all parts of the results (OR)
the practice recognized even organization (OR) Counsel sought by others
outside the company Monitoring / Verification for

VOLUME 10, 2022

58475

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

Maintenance and Support

+ On-demand Support

+ Long-term Maintenance

« Corrective, Adaptive and Perfective
Maintenance

Maintenance
and support

Delivery/
Releases

Software Delivery
+ Release Management
+ Change Management
+ User Cuides & Training

Development

1040

Software
Development
+ Source Code and Compiled
Code

» Code Documentation
« Unit Testing

7 3
OTveg, BUILD, ‘“1269'

Project Analysis and Planning

* Project Mapping
= WBS Visualization
- Project Budgeting

Project Analysis
and Planning

Regutrements
Specification

Requirements
Specification
Design + Requirements Gathering

= Use Cases and User Stories

. i g |
© Requirement Smells

Software Design

+ Low- and High-level Design
= User Interface Design
= User Experience Design

FIGURE 5. Iflexion covers the entire cycle of enterprise software development.

Iflexion US and UK Offices: IFlexion US (Head Office).
3900, S. Wadsworth Blvd., Denver, CO 80235. Iflexion UK.
3rd floor, 5-8 Dysart Street. Their clients and partners are
dispersed in 304 countries. They cover the entire cycle of
enterprise software development, as depicted in Figure 5.

2) COMPANY B

Satsuma Droid Pvt Ltd (Islamabad, Pakistan) is dedicated
to bringing your organization to the forefront by delivering
cutting-edge IT services, Web Solutions, Mobile Solutions,
and Digital Marketing Strategies. As a result, they are com-
mitted to helping you achieve long-term leadership in your
industry by developing digital solutions specifically adapted
to your needs.

e With mobile items, you can gain new clients for your
firm. They create innovative iOS and Android apps that
meet market standards.

e Use our Website design and development services to
increase your company’s online presence. They can also
design interactive mobile web solutions to meet your
needs.

3) COMPANY C

Company C (Peshawar, Pakistan) is a CMMI Level-3 soft-
ware development firm based in Peshawar, Pakistan that
offers Information Technology products and services that
integrate applications and data within an enterprise and across
the industry. The firm provides a complete spectrum of ser-
vices ranging from Financial Systems, Enterprise Resource
Planning (ERP), Monitoring & Evaluation (M&E) Systems
to Business Process Re-Engineering (BPR), Mobile based

58476

Information Systems, and eGovernment Information and
services automation.

Our team of highly experienced and qualified professionals
provides practical solutions to organizations in both the Pub-
lic and Private sectors. We build cohesive, flexible, and cost-
effective IT solutions and guarantee their delivery on time and
within budget. While ensuring timely and efficient delivery
of services, they are not daunted by new technologies and
always strive to stay ahead of the technological advances in
other parts of the world.

Their services include an online web-based software appli-
cation, Desktop, and Mobile development. They also design
and develop embedded systems. They integrate different sys-
tems and implement an e-payments gateway. They think
and innovate for you with new ideas to solve unsolved
problems.

They combine Design Thinking, Agile Practices, Software
Quality Processes, and Innovation Management to create
and build digital transformation solutions. It offers five
service pillars: Software Solution Design, Agile Software
Development, Software Testing, Agile Team Allocation, and
Professional Allocation.

E. ANALYSIS
The data collected during the case studies were analyzed in
the following ways:

e To assess company security assurance level for CSSRs
faced by GSD vendor organizations in secure software
development.

e To calculate the score for each CSSR and practice of
each company, see Tables 9, 10, and 11.

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 9. Assessment results of company A.

SAM of Software Development Levels » X X
S. No Security Assurance Levels Critical Software Security Risks (CSSRs) Score Status
CSSR1 7 Strong
Level: 1 Governance and Security Threat Analysis CSSR2 8 Strong
CSSR3 7 Strong
CSSR4 7 Strong
CSSR5 8 Strong
CSSR6 8 Strong
CSSR7 8 Strong
. . L CSSR8 8 Strong
Level: 2 Secure Requirement Engineering CSSRO 3 Strong
CSSR10 7 Strong
CSSR11 7 Strong
CSSR12 7 Strong
CSSR13 7 Strong
CSSR14 7 Strong
CSSR15 8 Strong
CSSR16 7 Strong
CSSR17 7 Strong
CSSR18 7 Strong
Level: 3 Secure Design CSSR19 7 Strong
CSSR20 7 Strong
CSSR21 7 Strong
CSSR22 7 Strong
CSSR23 7 Strong
CSSR24 7 Strong
CSSR25 7 Strong
CSSR26 7 Strong
CSSR27 7 Strong
CSSR28 7 Strong
CSSR29 8 Strong
. . CSSR30 7 Strong
Level: 4 Secure Coding CSSR31 3 Strong
CSSR32 8 Strong
CSSR33 8 Strong
CSSR34 8 Strong
CSSR35 8 Strong
CSSR36 7 Strong
CSSR37 8 Strong
. . CSSR38 6 Weak
Level: 5 Secure Testing and Review CSSR30 7 Strong
CSSR40 8 Strong
CSSR41 7 Strong
Level: 6 Secure Deployment CSSR42 8 Strong
CSSR43 7 Strong
CSSR44 8 Strong
Level: 7 Security Improvement CSSR45 7 Strong
CSSR46 7 Strong

e The CSSR will be recognized as “Strong” (strongly

addressed) if the overall score is greater or equal to 7.
Otherwise, “Weak” (weakly addressed)

e To examine whether SAM of Software Development

needs any improvement, we conducted a focus group
session with the participants to get feedback

The focus session aims:

e To determine whether or not SAM of Software Devel-
opment can be used effectively in an organization to
identify strong and weak CSSRs in the context of
Secure Software Development.

Identify whether SAM of Software Development is
evident, easy to use, and specifically helpful in measur-
ing and eliminating security risks in Secure Software
Development.

VOLUME 10, 2022

e To assess the participant’s satisfaction with the SAM of
Software Development assessment outcomes.

e Verify that each CSSR’s practices are easy to follow.

e Validate SAM of Software Development generalization
and applicability for GSD vendor companies.

e They identify strong and weak software security activ-
ities in Secure Software Development using SAM soft-
ware development.

F. ASSESSMENT RESULTS OF COMPANY A

We have used Motorola Assessment Tool [95] for the assess-
ment results of each company. A score of 7 or above for
each CSSR indicates a specific company had successfully
addressed the risk. Any CSSR with a score of less than seven
is considered a weakness. The Company-A participant has

58477

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 10. Assessment results of company B.

SAM of Software Development Levels . . .
S. No Security Assurance Levels Critical Software Security Risks (CSSRs) Score Status
CSSR1 7 Strong
Level: 1 Governance and Security Threat Analysis CSSR2 7 Strong
CSSR3 7 Strong
CSSR4 7 Strong
CSSRS 7 Strong
CSSR6 7 Strong
CSSR7 8 Strong
. . . . CSSR8 8 Strong
Level: 2 Secure Requirement Engineering CSSRO - Strong
CSSR10 7 Strong
CSSR11 7 Strong
CSSR12 7 Strong
CSSR13 7 Strong
CSSR14 7 Strong
CSSR15 7 Strong
CSSR16 7 Strong
CSSR17 6 Weak
CSSR18 7 Strong
Level: 3 Secure Design CSSR19 7 Strong
CSSR20 7 Strong
CSSR21 5 Weak
CSSR22 7 Strong
CSSR23 7 Strong
CSSR24 7 Strong
CSSR25 8 Strong
CSSR26 6 Weak
CSSR27 8 Strong
CSSR28 6 Weak
CSSR29 6 Weak
. CSSR30 5 Weak
Level: 4 Secure Coding CSSR31 7 Strong
CSSR32 6 Weak
CSSR33 8 Strong
CSSR34 6 Weak
CSSR35 6 Weak
CSSR36 7 Weak
CSSR37 7 Strong
. . . CSSR38 7 Strong
Level: 5 Secure Testing and Review CSSR39 3 Strong
CSSR40 5 Weak
CSSR41 8 Strong
Level: 6 Secure Deployment CSSR42 6 Weak
CSSR43 7 Strong
CSSR44 7 Strong
Level: 7 Security Improvement CSSR45 6 Weak
CSSR46 8 Strong

measured his security assurance for these CSSRs using SAM
of Software Development. Table 9 presents the Company-A
assessment results. The assessment will focus on the follow-
ing points:

e Table 9 presents that Company-A stands at Level-4
“Security Coding” of the SAM of Software Develop-
ment and comprehensively addresses the security risks
of the previous three levels (Governance and Security
Analysis, Secure Requirement Engineering, and Secure
Desing) since almost it achieved a score greater than 7.

e Company-A is weak in addressing the CSSR38 “Messy
code, code bad smells, dead code”, since the score
values are less than 7.

58478

However, Company A should focus more on monitoring
the success of practice implementation rather than organiza-
tional commitment. This will aid in creating secure software
by enhancing its security assurance:

G. ASSESSMENT RESULTS OF COMPANY B
Table 10 presents the Company-B assessment results. The
assessment will focus on the following points:

e Table 10 presents that Company-B stands at Level-3
“Secure Design” of the SAM of Software Develop-
ment. It has fully addressed the security risks of the
other two levels (Governance and Security Threat Anal-
ysis and Secure Requirement Engineering) since almost

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 11. Assessment results of company C.

SAM of Software Development Levels . . .
S. No Security Assurance Levels Critical Software Security Risks (CSSRs) Score Status
CSSR1 8 Strong
Level: 1 Governance and Security Threat Analysis CSSR2 8 Strong
CSSR3 8 Strong
CSSR4 7 Strong
CSSRS 8 Strong
CSSR6 7 Strong
CSSR7 8 Strong
. . . . CSSR8 7 Strong
Level: 2 Secure Requirement Engineering CSSRO 3 Strong
CSSR10 7 Strong
CSSR11 8 Strong
CSSR12 8 Strong
CSSR13 8 Strong
CSSR14 7 Strong
CSSR15 8 Strong
CSSR16 9 Strong
CSSR17 8 Strong
CSSR18 7 Strong
Level: 3 Secure Design CSSR19 8 Strong
CSSR20 7 Strong
CSSR21 8 Strong
CSSR22 7 Strong
CSSR23 8 Strong
CSSR24 8 Strong
CSSR25 8 Strong
CSSR26 7 Strong
CSSR27 7 Strong
CSSR28 8 Strong
CSSR29 7 Strong
. . CSSR30 9 Strong
Level: 4 Secure Coding CSSR31 7 Strong
CSSR32 7 Strong
CSSR33 7 Strong
CSSR34 9 Strong
CSSR35 7 Strong
CSSR36 7 Strong
CSSR37 7 Strong
. . . CSSR38 7 Strong
Level: 5 Secure Testing and Review CSSR39 7 Strong
CSSR40 7 Strong
CSSR41 7 Strong
Level: 6 Secure Deployment CSSR42 7 Strong
CSSR43 7 Strong
CSSR44 7 Strong
Level: 7 Security Improvement CSSR45 8 Strong
CSSR46 7 Strong

it achieved a score greater than 7 in the first three
levels.

e Company-B is weak in achieving Level-4 ““Secure Cod-
ing” since the score values of “CSSR17: Improper
secure design documentation” and “CSSR21: Improper
conduction of design and architecture security review”’
are less than 7.

e Each of the practices for which Company-B has a score
of less than 7 requires improvement.

It should prioritize Level-4 “Secure Coding” practices.
This will help achieve a high-security assurance level in
secure software development.

VOLUME 10, 2022

The results show that Company-B is doing very little in
security activities in secure coding, which is an area for
improvement.

H. ASSESSMENT RESULTS OF COMPANY C
Table 11 presents the Company-C assessment results. The
assessment will focus on the following points:

e Table 11 presents that Company-C achieved all the
security assurance levels of SAM of Software Develop-
ment and comprehensively addresses the security risks
of all levels since almost it achieved a score greater
than 7.

58479

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 12. Feedback of the case studies participants (company-A, B and C).

Applicability's of
the SAM of .
Software Questions Company-A | Company-B Company-C
Development
1. SAM of Software Development representation is very clear Strongly Strongly
Agree
Agree Agree
2. A little knowledge of Secure Software Development is required to learn Strongly Agree Strongly
how to use the SAM of Software Development Agree g Agree
3. It is easy to understand the practices designed for each critical software Strongly
o Agree Agree
security risk Agree
4. It is easy to understand the assessment method Agree Strongly Agree
Agree
5. It is easy to use the SAM of Software Development to assess Strongl
Ease of Learning | organizations in addressing the software security risks faced by GSD vendor Agree A regey Agree
organization in software development projects. £
6. It is easy to understand distribution of critical software security risks and
practices for addressing these risks among different software security
. - Strongly Strongly
assurance levels, e.g. Governance and threat analysis, Secure Requirement Acroc Agree Asroe
Engineering, Secure Design, Secure Coding, Security Testing and Review, g g
Secure Deployment, and Security Improvement.
7. Some training needs to be provided for the use of SAM of Software
Agree Agree Agree
Development
8. How confident are you in the ratings that you have made in this section? Confident Confident Confident
9. SAM.of Software Development is general and can be applied to most Agree Strongly Agree
companies. Agree
10. Each individual practice is easy to understand and unambiguous. Strongly Strongly
Agree
Agree Agree
11. Using the SAM of Software Development would identify strong and
. . Strongly Strongly
weak areas in the company regarding secure software development Agree
. Agree Agree
activities.
12. Using the SAM of Software Development would improve our secure
Agree Agree Agree
software development processes.
13. If the SAM of Software Development were available for my job, I Strongly Strongly Aeree
predict that I would use it on regular basis in the future. Agree Agree &
. . 14. T am satisfied and agreed with the security assurance issues identified by Strongly Strongly
User Satisfaction SAM of Software Development. Agree Agree Agree
15. It is important to implement SAM of Software Development in the form
of an automated software tool in order to facilitate software practitioners in Agree Agree Strongly
assessing organization's security in order to address the software security & g Agree
risks.
16. The SAM of Software Development is self-contained Strongly Strongly
Agree
Agree Agree
17. The SAM of Software Development is a useful software security Strongly Strongly Strongly
assurance tool for software development organizations. Agree Agree Agree
18. The assessment method is useful Strongly Strongly Strongly
Agree Agree Agree
19. How confident are you in the ratings that you have made in this section? Confident Very Confident
20.All the components of the SAM of Software Development are self Strongly Strongly Agree
explanatory and require no further explanation to be used effectively Agree Agree &
21. The components of the SAM of Software Development are practical and Strongly
. . . Agree Agree
are applicable in secure software development industry Agree
22. The SAM of Software Development can be used effectively to identify
. AR Strongly
software security risks faced to GSD vendor organizations in secure Agree Agree
Structure of the : Agree
SAM of Sof software development projects.
ofSoftware 75371 distribution of software security risks among different security
Development . .
assurance levels (e.g. Governance and threat analysis, Secure Requirement Acree Acree Acree
Engineering, Secure Design, Secure Coding, Security Testing and Review, & g g
Secure Deployment, and Security Improvement) is useful
24. The 7software security assurance levels of SAM of Software Strongly
Agree Agree
Development are useful Agree
25. How confident are you in the ratings that you have made in this section? Confident Very Confident
Company-A Feedback about Question 26, 27, 28, 29, and 30:
26. Are there any modifications or improvements to the SAM of Software Development that you may suggest?
Ans: Many times software developers face problem during System and Application integration leading to failure of software projects also. Further
Maintenance and Up gradation becomes a problem for software developers for some software projects. The company need to make changes are
acceptable till design but once development starts any further change should be rejected.
27. Are there any components that you may suggest to add to the SAM of Software Development in the future, please also give the reasons?
Ans: Integrated Development Environment (IDE)-Modern IDEs like Visual Studio or Eclipse offer so much support to the coding process - built-in
wizards to help you accomplish numerous tasks, code completion and dependency management, are just a few examples of standard features - that it's
almost inconceivable to attempt a serious application without one.

58480

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 12. (Continued.) Feedback of the case studies participants (company-A, B and C).

28. Please provide any comments relating to the assessment method.

Ans: Software testing Technology CMMLI. The Capability Maturity Model Integration (CMMI) is a process model that provides a lucid definition of
the process improvement approach which examines whether an organization's current processes are in place and helps them identify their strengths
and weaknesses.

29. Please provide any comments relating to the distribution of practices across various critical software security risks.

Ans: Web applications that do not properly protect sensitive data could allow threat actors to steal or modify weakly protected data. They could also
conduct malicious activities such as credit card fraud and identity theft, among others. Improperly configured or badly coded APIs could also lead to a
data breach.

30. Please provide any comments relating to the usability of SAM of Software Development with respect to time it take users to addressing the
CSSRs.

Ans: A key part of the software development process, usability testing provides invaluable feedback on the user experience of a product. Usability
testing means conducting real-world testing with a segment of your customer base.

Company-B Feedback about Question 26, 27, 28, 29, and 30:
26. Are there any modifications or improvements to the SAM of Software Development that you may suggest?
Ans: No, I think for the time being it’s enough good.
27. Are there any components that you may suggest to add to the SAM of Software Development in the future, please also give the reasons?
Ans: In future you can take idea from Software Assurance Maturity Model (SAMM) By OWASP, To enhance SAM of Software Development.
28. Please provide any comments relating to the assessment method.
Ans: [think it’s good enough.
29. Please provide any comments relating to the distribution of practices across various critical software security risks.
Ans: Critical Important software used worldwide must have strict security measures in place to ensure safe and secure use. Risk, misuse, or disruption
of important software may jeopardize agency and business deployments, while also causing financial damage, loss of trust, loss of life and widespread
social consequences. Not only is sensitive software itself protected, but the IT environment of the agency, its customers, partners, and the public must

be protected from any potential misuse or malware by the software.

CSSRs.

30. Please provide any comments relating to the usability of SAM of Software Development with respect to time it takes users to addressing the

Ans: SAM of Software Development will definitely increase the security of software if all step address by CSSRs is applied with proper care.

28. Please provide any comments relating to the assessment method.

CSSRs.

Company-C Feedback about Question 26, 27, 28, 29, and 30:
26. Are there any modifications or improvements to the SAM of Software Development that you may suggest?
Ans: The SAM Model should suggest the risk category and plan whenever a new risk occurs and also store it for future use.
27. Are there any components that you may suggest to add to the SAM of Software Development in the future, please also give the reasons?
Ans: I would suggest to add risk category predication component in this model.

Ans: The assessment method of risks are normalized well and are adjusting for majority of cases.

29. Please provide any comments relating to the distribution of practices across various critical software security risks.

Ans: The distribution of risks categories are done effectively as it highlights industry practices.

30. Please provide any comments relating to the usability of SAM of Software Development with respect to time it take users to addressing the

Ans: The SAM Model will be very useful and effective if implemented in a tool to automate the process.

However, Company C should focus more on monitoring the
success of practice implementation rather than organizational
commitment. This will aid in creating secure software by
enhancing its security assurance.

I. FEEDBACK FROM CASE STUDY PARTICIPANTS

The case study enabled us to evaluate the practicability of the
SAM of Software Development for GSD vendor organiza-
tions. To get feedback, we asked 30 questions from the case
study participants, which are summarized in Table 12.

VI. THREATS TO VALIDITY

This section underlines the threats to validity. And how
we overcome them to strengthen our confidence in our
investigation’s conclusions. According to [97], internal,
external, and conclusion-validity threats are all examples of
risk categories.

A. CONSTRUCT VALIDITY

One of the possible concerns is the lack of sources available in
other databases or after the research was completed. We used
an SLR to find all of the relevant articles in the formal

VOLUME 10, 2022

literature, and we searched six different databases to make
sure we found everything.

We also collected the data through a questionnaire survey
from software development organizations. This ensured that
all relevant sources were covered completely. As a result,
we have sufficient evidence that SAM of Software Develop-
ment covers most software security procedures.

There is also a problem with assigning practices to CSSRs
when making a SAM of Software Development. This can be
subjective. We carried out the assignment based on our expe-
riences and what we learned from the SLR and questionnaire
survey.

Three university professors (2nd Co-Author (Supervisor),
3rd Co-Author, and 4th Co-Author (Co-Supervisor)) repeat-
edly validated the structure of SAM of Software Development
and its security assurance levels and activities to reduce this
threat.

B. INTERNAL VALIDITY

The techniques we discovered from our SLR and question-
naire survey are a good approximation of current secure
software development methods. SLR data extraction and
source selection are prone to human error because not
all sources give sufficient or explicit information about

58481

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

TABLE 13. Compairison of our study with other relevant studies.

S No of Time
. Paper Titles Primary Resources Goals
No . Interval
Studies
1 The state of the art on design | 101 Up to | Relevant Journals | The main contributions are: identification of
patterns: a systematic mapping of March and Conferences research Topics in design patterns, quantification
the literature [98] 2016 of research emphasis on each topic, and
description of design pattern demographics
2 Exploring software security | 118 Up to ACM, Identify existing approaches to software security
approaches in Software August IEEEXplore, used in the SDLC
Development lifecycle: A 2015 ScienceDirect,
Systematic Mapping Study [18] SpringerLink,
John Wiley
3 Software Development 15 2000- Only security | To cover existing software security threats
Initiatives to Identify and Mitigate 2015 related Journals identification and mitigation technologies
Security Threats: A Systematic
Mapping study [19]
4 Mapping the Field of Software Life | 63 2000- ACM, IEEE | This research aims to promote the use of safety
Cycle Security Metrics [99] 2014 Xplore, Elsevier measurements by researchers and practitioners by
cataloguing available metrics
5 A Systematic Review on the | 128 2009- ACM, IEEE | They identified 132 approaches that address issues
Engineering of Software for 2015 Xplore, Science | for ubiquitous systems at various stages of the
Ubiquitous Systems [20] Direct, Wiley Software engineering cycle. Implementation,
Online Library, | evolution/ maintenance, and feedback phases have
Springer Link, | been most studied
Google Scholar
6 Design Notation for Secure | 42 2002- ACM, IEEE | This paper reported an SLR's results in secure
Software: A Systematic Literature 2012 Xplore, software design notes. They identified 28 design
Review [75] CiteSeerX, notes for the development of software
Compendex,
IS Web of
Sciences,
Springer Link
7 A Systematic Literature Review on | 51 2000- ACM, IEEE | In this paper, they report SLR findings to identify
Global Software Development Life 2013 Xplore, the challenges faced by the globally distributed
Cycle [100] Springer Link, | teams during different software development
Science phases. They also suggested best practices and
Direct, Wiley tools alleviate these challenges.
InterScience
8 An Extensive Systematic Review on | 93 2001- ACM, IEEE | This study shows the overall status of Model-
the Model-Driven Development of 2014 Xplore, Driven Security's key artefacts (MDS) and the
Secure Systems [101] Springer Link, | primary MDS studies identified, e.g., regarding
Science artefact modeling security. They suggested that in
Direct, ISI many MDS approaches, the development of
domain-specific languages plays a key role
9 Web Services Attacks and Security- | 36 2005- Journals and | This study aims to present a systematic review of
A Systematic Literature Review 2016 Conferences web security studies. It is found that the Denial-
[102] of-Services attack is the most addressed of all
attacks. Solutions were proposed primarily using
dynamics analysis, closed and static analysis,
followed
10 A Systematic Review of Security | 22 2005- ACM, IEEE | In this paper, the authors conduct a systematic
Requirements 2010 Xplore, Science | review of secure requirements engineering to
Engineering [10] Direct, Google summarize the
Scholar evidence on this issue and provide a
framework/background in which new research
activities can be appropriately positioned
11 Software Security Assurance | 116 Up to IEEE Xplore, | This article reviews the most widely used security
(SAM) of Software Development October Science software models. It proposes a new Security
(Our Paper, Research Work) 2020 Direct, ACM, | Assurance Model (SAM) for Software
Springer Development that is adaptable to all contemporary
Link, Wiley | scenarios, emphasizing global software
Online development (GSD) vendor companies. The SAM
Library, Google | of Software Development was developed after
Scholar studying 11 well-known development models and
analyzing results obtained from a systematic
literature review (SLR) and questionnaire survey.
The SAM of Software Development consists of
seven security assurance levels: Governance and
Security Threat Analysis, Secure Requirement

58482

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

TABLE 13. (Continued.) Compairison of our study with other relevant studies.

Analysis, Secure Design, Secure Coding, Secure
Testing and Review, Secure Deployment, and
Security Improvement. The security assurance
levels of SAM of software development consist of
46 critical software security risks (CSSRs) and
388 practices for addressing these risks. The
proposed SAM of Software Development was
assessed based on a tool created by Motorola,
which is used to evaluate the present state of a
company's software processes and find areas for
improvement. We conducted 3 case studies on
software development companies, using data from
real software projects to examine the results of a
practical experiment in each company. The results
of the case studies indicate that the proposed SAM
of Software Development helps measure the
security assurance level of an organization. In
addition, it can potentially serve as a framework
for researchers to develop new software security
measures.

our research topics. The sources were thoroughly reviewed
and chosen based on quality criteria to minimise this
limitation.

We have concerns regarding the accuracy of the assessment
results because the participants in our case study appraised
the organization’s activities. The assessment may be subjec-
tive because adhering to the requirements of the Motorola
assessment instrument necessitates the assessor’s close atten-
tion to acquiring correct results.

In addition to existing software security experience, mem-
bers’ roles within the firm are also factors.

C. EXTERNAL VALIDITY

The study’s findings may not apply to all software develop-
ment firms. Only three companies took part in the case studies
we used to determine how well SAM of Software Develop-
ment worked. Consequently, it is essential to be careful when
making decisions about the SAM of Software Development’s
applicability.

D. CONCLUSION VALIDITY

We gathered adequate information to support our conclusions
about existing CSSRs and practices for addressing these
risks of secure software development by conducting the SLR
and questionnaire survey. The SLR and questionnaire were
meticulously carried out methodically, and the sources were
assessed using quality standards. This increases our confi-
dence in SAM of Software Development and decreases the
risk of jeopardizing conclusion validity.

VIl. CONCLUSION AND FUTURE WORK

This section outlines our study’s effort and main contribu-
tions. It also outlines the research directions that should be
pursued in the future.

A. CONCLUSION AND DISCUSSION

This study’s primary purpose is to develop a Security
Assurance Model (SAM) of Software Development for
GSD Vendors. In the SDLC phases, this model will assist
software development firms in reviewing and enhancing
their security processes. The primary goal of the first phase

VOLUME 10, 2022

(doing SMS) is to determine what the current state-of-
the-art is in terms of secure software engineering (SSE)
[22], [23]. The final selection was made from 116 stud-
ies that met the inclusion and exclusion criteria [22], [23].
After extracting data from the selected articles, they were
classified according to their quality, software security pro-
cesses/models/frameworks, software security methodologies,
SDLC phases, publication venue, and SWOT analysis of the
software security approaches [22], [23].

SLR was used to classify key papers to identify secu-
rity threats and practices during the second phase of this
research [48]. The tollgate [49] approach was used to choose
121 papers based on inclusion, exclusion, and quality rat-
ing criteria. This study identified 145 security risks and
424 best practices that can assist software development busi-
nesses in managing security throughout the SDLC’s various
phases [48].

In the 3rd stage of this study, an online survey method
is employed for data collection [59]. During the survey’s
implementation, a total of 64 responses were collected. All
of the responses were manually reviewed. We excluded
14 responses because the expertise shared by these 14 persons
was unrelated to GSD and/or SSD. For analysis, the final
50 survey results were taken into account. This study empir-
ically validated 145 software security risks and 424 security
practices that assist GSD vendor organizations in managing
the security activities in the SDLC phases.

In the 4th stage of this research, we identify the critical
software security risks (CSSRs); we used the criterion of 10%
occurrences in both SLR and survey findings. Based on this
criterion, we identified 46 critical software security risks in
the SDLC phases.

In the 5th stage of this research, we have developed SAM
of Software Development for GSD Vendors by studying var-
ious models frameworks [4], [8], [13], [15], [16], [31], [35],
[38], [39], [41], [43], [58], [68], [81], [94] and the results
obtained from the SLR [48] and questionnaire survey. The
CSSRs and practices for addressing these risks are grouped
into seven different levels, which we call security assurance
levels: “Level-1: Governance and Security Threat Analy-
sis, Level-2: Secure Requirement Analysis, Level-3: Secure

58483

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

Design, Level-4: Secure Coding, Level-5: Secure Testing
and Review, Level-6: Secure Deployment, Level-7: Secu-
rity Improvement”. A total of 46 CSSRs and 388 practices
(see Table 1-7) were identified using SLR and questionnaire
survey.

The SAM of Software Development assessment process is
based on the Motorola evaluation tool [95]. Motorola created
this tool to evaluate the present state of a company’s software
processes and find areas for improvement [95].

In the last stage of this research, the model is tested as a
case study in a software development company, using data
from real software projects to examine the results of a prac-
tical experiment in that company. On compares the results in
two development scenarios: one with reactive security and
one with proactive security in all phases of software devel-
opment (SDLC). The case study results indicate that SAM of
Software Development helps measure the security assurance
level of an organization. It will also serve as a framework for
researchers to develop new software security measures.

This study recommended various security practices to fol-
low in each phase of the SDLC to achieve a secure SDLC.
The successful integration of these operations reduces effort,
time, and cost while creating secure software applications.
It helps software development businesses improve their soft-
ware security and efficiency. This will also raise the devel-
oper’s knowledge of the importance of secure development
techniques.

We have briefly answered the research questions men-
tioned in Section-I in the following paragraphs:

RQ1: How can a secure SDLC be developed for GSD
vendor companies that are both practical and robust?

We have developed SAM of Software Development for
GSD Vendors by studying various models and frameworks
(4], [8], [13], [15], [16], [31], [35], [38], [39], [41], [43], [58],
[68], [81], [94] and the results obtained from the SLR [48] and
questionnaire survey. The process flow for SAM of software
development is depicted in Section V (see Figure 3).

The CSSRs and practices for addressing these risks are
grouped into seven different levels, which we call security
assurance levels, e. g,

Level-1: Governance and Security Threat Analysis
Level-2: Secure Requirement Analysis

Level-3: Secure Design

Level-4: Secure Coding

Level-5: Secure Testing and Review

Level-6: Secure Deployment

Level-7: Security Improvement

The security assurance levels of SAM of software devel-
opment for GSD vendor organizations are illustrated in
Section V-D (see Figure 4). 46 CSSRs and 388 practices
(see Section IV, Table 1-7) were identified using SLR and
questionnaire survey.

We have developed SAM of Software Development for
GSD Vendors by studying various models frameworks [4],
(81, [13], [15], [16], [31], [35], [38], [39], [41], [43], [58],

58484

[68], [81], [94] and the results obtained from the SLR [48] and
questionnaire survey. The process flow for SAM of software
development is depicted in Figure 3.

The SAM of Software Development assessment process is
based on the Motorola evaluation tool [95]. Motorola cre-
ated this tool to evaluate the present state of a company’s
software processes and find areas for improvement [95].
Other researchers have widely used it to assess their proposed
models’ maturity, readiness, or assurance [15], [41], [58],
[68], [96].

RQ2: Is the proposed security assurance model capable
of assisting GSD organizations in determining their security
assurance to produce secure software?

A case study is considered an appropriate research method
in software engineering and a highly effective tool for vali-
dation purposes. In the last stage of this research, we have
conducted three case studies on software development com-
panies to validate our projected model (SAM of Software
Development). To get feedback on our suggested model,
we convened focus groups with the participants of the case
studies. We chose one large, one medium-sized, and one
small-sized company for our case study to reduce the impact
of their size.

We have used Motorola Assessment Tool for the assess-
ment results of each company. A score of 7 or above for
each CSSR indicates a specific company had successfully
addressed the risk. Any CSSR with a score of less than seven
is considered a weakness. The Company-A participant has
measured his security assurance for these CSSRs using SAM
of Software Development.

Table 9 presents the Company-A assessment results. The
assessment will focus on the following points:

e Table 9 presents that Company-A stands at Level-4
“Security Coding” of the SAM of Software Develop-
ment and comprehensively addresses the security risks
of the previous three levels (Governance and Security
Analysis, Secure Requirement Engineering, and Secure
Desing) since almost it achieved a score greater than 7.

e Company-A is weak in addressing the CSSR38 “Messy
code, code bad smells, dead code’, since the score val-
ues are less than 7.

Table 10 presents the Company-B assessment results. The
assessment will focus on the following points:

e Table 10 presents that Company-B stands at Level-3
“Secure Design” of the SAM of Software Development.
It has fully addressed the security risks of the other
two levels (Governance and Security Threat Analysis
and Secure Requirement Engineering) since almost it
achieved a score greater than 7 in the first three levels.

e Company-B is weak in achieving Level-4 “Secure Cod-
ing” since the score values of “CSSR17: Improper
secure design documentation” and “CSSR21: Improper
conduction of design and architecture security review”
are less than 7.

e Each of the practices for which Company-B has a score
of less than 7 requires improvement.

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

Table 11 presents the Company-C assessment results. The
assessment will focus on the following points:

e Table 11 presents that Company-C achieved all the secu-
rity assurance levels of SAM of Software Development
and comprehensively addresses the security risks of all
levels since almost it achieved a score greater than 7.

However, Company C should focus more on monitoring
the success of practice implementation rather than organiza-
tional commitment. This will aid in creating secure software
by enhancing its security assurance.

The case study enabled us to evaluate the practicability of
the SAM of Software Development for GSD vendor orga-
nizations. To get feedback, we asked 30 questions from the
case study participants, which are summarized in Section V-1
(see Table 12) for details.

We compare the goals of our research work with other
relevant studies, as depicted in Table 12.

B. FUTURE RESEARCH DIRECTIONS

With the increasing number of software security threats,
regularly upgrade software security processes and practices.
This study project can be improved in a variety of ways.
The following are some of the open study directions that
researchers can look into:

e To improve the outcomes of SAM of Software Devel-
opment, collaboration with software development orga-
nizations is required. Depending on the facilities and
methods used, it might be adapted to meet the needs of
various organizations.

e The SAM of Software Development might include char-
acteristics relating to specific technologies like the Inter-
net of Things (IoT), blockchain, and cloud computing.

e The SAM) of Software Development might be made
available as an online repository (tool) updated regularly
with new academic and industry practices. The SAM of
Software Development will become a reliable resource
for scholars and practitioners.

REFERENCES

[1] M. Zhang, X. de Carné de Carnavalet, L. Wang, and A. Ragab, “Large-
scale empirical study of important features indicative of discovered vul-
nerabilities to assess application security,” IEEE Trans. Inf. Forensics
Security, vol. 17, no. 9, pp. 2315-2330, Sep. 2019.

[2] G. McGraw, “Six tech trends impacting software security,” Computer,
vol. 50, no. 5, pp. 100-102, May 2017.

[3] J. C. S. Nunez, A. C. Lindo, and P. G. Rodriguez, “A preventive secure
software development model for a software factory: A case study,” IEEE
Access, vol. 8, pp. 77653-77665, 2020.

[4] S. Von Solms and L. A. Futcher, “Adaption of a secure software develop-
ment methodology for secure engineering design,” IEEE Access, vol. 8,
pp. 125630-125637, 2020.

[5] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and
potential solutions,” Comput. Netw., vol. 169, Mar. 2020, Art. no. 107094.

[6] J. Li, Y. Zhang, X. Chen, and Y. Xiang, “Secure attribute-based data
sharing for resource-limited users in cloud computing,” Comput. Secur:,
vol. 72, pp. 1-12, Jan. 2018.

[7] A. Sharma and M. P. Kumar, “Aspects of enhancing security in soft-
ware development life cycle,” Adv. Comput. Sci. Technol., vol. 10, no. 2,
pp. 203-210, 2017.

[8] R. Khan, “Secure software development: A prescriptive framework,”
Comput. Fraud Secur., vol. 2011, no. 8, pp. 12-20, Aug. 2011.

VOLUME 10, 2022

[9]

[10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

[30

[t

(31]

(32]

A. K. Srivastava and S. Kumar, “An effective computational technique
for taxonomic position of security vulnerability in software development,”
J. Comput. Sci., vol. 25, pp. 388-396, Mar. 2018.

D. Mellado, C. Blanco, L. E. Sanchez, and E. Fernandez-Medina, “A sys-
tematic review of security requirements engineering,” Comput. Standards
Interfaces, vol. 32, no. 4, pp. 153-165, 2010.

I. Velasquez, A. Caro, and A. Rodriguez, “Authentication schemes and
methods: A systematic literature review,” Inf. Softw. Technol., vol. 94,
pp. 30-37, Feb. 2018.

Y. Lee and G. Lee, “HW-CDI: Hard-wired control data integrity,” IEEE
Access, vol. 7, pp. 10811-10822, 2019.

R. A. Khan and S. U. Khan, “A preliminary structure of software security
assurance model,” in Proc. 13th Int. Conf. Global Softw. Eng., Gothenburg,
Sweden, May 2018, pp. 137-140.

S. Z. Hlaing and K. Ochimizu, “An integrated cost-effective secu-
rity requirement engineering process in SDLC using FRAM,” in
Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Dec. 2018,
pp. 852-857.

H. Al-Matouq, S. Mahmood, M. Alshayeb, and M. Niazi, “A maturity
model for secure software design: A multivocal study,” IEEE Access,
vol. 8, pp. 215758-215776, 2020.

M. Khari, Vaishali, and P. Kumar, “Embedding security in software devel-
opment life cycle (SDLC),” in Proc. 3rd Int. Conf. Comput. Sustain. Global
Develop. (INDIACom), Mar. 2016, pp. 2182-2186.

N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, “The prac-
tice of secure software development in SDLC: An investigation through
existing model and a case study,” Secur. Commun. Netw., vol. 9, no. 18,
pp. 5333-5345, Dec. 2016.

N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, “Exploring
software security approaches in software development lifecycle: A system-
atic mapping study,” Comput. Standards Interface, vol. 50, pp. 107-115,
Feb. 2017.

P. Silva, R. Noél, M. Gallego, S. Matalonga, and H. Astudillo, “Software
development initiatives to identify and mitigate security threats: A system-
atic mapping,” in Proc. CIBSE, 2016, pp. 257-270.

A. S. Guinea, G. Nain, and Y. L. Traon, “A systematic review on the
engineering of software for ubiquitous systems,” J. Syst. Softw., vol. 118,
pp. 251-276, Aug. 2016.

R. Kumar, A. Baz, H. Alhakami, W. Alhakami, M. Baz, A. Agrawal,
and R. A. Khan, ““A hybrid model of hesitant fuzzy decision-making anal-
ysis for estimating usable-security of software,” IEEE Access, vol. 8,
pp. 72694-72712, 2020.

R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic map-
ping study on security approaches in secure software engineering,” IEEE
Access, vol. 9, pp. 19139-19160, 2021.

R. A. Khan, S. U. Khan, M. Ilyas, and M. Y. Idris, “The state of
the art on secure software engineering: A systematic mapping study,”
in Proc. Eval. Assessment Softw. Eng., Trondheim, Norway, 2020,
pp. 487-492.

D. Verdon and G. McGraw, “Risk analysis in software design,” IEEE
Security Privacy, vol. 2, no. 4, pp. 79-84, Jul. 2004.

N. R. Mead and G. McGraw, “A portal for software security,” IEEE
Security Privacy, vol. 3, no. 4, pp. 75-79, Jul. 2005.

B. Potter and G. McGraw, “Software security testing,” IEEE Security
Privacy, vol. 2, no. 5, pp. 81-85, Sep. 2004.

S. Gupta, M. Faisal, and M. Husain, ““Secure software development process
for embedded systems control,” Int. J. Eng. Sci. Emerg. Technol., vol. 4,
pp. 133-143, Dec. 2012.

I. Flechais, C. Mascolo, and M. A. Sasse, “Integrating security and usabil-
ity into the requirements and design process,” Int. J. Electron. Secur. Digit.
Forensic, vol. 1, no. 1, pp. 12-26, 2007.

B. Subedi, A. Alsadoon, P. W. C. Prasad, and A. Elchouemi, “Secure
paradigm for web application development,” in Proc. 15th RoEduNet
Conf., Netw. Educ. Res., Sep. 2016, pp. 1-6.

A. S. Sodiya, S. A. Onashoga, and O. B. Ajayi, “Towards building secure
software systems,” Issues Informing Sci. Inf. Technol., vol. 3, pp. 635-646,
Jan. 2006.

C. P. Team, “CMMI for development,
Eng. Inst., Carnegie Mellon Univ,
Tech. Rep., CMU/SEI-2010-TR-033, 2010.

M. Alshayeb, A. Abdellatif, S. Zahran, and M. Niazi, “Towards a frame-
work for software product maturity measurement,” in Proc. 10th Int. Conf.
Softw. Eng. Adv., 2015, pp. 7-11.

version
Pittsburgh,

13,7 Softw.
PA, USA,

58485

IEEE Access

R. A. Khan et al.: SAM of Software Development for GSD Vendors

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

A. Abdellatif, M. Alshayeb, S. Zahran, and M. Niazi, “A measurement
framework for software product maturity assessment,” J. Softw., Evol.
Process, vol. 31, no. 4, p. e2151, Apr. 2019.

R. Eckert, S. K. Meyer, and M. Stuermer, “How are open source practices
possible within a medical diagnostics company? Developing and testing a
maturity model of inner source implementation,” in Proc. 13th Int. Symp.
Open Collaboration, Galway, Ireland, Aug. 2017, pp. 1-8.

R. Qutaish and A. Abran, “A maturity model of software product quality,”
J. Res. Pract. Inf. Technol., vol. 43, no. 4, pp. 307-327, 2011.

A. B. Jakobsen, M. O’Duffy, and T. Punter, ‘““Towards a maturity model
for software product evaluations,” in Proc. 10th Eur. Conf. Softw. Cost
Estimation (ESCOM), 1999, pp. 329-333.

A. April, J. H. Hayes, A. Abran, and R. Dumke, “Software maintenance
maturity model (SM™™): The software maintenance process model,”
J. Softw. Maintenance Evol., Res. Pract., vol. 17, no. 3, pp. 197-223, 2005.
M. Pereira da Silva and R. Miranda de Barros, “Maturity model of infor-
mation security for software developers,” IEEE Latin Amer. Trans., vol. 15,
no. 10, pp. 1994-1999, Oct. 2017.

S. R. Ahmed, “Secure software development: Identification of secu-
rity activities and their integration in software development lifecycle,”
M.S. thesis, Softw. Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
2007.

M. Essafi, L. Labed, and H. B. Ghezala, “S2D-ProM: A strategy oriented
process model for secure software development,” in Proc. Int. Conf. Softw.
Eng. Adv. (ICSEA), Aug. 2007, p. 24.

M. Niazi, A. M. Saeed, M. Alshayeb, S. Mahmood, and S. Zafar,
“A maturity model for secure requirements engineering,” Comput. Secur.,
vol. 95, Aug. 2020, Art. no. 101852.

J. Manico, “Application security verification standard 3.0.1,” OWASP,
USA, Tech. Rep., Version 3.0, 2016, pp. 1-70.

Building Security in Maturity Model (BSIMM), BSIMM12, USA, 2022.
B. A. Kitchenham, D. Budgen, and O. P. Brereton, ‘‘Using mapping studies
as the basis for further research—A participant-observer case study,” Inf.
Softw. Technol., vol. 53, pp. 638-651, Jun. 2011.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ““Systematic literature reviews in software engineering—A
systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7-15,
Jan. 2009.

J. Morén, C. Riva, and J. Tuya, “Testing MapReduce programs: A sys-
tematic mapping study,” J. Softw., Evol. Process, vol. 31, no. 3, p. 2120,
Mar. 2019.

R. E. Lopez-Herrejon, S. Illescas, and A. Egyed, “A systematic mapping
study of information visualization for software product line engineering,”
J. Softw., Evol. Process, vol. 30, no. 2, p. €1912, Feb. 2018.

R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, ““Systematic literature
review on security risks and its practices in secure software development,”
IEEE Access, vol. 10, pp. 5456-5481, 2022.

W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Inf. Softw. Technol., vol. 51,
no. 6, pp. 957-976, 2009.

B. Kitchenham and S. L. Pfleeger, “Principles of survey research part 6:
Data analysis,” ACM SIGSOFT Softw. Eng. Notes, vol. 28, pp. 24-27,
Mar. 2003.

H. U. Khan, M. Niazi, M. El-Attar, N. Ikram, S. U. Khan, and A. Q. Gill,
“Empirical investigation of critical requirements engineering practices for
global software development,” IEEE Access, vol. 9, pp. 93593-93613,
2021.

H. U. Rahman, M. Raza, P. Afsar, and H. U. Khan, “Empirical investi-
gation of influencing factors regarding offshore outsourcing decision of
application maintenance,” IEEE Access, vol. 9, pp. 58589-58608, 2021.
J. A. Khan, S. U. R. Khan, J. Igbal, and I. U. Rehman, “Empirical inves-
tigation about the factors affecting the cost estimation in global software
development context,” IEEE Access, vol. 9, pp. 22274-22294, 2021.

M. A. Akbar, W. Naveed, A. A. Alsanad, L. Alsuwaidan, A. Alsanad,
A. Gumaei, M. Shafiq, and M. T. Riaz, “Requirements change manage-
ment challenges of global software development: An empirical investiga-
tion,” IEEE Access, vol. 8, pp. 203070-203085, 2020.

M. A. Akbar, S. Mahmood, A. Alsanad, M. Shafiq, A. Gumaei, and
A. A.-A. Alsanad, ‘““Organization type and size based identification of
requirements change management challenges in global software develop-
ment,” IEEE Access, vol. 8, pp. 94089-94111, 2020.

S. Beecham, T. Clear, R. Lal, and J. Noll, “Do scaling agile frameworks
address global software development risks? An empirical study,” J. Syst.
Softw., vol. 171, Jan. 2021, Art. no. 110823.

58486

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

(74]

(751

[76]

(77]

M. A. Akbar, H. Alsalman, A. A. Khan, S. Mahmood, C. Meshram,
A. H. Gumaei, and M. T. Riaz, “Multicriteria decision making taxonomy
of cloud-based global software development motivators,” IEEE Access,
vol. 8, pp. 185290-185310, 2020.

R. A.Khan, M. Y. Idris, S. U. Khan, M. Ilyas, S. Ali, A. U. Din, G. Murtaza,
and A. W. Wahid, “An evaluation framework for communication and
coordination processes in offshore software development outsourcing rela-
tionship: Using fuzzy methods,” IEEE Access, vol. 7, pp. 112879-112906,
2019.

T. C. Lethbridge, S. E. Sim, and J. Singer, ““Studying software engineers:
Data collection techniques for software field studies,” Empirical Softw.
Eng., vol. 10, pp. 311-341, Jul. 2005.

A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad,
“Systematic literature review and empirical investigation of barriers
to process improvement in global software development: Client-
vendor perspective,” Inf. Softw. Technol., vol. 87, pp.180-205,
Jul. 2017.

B. Martin, Introduction to Medical Statistics, 4th ed. Oxford, U.K.: Oxford
Univ. Press, 2015, pp. 1-464.

S. U. Khan, M. Niazi, and R. Ahmad, “Factors influencing clients in the
selection of offshore software outsourcing vendors: An exploratory study
using a systematic literature review,” J. Syst. Softw., vol. 84, pp. 686—699,
Apr. 2011.

S. U. Khan, M. Niazi, and R. Ahmad, “Critical success factors for off-
shore software development outsourcing vendors: An empirical study,”
in Proc. Int. Conf. Product Focused Softw. Process Improvement, 2010,
pp. 146-160.

S. U. Khan, M. Niazi, and R. Ahmad, “Barriers in the selection of offshore
software development outsourcing vendors: An exploratory study using a
systematic literature review,” Inf. Softw. Technol., vol. 53, pp. 693-706,
Jul. 2011.

D. §mite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in
global software engineering: A systematic review,” Empirical Softw. Eng.,
vol. 15, no. 1, pp. 91-118, 2010.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Eng., vol. 14,
no. 2, pp. 131-164, Apr. 2009.

M. Younas, D. N. A. Jawawi, M. A. Shah, A. Mustafa, M. Awais,
M. K. Ishfaq, and K. Wakil, “Elicitation of nonfunctional requirements
in agile development using cloud computing environment,” IEEE Access,
vol. 8, pp. 209153-209162, 2020.

Y. Mufti, M. Niazi, M. Alshayeb, and S. Mahmood, “A readiness
model for security requirements engineering,” IEEE Access, vol. 6,
pp. 28611-28631, 2018.

I. Keshta, M. Niazi, and M. Alshayeb, “Towards implementation of
requirements management specific practices (SP 1.3 and SP 1.4) for Saudi
Arabian small and medium sized software development organizations,”
IEEE Access, vol. 5, pp. 24162-24183, 2017.

W. S. Al-Shorafat, “Security in software engineering requirement,”
in Proc. IEEE 3rd Int. Conf. Inf. Sci. Technol. (ICIST), Dec. 2013,
pp. 666-673.

P. Salini and S. Kanmani, “Survey and analysis on security require-
ments engineering,” Comput. Electr. Eng., vol. 38, no. 6, pp. 1785-1797,
Nov. 2012.

A.-U.-H. Yasar, D. Preuveneers, Y. Berbers, and G. Bhatti, “‘Best practices
for software security: An overview,” in Proc. IEEE Int. Multitopic Conf.,
Dec. 2008, pp. 169-173.

V. Maheshwari and M. Prasanna, ‘“‘Integrating risk assessment and threat
modeling within SDLC process,” in Proc. Int. Conf. Inventive Comput.
Technol. (ICICT), Aug. 2016, pp. 1-5.

L. Y. Banowosari and B. A. Gifari, “System analysis and design using
secure software development life cycle based on ISO 31000 and STRIDE.
Case study Mutiara Ban workshop,” in Proc. 4th Int. Conf. Informat.
Comput. (ICIC), Oct. 2019, pp. 1-6.

A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen, “Design
notations for secure software: A systematic literature review,” Softw. Syst.
Model., vol. 16, no. 3, pp. 809-831, Jul. 2017.

O. M. Surakhi, A. Hudaib, M. AlShraideh, and M. Khanafseh, “A survey
on design methods for secure software development,” Int. J. Comput.
Technol., vol. 16, no. 7, pp. 7047-7064, Dec. 2017.

G. Pedraza-Garcia, H. Astudillo, and D. Correal, “A methodological
approach to apply security tactics in software architecture design,” in
Proc. IEEE Colombian Conf. Commun. Comput. (COLCOM), Jun. 2014,
pp. 1-8.

VOLUME 10, 2022

R. A. Khan et al.: SAM of Software Development for GSD Vendors

IEEE Access

[78] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl, “MAC and UML for
secure software design,” in Proc. ACM Workshop Formal Methods Secur.
Eng. (FMSE), Washington, DC, USA, 2004, pp. 75-85.

[79]1 L. B. Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extending
the agile development process to develop acceptably secure software,”
IEEE Trans. Dependable Secure Comput., vol. 11, no. 6, pp. 497-509,
Nov. 2014.

[80] Y.-H. Tung, S.-C. Lo, J.-F. Shih, and H.-F. Lin, “An integrated security
testing framework for secure software development life cycle,” in Proc.
18th Asia—Pacific Netw. Oper. Manage. Symp. (APNOMS), Oct. 2016,
pp. 1-4.

[81] E. Venson, X. Guo, Z. Yan, and B. Boehm, “Costing secure software devel-
opment: A systematic mapping study,” in Proc. 14th Int. Conf. Availability,
Rel. Secur., Canterbury, U.K., Aug. 2019, pp. 1-11.

[82] M. Sodanil, G. Quirchmayr, N. Porrawatpreyakorn, and A. M. Tjoa,
“A knowledge transfer framework for secure coding practices,” in Proc.
12th Int. Joint Conf. Comput. Sci. Softw. Eng. (JCSSE), Jul. 2015,
pp. 120-125.

[83] E. Venson, R. Alfayez, M. M. F. Gomes, R. M. C. Figueiredo, and
B. Boehm, “The impact of software security practices on development
effort: An initial survey,” in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Sep. 2019, pp. 1-12.

[84] H. Nina, J. A. Pow-Sang, and M. Villavicencio, ““Systematic mapping
of the literature on secure software development,” IEEE Access, vol. 9,
pp. 36852-36867, 2021.

[85] C. Camacho, S. Marczak, and T. Conte, “On the identification of best
practices for improving the efficiency of testing activities in distributed
software projects: Preliminary findings from an empirical study,” in Proc.
IEEE 8th Int. Conf. Global Softw. Eng. Workshops, Aug. 2013, pp. 1-4.

[86] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A threat model-
based approach to security testing,” Softw., Pract. Exper., vol. 43, no. 2,
pp. 241-258, Feb. 2013.

[87] M. Asad and S. Ahmed, “Model driven architecture for secure software
development life cycle,” Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 6,
pp. 649-661, 2016.

[88] A.R. S. Farhan and G. M. M. Mostafa, “A methodology for enhancing
software security during development processes,” in Proc. 21st Saudi
Comput. Soc. Nat. Comput. Conf. (NCC), Apr. 2018, pp. 1-6.

[89] D. Hein and H. Saiedian, “Secure software engineering: Learning from
the past to address future challenges,” Inf. Secur. J., A Global Perspective,
vol. 18, no. 1, pp. 8-25, Feb. 2009.

[90] S. Velmourougan, P. Dhavachelvan, R. Baskaran, and B. Ravikumar,
“Software development life cycle model to improve maintainability of
software applications,” in Proc. 4th Int. Conf. Adv. Comput. Commun.,
Aug. 2014, pp. 270-273.

[91] L. Catuogno, C. Galdi, and G. Persiano, ““Secure dependency enforcement
in package management systems,” IEEE Trans. Dependable Secure Com-
put., vol. 17, no. 2, pp. 377-390, Mar. 2020.

[92] G. Pedraza-Garcia, R. Noél, S. Matalonga, H. Astudillo, and
E. B. Fernandez, “Mitigating security threats using tactics and patterns: A
controlled experiment,” in Proc. 10th Eur. Conf. Softw. Archit. Workshops,
Copenhagen, Denmark, Nov. 2016, p. 37.

[93] S. Islam and W. Dong, ‘“Human factors in software security risk man-
agement,” in Proc. Ist Int. Workshop Leadership Manage. Softw. Archit.
(LMSA), Leipzig, Germany, 2008, pp. 13-16.

[94] Microsoft Security Development Lifecycle, Microsoft, Redmond, WA,
USA, 2022.

[95] M. K. Daskalantonakis, “Achieving higher SEI levels,” IEEE Softw.,
vol. 11, no. 4, pp. 17-24, Jul. 1994.

[96] S. Aliand S. U. Khan, “Software outsourcing partnership model: An eval-
uation framework for vendor organizations,” J. Syst. Softw., vol. 117,
pp. 402-425, Jul. 2016.

[97] J.Rogers and A. Révész, “Experimental and quasi-experimental designs,”
in The Routledge Handbook of Research Methods in Applied Linguistics.
London, U.K.: Routledge, 2019.

[98] B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, “The state of the art
on design patterns: A systematic mapping of the literature,” J. Syst. Softw.,
vol. 125, pp. 93-118, Mar. 2017.

[99] P. Morrison, D. Moye, R. Pandita, and L. Williams, “Mapping the field
of software life cycle security metrics,” Inf. Softw. Technol., vol. 102,
pp. 146159, Oct. 2018.

[100] R.Jain and U. Suman, “A systematic literature review on global software
development life cycle,” ACM SIGSOFT Softw. Eng. Notes, vol. 40, no. 2,
pp. 1-14, Apr. 2015.

VOLUME 10, 2022

[101] P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, “An extensive
systematic review on the model-driven development of secure systems,”
Inf. Softw. Technol., vol. 68, pp. 62-81, Dec. 2015.

[102] V. R. Mouli and K. P. Jevitha, ‘“Web services attacks and security—A
systematic literature review,” Proc. Comput. Sci., vol. 93, pp. 870-877,
Jan. 2016.

RAFIQ AHMAD KHAN received the M.Phil.
degree in computer science with a specialization
in software engineering from the University of
Malakand, Khyber Pakhtunkhwa, Pakistan, under
the research supervision of Dr. Siffat Ullah Khan,
where he is currently pursuing the Ph.D. degree,
under the supervision of the same supervisor.

He has authored several articles in well-reputed
international conferences and journals, including
ICGSE and IEEE Access. His research interests
include software security, global software engineering, secure software
engineering, empirical software engineering, systematic literature review,
requirements engineering, green computing, software testing, and agile
software development.

SIFFAT ULLAH KHAN received the Ph.D. degree
in computer science from Keele University, UK.,
in 2011.

He was the Head of the Department of Software
Engineering, University of Malakand, Pakistan,
for three years, where he was also the Chairperson
of the Department of Computer Science and IT.
He is currently an Associate Professor in computer
science. He is also the Founder and the Leader of
the Software Engineering Research Group, Uni-
versity of Malaka.nd He has successfully supervised 10 M.Phil. and four
Ph.D. scholars. He has authored over 100 articles, so far, in well-reputed
international conferences and journals. His research interests include soft-
ware outsourcing, empirical software engineering, agile software devel-
opment, systematic literature review, software metrics, cloud computing,
requirements engineering, and green computing/IT. He received the Gold
Medal (Dr. M. N. Azam Prize 2015) from the Pakistan Academy of Sciences
in recognition of his research achievements in the field of computer (soft-
ware).

MUSAAD ALZAHRANI received the B.Sc.
degree from King Abdulaziz University, Jeddah,
Saudi Arabia, in 2008, and the M.Sc. and Ph.D.
degrees from Kent State University, Kent, OH,
USA, in 2013 and 2017, respectively, all in com-
puter science. He is currently an Assistant Pro-
fessor with the Faculty of Computer Science
and Information Technology, Albaha University,
Al-Bahah, Saudi Arabia. His research interests

: include software engineering, software metrics
and qualities, software maintenance, and machine learning.

MUHAMMAD ILYAS received the Ph.D. degree
in computer science from the University of
Malakand, Pakistan. He is currently an Assis-
tant Professor with the Computer Science and IT
Department, University of Malakand. His research
interests include software outsourcing, empirical
software engineering, systematic literature review,
cloud computing, requirements engineering, and
green computing/IT.

58487

