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ABSTRACT This paper mainly investigates the stability analysis and synchronization control of a fractional-
order time-varying delay inertial neural network. Firstly, a time-varying delay inertial neural network model
is established, which is easy to implement in engineering applications. Secondly, based on the properties
of the Caputo fractional derivative and the proposed lemma, the original inertial system is transferred into
conventional system through the proper variable substitution, and a synchronous control strategy for the time
varying delay inertial network is then established. In addition, the stability conditions of a class of Caputo
fractional-order time-delay inertial neural networks are given. Finally, three simulation examples are given
to verify the rationality and effectiveness of the method proposed in this paper.

INDEX TERMS Fractional-order, inertial neural network, time-varying delay, synchronization control,
stability analysis.

I. INTRODUCTION
In 1986, Babcock and Westervelt introduced the inductance
into the neural network for the first time to reveal the inertia
of the system, and constructed a second-order inertial neural
network model, which gave birth to the inertial neural net-
work. Based on the structured network model, they analyzed
the dynamic behavior of the model such as chaos and bifurca-
tion [1]. Due to the limited transmission speed between neu-
rons, Babcock and Westervelt introduced an inertial neural
network with time delay [2]. It is proved that inertial neural
networks have a wide range of practical applications in the
fields of associative memory, image processing, and signal
processing. However, there is a inertial term in the neural
network, which leads to the occurrence of very complex
dynamic behaviors such as instability, chaos, and bifurcation.

There are many significant findings in the research on
integer-order inertial neural networks. Cui et al. [3] discussed
an inertial neural network with linear proportional inequality,
and obtained the global asymptotic stability conditions and
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global robust stability conditions of the system through linear
matrix inequality. Rakkiyappan et al. [4] studied the period-
icity and synchronization of inertial resistive neural networks
with time delay by using matrix measure method and Halany
inequality technology. In addition, Lakshmanan et al. [5]
proposed an image encryption algorithm based on a piece-
wise linear chaotic graph and chaotic inertial neural network.
Prakash et al. [6] proposed a synchronization criteria for
Markovian jumping time delayed bidirectional associative
memory inertial neural networks and their applications in
secure image communications. Alimi et al. [7] investigated
the finite-time and fixed-time synchronization problem for
a class of inertial neural networks with multi-proportional
delays. Zhang et al. [8] considered the global exponential dis-
sipation of memristive inertial neural networks with discrete
and distributed time-varying delays. Wang et al. [9] derived
several constrained conditions to ensure the global Lagrange
stability of inertial neural networks with discrete and dis-
tributed time-varying delays, and gave a global exponential
attraction set. Dharani et al. [10] explored the sampling
data synchronization of coupled inertial neural networks
with reaction-diffusion terms and time-varying delays.
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Li et al. [11] studied the asymptotic stability and synchro-
nization of a class of time-delayed inertial neural networks
without converting the second-order inertial neural network
to the first-order differential system through variable sub-
stitution. Zhang et al. [12] studied the global asymptotic
synchronization of a class of inertial delay neural networks,
by using constructed integral inequality and inequality tech-
niques instead of using conventional global exponential and
asymptotic synchronization research methods: linear matrix
inequality method, matrix measurement strategy and stabil-
ity theory method. Zhang et al. [13] proposed a class of
state-dependent switching neural networks with inertial terms
and distributed time delays. Chaouki et al. [14] proposed the
driver response synchronization in a finite time and a fixed
time of an inertial neural network with time-varying and dis-
tributed time-delay. Chen et al. [15] considered the fixed-time
synchronization control of inertial memristor-based neural
networks with discrete delay. Yotha et al. [16] proposed the
delay-dependent passivity analysis issue for uncertain neural
networks with discrete interval and distributed time-varying
delays.

Fractional calculus is the extension of integers and integer
derivatives to any order, and the history of the field can be
traced back to around 300 years ago. Fractional differential
equations are considered to be a powerful tool for modeling
practical problems in biology, chemistry, physics, medicine,
economics and other sciences. In view of the hereditary
and memory properties of fractional-order calculus, many
scholars apply fractional operators to neural networks to
establish a fractional neural network model, e.g. [17]–[24].
With the development of theory on fractional-order, the
study of synchronization control for fractional-order neu-
ral networks (NNS) has received more and more attention
and some interesting results have been obtained, such as
asymptotical synchronization [25], exponential synchroniza-
tion [26], finite-time synchronization [27], fixed-time syn-
chronization [28], robust synchronization [29], and adaptive
synchronization [30].

At present, many studies mainly focused on fractional-
order neural networks with single fractional-order derivative
of the states. It is also of significant importance to introduce
an inertial term, which is considered as a powerful tool to gen-
erate complicated bifurcation behavior and chaos. Therefore,
it is meaningful and valuable to investigate the dynamics of
fractional-order inertial neural network. Gu et al. [31] investi-
gated the stability and synchronization of Riemann-Liouville
fractional-order inertial neural networks with time delays.
Li et al. [32] investigated the boundedness and the global
Mittag-Leffler synchronization of fractional-order inertial
Cohen-Grossberg neural networks with time delays. Ke [33]
investigated the stability for a class fractional-order inertial
neural networks with time-delay. Zhang et al. [34] studied
the synchronization of a Riemann-Liouville-type fractional
inertial neural network with a time delay and two inertial
terms. Yang et al. [35] investigated the quasi-synchronization
problem of fractional order memristor-based inertial neural

networks. However, the above literatures mainly discuss
either synchronous control of fractional-order inertial neural
network in the sense of Riemann-Liouville or the quasi-
synchronization problem of fractional order memristor-based
inertial neural networks. It should be point out that the
fractional-order systems in the sense of Caputo have greater
physical meaning. On the other hand, quasi-synchronization
does not ensure that the synchronization error tends to zero.

Motivated by these, the asymptotic synchronization con-
trol of a Caputo fractional time-varying delay inertial neural
network are investigated in this paper. The main contributions
of this paper are summarized as follows.

• The Caputo fractional time-varying delay inertial neu-
ral network model is established. This model is easy
to implement and practically significant in engineering
applications.

• A lemma on the composition properties of Caputo
fractional-order derivative and integral are given, which
provide critical tools for fractional-order system.

• Based on the properties of the Caputo fractional
derivative, the original inertial system is transferred
into conventional system through the proper variable
substitution.

• A synchronization control strategy for fractional time-
varying time-delay inertial neural networks is pro-
posed. In addition, the stability conditions of a class
of fractional-order time-varying inertial neural networks
with time delay are also given.

The structure of this paper is organized as follows. In the
second section, the model formulation and some preliminar-
ies are presented. In third section, some criteria for asymp-
totic synchronization of the fractional order inertial neural
networks with time-varying delay are derived. In addition,
the stability conditions of a class of fractional-order delayed
inertial neural networks with are also given. In the fourth
section, three numerical examples and its simulations are
given to illustrate the effectiveness of our theoretical results.
Finally, a brief discussion and future research topic are given
in the fifth section.
Notations: The symbols are used in the article as follows.

Z+ represents positive integers. Cm[a, b] represents the con-
tinuous function set of them derivative function on the closed
interval [a, b]. R represents a real number. R+ represents a
positive real number. Rn represents n-dimension vector space.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
In the research and application of fractional derivatives
and integrals, there are three common types of definition:
Grunwald-Letnikov, Rieman-Liouville, and Caputo defini-
tions. Among these, the initial system values given by Caputo
definitions are the same those of an integer-order system
and have greater physical meaning. Therefore, the Caputo
fractional differential is used to define the model in this
article.
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In this section, we recall some basic defnitions about frac-
tional calculus and introduce some useful lemmas.
Definition 1 ’ [36]’: The fractional integral of the function

f (t) is defined as

C
t0D
−α
t f (t) =

1
0(α)

∫ t

t0
(t − τ )α−1f (τ )dτ, (1)

where t > t0, α > 0, and 0(·) is the gamma function.
Definition 2 ’ [36]’: The fractional derivative of the func-

tion f (t) is defined as

C
t0D

α
t f (t) =

1
0(n− α)

∫ t

t0
(t − τ )n−α−1f (n)(τ )dτ, (2)

where n− 1 ≤ α < n, n ∈ Z+, t > t0. If 0 < α < 1, then

C
t0D

α
t f (t) =

1
0(1− α)

∫ t

t0

f ′(τ )
(t − τ )α

dτ. (3)

We will denote C
0 D

α
t x(t) with D

α
t x(t) for simplicity. Some

important properties of the fractional derivative and integral
are listed as follows.
Lemma 1 ’ [36]’: If x(t) is continuous for t > t0 then

integration of arbitrary real order defined by Eq.(1) has the
following important property.

D−αt D−βt x(t) = D−βt D−αt x(t) = D−α−βt x(t). (4)

where α, β ∈ R+.
Lemma 2 ’ [36]’: Suppose that x(t) ∈ C1[0,T ], where T

is a positive constant and the fractional order α ∈ (0, 1]. then
the following equation holds.

Dαt D
−α
t x(t) = x(t). (5)

Lemma 3 ’ [37]’: If λ,µ ∈ R, and ∀α > 0, then Eq. (6)
holds.

Dαt (λx1(t)+ µx2(t)) = λD
α
t x1(t)+ µD

α
t x2(t). (6)

Lemma 4 ’ [38]’: If x(t) ∈ C1[0,T ], T > 0, α1, α2 > 0,
and α1 + α2 ≤ 1, then Eq. (7) holds.

Dα1t D
α2
t x(t) = Dα1+α2t x(t). (7)

Lemma 5 ’ [38]’: if x(t) ∈ Cm[0,T ], T > 0, then Eq. (8)
holds.

Dαt x(t) = Dαnt · · · D
α2
t D

α1
t x(t), t ∈ [0,T ]. (8)

where α =
∑n

i=1 αi, αi ∈ (0, 1], and m− 1 ≤ α < m ∈ Z+,
and there exist ik < n s.t.

∑ik
j=1 αj = k (k = 1, 2, · · ·m− 1)

Lemma 6 ’ [39]’: Suppose x(t) : [0,+∞] → Rn is
bounded and differentiable. If 0 < α ≤ 1, then Eq. (9) holds.

Dαt x
T (t)x(t) ≤ 2 xT (t)Dαt x(t). (9)

Lemma 7 ’ [40]’: If z1, z2 ∈ R and ρ ∈ R+ is a constant.
then Eq. (10) holds.

2z1z2 ≤ ρz21 + ρ
−1z22. (10)

Lemma 8 ’ [41]’: Let x = 0 be an equilibrium point for
Dαt x(t) = f (x(t)) or Dαt x(t) = f (t, x(t)), and D ⊂ R be the

region of attraction containing x = 0, where f (t, x) is locally
Lipschitz to x(t). Let the proposed V (t, x) : [0,+∞) ×
D → R be a continuously differentiable function such that
V (t, x)|(x=0) = 0,V (t, x) > 0 in D \ {0} and V̇ (t, x) 6 0 in
D. Then, x = 0 is stable. Moreover, if V̇ (t, x) < 0 in D, then
x = 0 is asymptotically stable.
On the basis of the above lemma, the following property is

given.
Lemma 9: If α, β ∈ (0, 1],x(t) ∈ C1[0,T ] and T > 0, then

the following equation holds.

Dαt D
−β
t x(t) = Dα−βt x(t). (11)

Proof: Three cases must be considered.
(i) While 0 < α < β ≤ 1, according to Lemma 1 and

Lemma 2, we have

Dαt D
−β
t x(t) = Dαt D

−α−(β−α)
t x(t)

= Dαt D
−α
t D−(β−α)t x(t)

= Dα−βt x(t).

(ii) While 0 < β < α ≤ 1, according to Lemma 2 and
Lemma 4, we obtain

Dαt D
−β
t x(t) = Dα−β+βt D−βt x(t)

= Dα−βt Dβt D
−β
t x(t)

= Dα−βt x(t).

(iii) While 0 < β = α ≤ 1, according to Lemma 2,
we have

Dαt D
−β
t x(t) = x(t) = Dα−βt x(t).

The proof is completed.

B. PROBLEM FORMULATION
In this section, we will give the mathematical model of the
fractional-order inertial neural networks with time-varying
delay. The drive system is defined as:

Dαt xi(t) = −aiD
β
t xi(t)− bixi(t)+

n∑
j=1

cijfj(xj(t))

+

n∑
j=1

dijgj(xj(t − τj(t)))+ Ii(t)

xi(s) = ϕi(s)

Dβt xi(s) = ψi(s), s ∈ [−τi(t), 0]; i = 1, 2 . . . n, t > 0.

(12)

where 0 < β ≤ 1, β < α ≤ 1+β. n represents the number of
neurons of the neural network. xi(t) represents the state of the
ith neuron, and fj(·) and gj(·) represents the output of the jth
neuron at the times t and t−τj(t), respectively. ai > 0, bi > 0,
cij, and dij are the connection weights of the neurons. τj(t)
is the delay, and Ii(t) represents the disturbance outside the
network. ϕi(s) and ψi(s) are the initial values of the system,
which are continuous and bounded function.
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Remark 1:When α = β, the drive system (12) degenerates
into a general fractional neural network in the following
manner:

Dαt xi(t) = −
bi

ai + 1
xi(t)+

1
ai + 1

n∑
j=1

cijfj(xj(t))

+
1

ai + 1

n∑
j=1

dijgj(xj(t − τj(t)))+
1

ai + 1
Ii(t).

(13)

When α < β, the drive system(12) is transformed into:

Dβt xi(t) = −
1
ai
Dαt xi(t)−

bi
ai
xi(t)+

1
ai

n∑
j=1

cijfj(xj(t))

+
1
ai

n∑
j=1

dijgj(xj(t − τj(t)))+
1
ai
Ii(t). (14)

Therefore, this article focuses only on the case of α > β.
The corresponding response system is given by

Dαt yi(t) = −aiD
β
t yi(t)− biyi(t)+

n∑
j=1

cijfj(yj(t))

+

n∑
j=1

dijgj(yj(t − τj(t)))+ Ii(t)+ ui(t)

yi(s) = ϕ′i(s)

Dβt yi(s) = ψ
′
i (s), s ∈ [−τi(t), 0]; i = 1, 2 . . . n, t>0.

(15)

where ui(t) is the designed controller, and ϕ′i(s) and ψ
′
i (s)

are the initial functions of the system. The meaning of other
parameters is consistent with the system(12).
Assumption 1: The activation functions fi(·) and gi(·)

satisfy the Lipschitz condition, and there are constants li,
mi > 0, establishing the inequality given in Eq. (16):

|fi(y)− fi(x)| ≤ li|y− x|

|gi(y)− gi(x)| ≤ mi|y− x|, i = 1, 2, . . . n. (16)

Remark 2: In order to ensure the existence and uniqueness
of the solutions of the fractional-order time-varying delay
inertial neural network, we must first put forward relevant
assumptions about the activation function of the considered
inertial neural network. Therefore, Assumption 1 is rational,
and one can also see the reference [42].
Remark 3: Many previous studies mainly focused on

fractional-order neural networks with single fractional-order
derivative of the states [17]–[30]. However, it is important to
introduce an inertia term, which is considered as a powerful
tool to generate complex bifurcation behavior and chaos.
Moreover, fractional-order inertial neural network is a more
approximate simulation of the dynamical behavior of the
neurons. Therefore, it is meaningful and valuable to study the
dynamics of fractional-order inertial neural networks. In this
paper, we study the stability analysis and synchronization
control of a fractional inertial neural network with time-
varying delays.

III. MAIN RESULTS
In this section, the synchronization between the drive sys-
tem (12) and the response system (15) is investigated, and
the respective synchronization control strategy is proposed.
Firstly, we perform a system equivalent transformation.

Let pi(t) = Dβt xi(t)+ xi(t). According to Lemmas 3 and 5,
if 0 < β ≤ 1, and β < α ≤ 1+ β, we have

Dα−βt pi(t) = Dα−βt (Dβt xi(t)+ xi(t))

= Dα−βt Dβt xi(t)+ D
α−β
t xi(t)

= Dαt xi(t)+ D
α−β
t xi(t). (17)

Then, the drive system (12) can be transformed into

Dα−βt pi(t) = −aipi(t)− (bi − ai)xi(t)

+

n∑
j=1

cijfj(xj(t))+
n∑
j=1

dijgj(xj(t − τj(t)))

+Dα−βt xi(t)+ Ii(t)

Dβt xi(t) = −xi(t)+ pi(t), i = 1, 2 . . . n; t > 0.

(18)

Similarly, let qi(t) = Dβt yi(t) + yi(t). If 0 < β ≤ 1, and
β < α ≤ 1+β, then the response system (15) is transformed
into:

Dα−βt qi(t) = −aiqi(t)− (bi − ai)yi(t)

+

n∑
j=1

cijfj(yj(t))+
n∑
j=1

dijgj(yj(t − τj(t)))

+Dα−βt yi(t)+ Ii(t)+ ui(t)

Dβt yi(t) = −yi(t)+ qi(t), i = 1, 2 . . . n; t > 0.

(19)

Denote synchronization error as follows:{
ei(t) = yi(t)− xi(t)
zi(t) = qi(t)− pi(t), i = 1, 2 . . . n.

(20)

If lim
t→∞e(t) = 0, and lim

t→∞z(t) = 0, then the drive sys-
tem (12) or (18) and the response system (15) or (19) will
achieve synchronization.

According to the drive system (18) and the response sys-
tem (19), we can redescribe the error system as follows:

Dα−βt zi(t) = Dα−βt qi(t)− D
α−β
t pi(t)

= −aizi(t)− (bi − ai)ei(t)+
n∑
j=1

cij
i

fj

+

n∑
j=1

dij
i

gj + D
α−β
t ei(t)+ ui(t)

Dβt ei(t) = −ei(t)+ zi(t),

(21)

where
a
fj = fj(yj(t))− fj(xj(t)), and

a
gj = gj(yj(t−τj(t)))−

gj(xj(t − τj(t))).

A. SYNCHRONIZATION OF FRACTIONAL INERTIAL
NEURAL NETWORKS WITH TIME-VARYING DELAY
The synchronization controller ui(t) is designed as follows:

ui(t) = −ρiei(t)− kizi(t)− D
α−β
t ei(t) (22)
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where ρi, ki and γi are the design parameters of the controller.

−ωi + γi +
|ωi + ai − bi − ρi|

2
+

n∑
j=1

|cijli|
2

< 0

−ai − ki+
|ωi + ai − bi − ρi|

2
+

n∑
j=1

|cijlj|+|dijmj|
2

<0

n∑
j=1

|dijmi|
2
− γi(1− τ̇i(t)) < 0.

(23)

where τ̇i(t) represents the derivative of the delay function τi(t)
and satisfies τ̇i(t) < 1.
Theorem 1:Assumed that Assumption 1 is satisfied. Under

the controller (22), the synchronization of the response sys-
tem (15) or (19) and the drive system (12) or (18) are achieved
if the control parameters ρi, ki, γi, ωi > 0, li > 0, and
mi > 0 are selected such that Eq. (23) holds.

Proof: Select a Lyapunov functional as follows:

Vi(t) =
1
2
Dβ−1t (ωie2i (t))+

1
2
Dα−β−1t z2i (t)

+

∫ t

t−τi(t)
γie2i (s)ds, (24)

where the constant ωi > 0, γi > 0.
According to Lemma 6 and Lemma 9, calculating the

derivative of Vi(t), we have

V̇i(t) =
1
2
Dβt (ωie

2
i (t))+

1
2
Dα−βt z2i (t)+ γie

2
i (t)

− γi(1− τ̇i(t))e2i (t − τi(t))

≤ ωiei(t)D
β
t ei(t)+ zi(t)D

α−β
t zi(t)+ γie2i (t)

− γi(1− τ̇i(t))e2i (t − τi(t))

= ωiei(t)
(
− ei(t)+ zi(t)

)
+ zi(t)

(
− aizi(t)− (bi − ai)ei(t)+

n∑
j=1

cij
i

fj

+

n∑
j=1

dij
i

gj + D
α−β
t ei(t)+ ui(t)

)
+ γie2i (t)

− γi(1− τ̇i(t))e2i (t − τi(t))

= (−ωi + γi)e2i (t)− (ai + ki)z2i (t)

+ (ωi + ai − bi − ρi)ei(t)zi(t)

+

n∑
j=1

cijzi(t)
i

fj +
n∑
j=1

dijzi(t)
i

gj

− γi(1− τ̇i(t))e2i (t − τi(t))

≤ (−ωi + γi)e2i (t)− (ai + ki)z2i (t)

+ |ωi + ai − bi − ρi||ei(t)zi(t)|

+

n∑
j=1

|cijlj||ej(t)zi(t)|

+

n∑
j=1

|dijmj||zi(t)ej(t − τj(t))|

− γi(1− τ̇i(t))e2i (t − τi(t)). (25)

According to Lemma 7, we have

ei(t)zi(t) ≤
1
2
e2i (t)+

1
2
z2i (t)

ej(t)zi(t) ≤
1
2
e2j (t)+

1
2
z2i (t)

ej(t − τj(t))zi(t) ≤
1
2
e2j (t − τj(t))+

1
2
z2i (t)

ei(t − τi(t))zi(t) ≤
1
2
e2i (t − τi(t))+

1
2
z2i (t).

(26)

Substituting Eq. (26) into Eq. (25), we obtain

V̇i(t) ≤ −(ωi − γi)e2i (t)− (ai + ki)z2i (t)

+
|ωi + ai − bi − ρi|

2
(e2i (t)+ z

2
i (t))

+

n∑
j=1

|cijlj|
2

(e2j (t)+ z
2
i (t))

+

n∑
j=1

|dijmj|
2

(z2i (t)+ e
2
j (t − τj(t)))

− γi(1− τ̇i(t))e2i (t − τi(t))

=

(
− ωi + γi+

|ωi + ai − bi−ρi|
2

+

n∑
j=1

|cijli|
2

)
e2i (t)

+

(
− ai − ki +

|ωi + ai − bi − ρi|
2

+

n∑
j=1

|cijlj| + |dijmj|
2

)
z2i (t)

+

( n∑
j=1

|dijmi|
2
− γi(1− τ̇i(t))

)
e2i (t − τi(t)). (27)

Select the parameter values fulfilling ρi, ki, γi, ωi > 0,
li > 0, and mi > 0 to satisfy Eq. (23). We have

V̇i(t) < 0.

According to Lemma 8, it can be seen that the synchro-
nization error ei(t), zi(t) asymptotically approaches 0. i.e., the
drive system(12) or (18) and the response system(15) or (19)
can be synchronized. The proof is completed.
Remark 4: When τi(t) is a constant, the system given in

Eq. (12) degenerate into a fractional-order inertial neural
network with fixed time delay. Therefore, compared with the
reference [31], our method is more versatile.
Remark 5: In this paper, we use the Caputo fractional

differential and integral properties and the Lyapunov direct
method to construct a Lyapunov function with integral terms.
The main advantage is to avoid calculating the fractional
derivative of Lyapunov functional to discuss the synchroniza-
tion stability conditions.
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B. STABILITY ANALYSIS OF FRACTIONAL INERTIAL
NEURAL NETWORK WITH TIME-VARYING DELAY
When 0 < β < 1, and α = 2β, a fractional-order iner-
tial neural network system with time-varying delay can be
defined as follows:

D2β
t xi(t) = −aiD

β
t xi(t)− bixi(t)+

n∑
j=1

cijfj(xj(t))

+

n∑
j=1

dijgj(xj(t − τj(t)))+ Ii(t),

i = 1, 2 . . . n.t > 0. (28)

Next, we will discuss the global uniform stability
of fractional-order time-delayed inertial neural network
described by (28)

Suppose that xi(t) and x̂i(t) are two different solutions
of the system (28) at different initial values xi(s) =
ϕi(s),D

β
t xi(s) = ψi(s) and x̂i(s) = ϕi(s),D

β
t x̂i(s) = ψi(s),

s ∈ [−τi(t), 0].
Denote ěi(t) = x̂i(t)− xi(t). Then we have

D2β
t ěi(t) = −aiD

β
t ěi(t)− biěi(t)

+

n∑
j=1

cij
(
fj(x̂j(t))− fj(xj(t))

)
+

n∑
j=1

dij
(
gj(x̂j(t − τj(t)))− gj(xj(t − τj(t)))

)
.

(29)

Denote ži(t) = Dβt ěi(t) + ěi(t). Then system (29) can be
transformed as follows:

Dβt ži(t) = −(ai − 1)ži(t)− (bi − ai + 1)ěi(t)

+

n∑
j=1

cij
(
fj(x̂j(t))− fj(xj(t))

)
+

n∑
j=1

dij
(
gj(x̂j(t − τj(t)))− gj(xj(t − τj(t)))

)
Dβt ěi(t) = −ěi(t)+ ži(t), i = 1, 2 . . . n, t > 0.

(30)

Corollary 1: The system (28) is globally uniformly stable
with any different initial value under without controller, if the
parameters ω̃i, γ̃i, l̃i > 0, and m̃i > 0 are chosen such that the
follow conditions are satisfied.

−ω̃i + γ̃i +
|ω̃i + ai − bi − 1|

2
+

n∑
j=1

|cij l̃i|
2

< 0

−ai + 1+
|ω̃i + ai − bi − 1|

2
+

n∑
j=1

|cij l̃j| + |dijm̃j|
2

<0

n∑
j=1

|dijm̃i|
2
− γ̃i(1− τ̇i(t)) < 0.

(31)

where τ̇i(t) represents the derivative of the delay function τi(t)
and satisfies τ̇i(t) < 1.

Proof: Select a Lyapunov functional as follows:

Vi(t) =
1
2
Dβ−1t (ω̃iě2i (t))+

1
2
Dβ−1t ž2i (t)

+

∫ t

t−τi(t)
γ̃iě2i (s)ds (32)

where the constant ω̃i > 0, and γ̃i > 0.
According to Lemma 6 and Lemma 9, calculating the

derivative of Vi(t), we have

V̇i(t) =
1
2
Dβt (ω̃iě

2
i (t))+

1
2
Dβt ž

2
i (t)+ γ̃iě

2
i (t)

− γ̃i(1− τ̇i(t))ě2i (t − τi(t))

≤ ω̃iěi(t)D
β
t ěi(t)+ ži(t)D

β
t ži(t)+ γ̃iě

2
i (t)

− γ̃i(1− τ̇i(t))ě2i (t − τi(t))

= ω̃iěi(t)
(
− ěi(t)+ ži(t)

)
+ ži(t)

(
− (ai − 1)ži(t)

− (bi − ai + 1)ěi(t)+
n∑
j=1

cij
(
fj(x̂j(t))− fj(xj(t))

)
+

n∑
j=1

dij
(
gj(x̂j(t − τj(t)))− gj(xj(t − τj(t)))

))
+ γ̃iě2i (t)− γ̃i(1− τ̇i(t))ě

2
i (t − τi(t))

= (−ω̃i + γ̃i)ě2i (t)− (ai − 1)ž2i (t)

(ω̃i + ai − bi − 1)ěi(t)ži(t)

+

n∑
j=1

cij
(
fj(x̂j(t))− fj(xj(t))

)
+

n∑
j=1

dij
(
gj(x̂j(t − τj(t)))− gj(xj(t − τj(t)))

)
− γ̃i(1− τ̇i(t))ě2i (t − τi(t))

≤ (−ω̃i + γ̃i)ě2i (t)− (ai − 1)ž2i (t)

+ |ω̃i + ai − bi − 1||ěi(t)ži(t)|

+

n∑
j=1

|cij l̃j||ěj(t)ži(t)|

+

n∑
j=1

|dijm̃j||ži(t)ěj(t − τj(t))|

− γ̃i(1− τ̇i(t))ẽ2i (t − τi(t)). (33)

Similar to the proof method of Theorem 1, we have

V̇i(t) ≤
(
− ω̃i + γ̃i+

|ω̃i + ai − bi − 1|
2

+

n∑
j=1

|cij l̃i|
2

)
e2i (t)

+

(
− ai + 1+

|ω̃i + ai − bi − 1|
2

+

n∑
j=1

|cij l̃j| + |dijm̃j|
2

)
z2i (t)

+

( n∑
j=1

|dijm̃i|
2
− γ̃i(1− τ̇i(t))

)
e2i (t − τi(t)). (34)
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Selected the values of the parameters γ̃i > 0, ω̃i > 0,
l̃i > 0, and m̃i > 0 to satisfy Eq. (31).

We have

V̇i(t) < 0.

According to Lemma 8, it follows that the system synchro-
nization error ěi(t), ži(t) asymptotically diminishes to 0. i.e.,
the system (28) is globally consistent and stable. The proof is
completed.
Remark 6:Although α = 2β is included in the Theorem 1,

it should be point out that a controller needs to be designed
in Theorem 1, while Corollary 1 need not.
Remark 7: When α = 2 and β = 1, the fractional-order

inertial neural network will be simplified to an integer-order
inertial neural network. Therefore, the integer-order iner-
tial neural network can be regarded as a special case of
the fractional-order inertial neural network. Theorem 1 and
Corollary 1 proposed in this paper can be used to solve such
problems with high versatility.

IV. NUMERICAL SIMULATIONS
In this section, we present three numerical examples to verify
the validity of the results of Theorem 1 and Corollary 1.

Since most fractional differential equations do not have
analytical solutions, so approximation and numerical tech-
niques must be used. a numerical algorithm is proposed for
solving fractional-order differential equations in [43]. Actu-
ally, this scheme is the generalization of Adams-Bashforth-
Moulton Method. Consider the Caputo fractional-order
differential equation as follows.{

Dαt xi(t) = f (t, x(t)), 0 ≤ t ≤ T

x(k)(0) = y(k)0 , k = 0, 1, 2, . . . ,m− 1.
(35)

The Eq.(35) is equivalent to the following Volterra integral
equation.

x(t) =
dαe−1∑
k=0

x(k)0
tk

k!
+

1
0(α)

∫ t

0
(t − s)α−1f (s, x(s))ds, (36)

where dαe−1 denote the first integer which is no less than α.
Set h = T

N , tn = nh, n = 0, 1, 2, . . . ,N ∈ Z+, then Eq.(36)
can be written as

xh(tn+1) =
dαe−1∑
k=0

x(k)0

tkn+1
k!
+

hα

0(α + 2)
f (tn+1, x

p
h (tn+1))

+
hα

0(α + 2)

n∑
j=0

aj,n+1f (tj, x
p
h (tj)) (37)

where

aj,n+1 =


nα+1 − (n−α)(N+1)a, j = 0,
(n−j+2)α+1 + (n− j)α+1

− 2(n− j+ 1)α+1, 1 ≤ j ≤ n,
1, j = n+ 1.

(38)

xph (tn+1) =
dαe−1∑
k=0

x(k)0

tkn+1
k!
+

1
0(α)

n∑
j=0

bj,n+1f (tj, xh(tj)),

(39)

where

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α). (40)

The estimation error is e = max
j=0,1,2,...,N |x(tj)−xh(tj)| = O(hp),

where p = min(2, 1+α). Based on the above method, we can
get discretization of fractional-order differential equations
and numerical solutions.
Example 1: Consider a two-dimensional fractional-order

inertial neural network system with time-varying delay.
The drive system is as follows:

Dαt xi(t) = −aiD
β
t xi(t)− bixi(t)+

2∑
j=1

cijfj(xj(t))

+

2∑
j=1

dijgj(xj(t − τj(t)))+Ii(t), i = 1, 2.t>0.

(41)

The response system is as follows.

Dαt yi(t) = −aiD
β
t yi(t)− biyi(t)+

2∑
j=1

cijfj(yj(t))

+

2∑
j=1

dijgj(yj(t − τj(t)))+ Ii(t)

+ ui(t), i = 1, 2.t > 0. (42)

where fj(·) = tanh(·), and gj(·) = sin(·).
The system parameters are set as follows.

a1 = 1.1, a2 = 0.8; b1 = 1, b2 = 1.7
c11 = 3, c12 = 3, c21 = −0.9, c22 = −0.9
d11 = 3, d12 = −1, d21 = 1, d22 = 2
α = 1.8, β = 0.95; I1 = 0.1, I2 = 0.2

The initial value of the system and the time-varying delay
τi(t) are set as follows:

x1(s) = 5, x2(s) = −0.3
p1(s) = 0.4, p2(s) = 0.7, s ∈ [−τ, 0]
y1(s) = −1.1, y2(s) = 1
q1(s) = 1.1, q2(s) = 2, s ∈ [−τ, 0]
τj(t) = et/(1+ et ).

The nonnegative constants li and mi are set as follows,
satisfying Assumption 1.

l1 = l2 = 1,m1 = m2 = 1.

The controller design is as follows:

ui(t) = −ρiei(t)− kizi(t)− D
α−β
t ei(t), i = 1, 2. (43)
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FIGURE 1. Phase diagram of the drive system(41).

FIGURE 2. Trajectories of x and y without a controller.

The controller parameters ρi, ki, ωi, and γi are chosen as
follows: {

ρ1 = 4, ρ2 = 4; k1 = 12, k2 = 10
ω1 = 22, ω2 = 22; γ1 = 8, γ2 = 12

Obviously, this satisfies the condition of Eq. (23). Thus,
according to Theorem 1, the drive system(41) and the
response system(42) can be synchronized. Figure 1 shows
the phase diagram of the drive system(41), which indicates
that the system is chaotic. Figure 2 shows that the drive
system and the response system are not synchronized without
a controller. Figure 3 and 4 show that the drive system(41)
and the response system(42) achieve synchronization under
the controller(43)quickly. Figure 5 presents the evolution of

FIGURE 3. Trajectories of x and y with the controller(43).

FIGURE 4. Trajectories of p and q with the controller(43).

the error system. Figure 3, 4, and 5 show that the simulations
are consistent with Theorem 1.

In order to show that our method is more effective and
more accurate, we have performed a comparison with the
results given in [35]. Figure 6 shows the states trajectories
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FIGURE 5. Evolution of the synchronization error of z and e with the
controller(43).

FIGURE 6. Evolution of the synchronization error of this paper and
the [35].

of the error system under the control strategy given in [35]
and in this paper. From Figure 6, we can see that the control
strategy proposed in our paper makes the system achieve
faster synchronization time and less overshoot.

FIGURE 7. Phase diagram of the drive system(44).

Example 2: Consider a three-dimensional fractional-order
inertial neural network system with time-varying delay.

The drive system is as follows:

Dαt xi(t) = −aiD
β
t xi(t)− bixi(t)+

2∑
j=1

cijfj(xj(t))

+

2∑
j=1

dijgj(xj(t − τj(t)))+ Ii(t),

i = 1, 2, 3.t > 0. (44)

The response system is as follows:

Dαt yi(t) = −aiD
β
t yi(t)− biyi(t)+

2∑
j=1

cijfj(yj(t))

+

2∑
j=1

dijgj(yj(t − τj(t)))+ Ii(t)

+ ui(t), i = 1, 2, 3, t > 0. (45)

where fj(·) = tanh(·), and gj(·) = sin(·).
The system parameters are set as follows:

a1 = 2, a2 = 3.8, a3 = 2.1
b1 = 2, b2 = 3.9, b3 = 2.7
I1 = 0.1, I2 = 0.2, I3 = 0.1
α = 1.7, β = 0.9

C = (cij)3×3 =

 11 −2.5 4.2
3.9 3 −3.2
−6.1 8 3.3

 ,
D = (dij)3×3 =

 3 −1 2
−1 3 −3.9
8 −2 12


The initial value of the system and the fixed time delay τi(t)

are set as follows:

x1(s) = 1.1, x2(s) = −1.3, x3(s) = 1
p1(s) = −0.8, p2(s) = 0.9, p3(s) = −1.9, s ∈ [−τ, 0]
y1(s) = 2.1, y2(s) = −1.5, y2(s) = 2
q1(s) = 0.4, q2(s) = −1.7, q3(s) = −0.9, s ∈ [−τ, 0]
τj(t) = 3.
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FIGURE 8. Trajectories of x and y with the controller(46).

The nonnegative constants li and mi are set as follows,
satisfying Assumption 1:

l1 = l2 = l3 = 1,m1 = m2 = m3 = 1.

The design controller is as follows:

ui(t) = −ρiei(t)− kizi(t)− D
α−β
t ei(t), i = 1, 2, 3. (46)

The controller parameters are set as follows:{
ρ1 = 18, ρ2 = 12, ρ3 = 15; k1 = 12, k2 = 10, k3 = 8
ω1 = 20, ω2 = 25, ω3 = 35; γ1 = 5, γ2 = 6, γ3 = 15

Obviously, this satisfies the condition of Eq. (23). Thus,
according to Theorem 1, the drive system (44) and the
response system (45) can be synchronized. Figure 7 shows
a phase diagram of the drive system (44), which indicates
this system is chaotic. Figure 8 and 9 demonstrate that the
drive system (44) and the response system (45) achieved

FIGURE 9. Trajectories of p and q with the controller(46).

synchronization under the controller (46) quickly. Figure 10
presents the evolution of the error system. Figure 11 shows
the states trajectories of the error system under the control
strategy given in [35] and in this paper.

Similarly, we compare the results of this paper with the
results in [35], and it is not difficult to find that the control
strategy proposed in our paper makes the system achieve
faster synchronization time and less overshoot.
Remark 8: Compared with the results given in [35],

the control strategy proposed in this paper makes the sys-
tem achieve faster synchronization time and less overshoot.
On the other hand, from a theoretical analysis point of view,
quasi-synchronization discussed in [35], while asymptotic
synchronization is studied in our paper, which means that
there may exist errors in [35]. In addition, the delays are
constant in [35], while the delays are time-varying in this
paper.
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FIGURE 10. Evolution of the synchronization error of z and e with the
controller(46).

FIGURE 11. Evolution of the synchronization error of this paper and
the [35].

Example 3: Consider a three-dimensional fractional-order
inertial neural network system with time-varying delay:

D2β
t xi(t) = −aiD

β
t xi(t)− bixi(t)+

n∑
j=1

cijfj(xj(t))

FIGURE 12. Uniform stability of the system (47) with fixed external
disturbance and different initial values.

+

n∑
j=1

dijgj(xj(t − τj(t)))+ Ii(t),

i = 1, 2, 3.t > 0. (47)

where fj(·) = tanh(·), and gj(·) = sin(·).
The system parameters are set as follows:

β = 0.95
a1 = 8, a2 = 9, a3 = 7
b1 = 12, b2 = 10, b3 = 14

C = (cij)3×3 =

 1− 1.5 −2
−1.59 2 −0.5
−2 0.5 −1

 ,
D = (dij)3×3 =

 1 −0.2 0.3
−1 0.4 −0.6
−1 −0.6 0.9.


Then, we randomly generate 10 sets of initial system val-

ues, with the generating function defined as follows:
x1(s) = 3.1 ∗ (−1)i ∗ rand(·), s ∈ [−τ, 0], i = 1, 2 . . . 10.
x2(s)=−1.3 ∗ (−1)i ∗ rand(·), s ∈ [−τ, 0], i=1, 2 . . . 10.
x3(s) = 3 ∗ (−1)i ∗ rand(·), s ∈ [−τ, 0], i = 1, 2 . . . 10.

The nonnegative constants li and mi are set as follows,
satisfying Assumption 1:

l1 = l2 = l3 = 1,m1 = m2 = m3 = 1

VOLUME 10, 2022 56091



Y. Liu et al.: Stability Analysis and Synchronization Control of Fractional-Order Inertial NNS With Time-Varying Delay

FIGURE 13. Uniform stability of the system (47) with time-varying
external disturbance and different initial values.

The values of τi(t) are selected as follows:

τi(t) = 3 (48)

or

τi(t) = et/(1+ et ). (49)

The values of Ii are selected as follows:

I1 = 5.5, I2 = 1, I3 = −5 (50)

or 
I1 = −5.5sin(2t)+ 2
I2 = 5sin(2t)
I3 = −4.5cos(2t)− 4

(51)

The parameters ωi and γi are selected as follows:{
ω1 = 5.5, ω2 = 8, ω3 = 8
γ1 = 3, γ2 = 1.5, γ3 = 2

Obviously, this satisfies the condition of Eq. (31).
Figure 12 shows the uniform stability evolution process of the
system (47) under fixed external disturbances and different
initial values with different time delays. Figure 13 shows the
uniform stability evolution process of the system (47) given
time-varying external disturbances, different initial values,
and different time delays. Numerical simulations demon-
strate that the fractional inertial neural network with time

delay is uniformly stable, which satisfies the conditions of
Corollary 1.

V. CONCLUSION
Stability analysis and synchronization control of a class of
fractional-order inertial neural network with time-varying
delay is investigated in this paper. The original inertial neural
network system is transformed into a conventional system
through variable substitution.Based on the Lyapunov’s direct
method, by constructing a simple synchronous controller and
choosing a novel Lyapunov function, some sufficient condi-
tions which are easy to verify are obtained to ensure that the
fractional-order inertial neural networks with time-varying
delay synchronization achieve synchronization. Finally, three
numerical examples are given to illustrate the feasibility
and effectiveness of the method proposed in this paper.
In the future, we will discuss the practical application of
fractional-order inertial neural network and the more general
model of fractional-order inertial neural network.
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