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ABSTRACT Underwater acoustic (UWA) communications have been widely used but greatly impaired
due to the complicated nature of the underwater environment. In order to improve UWA communications,
modeling and understanding the UWA channel is indispensable. However, there exist many challenges due
to the high uncertainties of the underwater environment and the lack of real-world measurement data. In this
work, the capability of reservoir computing and deep learning has been explored for modeling the UWA
communication channel accurately using real underwater data collected from a water tank with disturbance
and fromLake Tahoe.We leverage the capability of reservoir computing formodeling dynamical systems and
provided a data-driven approach tomodeling theUWAchannel using Echo State Network (ESN). In addition,
the potential application of transfer learning to reservoir computing has been examined. Experimental results
show that ESN is able to model chaotic UWA channels with better performance compared to popular deep
learning models in terms of mean absolute percentage error (MAPE), specifically, ESN has outperformed
deep neural network by 2% and as much as 40% in benign and chaotic UWA respectively.

INDEX TERMS Channel modeling, deep learning, echo state network, reservoir computing, time series
prediction, underwater acoustic communication.

I. INTRODUCTION
Underwater wireless communication has rapidly grown in
importance for numerous ocean monitoring and informa-
tion exchange applications in civil and military use in
recent years [1]. Acoustic technology has also been shown
as a useful tool for a wide range of underwater activi-
ties and applications. Ocean exploration, scientific data col-
lection, and transmission are some of the most prevalent
applications for underwater acoustic (UWA) communica-
tions. Furthermore, underwater communications have ben-
efited the maritime sector by making process management
and monitoring easier and more efficient [2]. Underwater
operations including undersea marine biology study, under-
sea mining, pipeline laying, underwater maintenance, and
geological surveys have fueled the increased demand for
underwater channel and environment research [3]. In gen-
eral, the behavior of the channel has a significant impact
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on acoustic signal transmission, therefore having a deep
understanding of the channel characteristics is critical
for implementing an effective underwater communication
system [2].

The underwater environment presents a unique set of chal-
lenges for wireless communications [4], and UWA channels
are widely regarded as one of the most challenging communi-
cation media now in use [1]. While low frequencies are excel-
lent for acoustic propagation, the bandwidth available for
communication is extremely limited. Furthermore, a UWA
channel has low physical link quality and high latency, and
it suffers from large multipath delay spread and frequency
selective fading [5], making modeling of the UWA channel
quite challenging [4], [6]–[9]. A typical UWA communica-
tion scenario is depicted in Figure 1. As illustrated in the
figure, variations in sound velocity, roughness of the ocean
bed, multi-path propagation of acoustic signals, and ambient
ocean acoustic noises created by aquatic creatures and human
activities make it even more challenging to model UWA
channel [2], [8].
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FIGURE 1. A typical underwater environment [10].

Many physics-based UWA channel models have been
developed. The most commonly used one is the BELLHOP
model, which is an open-source beam/ray-tracing model for
predicting acoustic pressure fields in the underwater envi-
ronment [8]. The BELLHOP ray model is an intuitive and
straightforward means for modeling sound propagation in
the ocean among the various existing mathematical UWA
channel models based on ray, normal-mode, and parabolic
curve [1]. The majority of these models, however, are based
on mathematical assumptions and approximations rather than
real underwater communication data. As a result, they do not
work well in reality [1].

Machine learning has seen considerable success in fields
such as image and voice recognition, language processing,
medical diagnosis, and wireless communications. This is due
largely to its capacity to learn and intelligently respond to
changing and complex operating conditions, such as those
found in the UWA communication channel. Specifically, it is
shown that modeling the UWA channel by replicating the
effect of real water environment characteristics on the channel
is effective [1]. However, there has not been much research
work done in the domain of UWA communications using
machine learning because of the complex nature of the under-
water environment and the lack of sufficient and high-quality
data. This motivated us to leverage the capability of collecting
real-world data of UWA communications from Lake Tahoe in
Reno, Nevada, and apply a data-driven approach to modeling
the UWA channel using machine learning on the collected
datasets [11].

RC is explored to model UWA channel in this paper.
It has been shown that RC is capable of modeling dynam-
ical systems [12], [13] and predicting chaos [14]. RC is a
time-dependent data processing paradigm influenced by neu-
roscience [15]. It is a type of recurrent neural network model
in which the recurrent component is initialized randomly
and subsequently fixed thus incurring less computation and
reducing training time [16], [17]. Despite this significant sim-
plification, the recurring element of the model, the reservoir
has a huge number of dynamic properties that can be used to
solve a wide range of problems [18].

FIGURE 2. Block diagram of the UWA communications data collection.

In this work, we seek to leverage these properties of RC and
provide a data-driven approach to modeling the UWA com-
munication channel using the Echo State Network (ESN),
which is one of the two pioneering RC approaches. Using
this approach significantly reduced the implementation com-
plexity and the training time. The contributions of this paper
are:

1) A data-driven approach for UWA channel modeling is
proposed to take advantage of the real-world experimen-
tal UWA datasets and avoid the unrealistic assumptions
made by physics-based mathematical models.

2) UWA channel modeling using ESN, an approach of RC
and transfer learning have been carried out. Observa-
tions and insights are provided based on the experimen-
tal results.

3) The effects of different setups of the ESN on the model
performance, in terms of the reservoir initialization
method, the size of the reservoir, the activation func-
tion, and the regression algorithms used at the readout
layer, have been examined and suggestions are made
to improve the performance of ESN for UWA channel
modeling.

4) A novel approach of designing the reservoir using a
pre-trained deep learningmodel as the reservoir has been
proposed in this study. Experimental results demon-
strate that ESN using pre-trained deep learning models
as reservoir outperform the deep learning models for
modeling the UWA channel. Although this may not be
advantageous if the reservoir of the ESN can be designed
properly using randomized weights, it provides a sys-
tematic way to set up the reservoir, which is valuable
because there does not exist a systematic way for the
design of reservoir for diverse real-world applications.

5) Transfer learning using simulated radio frequency (RF)
data and Bellhop-based simulated UWA channel data
has been performed. It is observed that the performance
of transfer learning using RF data is poor because of
the significant differences in characteristics between RF
channel and UWA channel. On the contrary, the per-
formance of transfer learning using Bellhop-generated
data is pretty good, although the Bellhop model itself
is a simplified mathematical model and it does not take
into account the various uncertainties in a real-world
scenario.
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The remainder of this paper is structured as follows. Some
related works are discussed in Section II. Section III describes
the data generation and collection process and gives the
description of the datasets used in this work. Section IV
discusses RC and the ESN approach used in this experi-
ment. Detailed experimental results and analysis are given in
Section VI and observations and insights from the results are
discussed. Section VII concludes the paper.

II. RELATED WORKS
Many mathematical models have been built and used for
different purposes in theUWA domain including but not lim-
ited to investigating and tracking channel properties, sound
propagation characteristics, the behavior of acoustic signals
for different transmission frequencies, and the computation
of some channel parameters such as the route loss. For
example, in [1], a BELLHOP ray model was used to model
the UWA channel in order to examine sound propagation
characteristics while taking into account the rough nature
of sea surfaces and bottoms for various oceanic conditions.
It was also used to examine the behavior of an acoustic signal
with transmission frequencies in the range of 9K to 90KHz
in [19]. Channel properties for an autonomous underwater
vehicle (AUV) wireless communication system were math-
ematically quantified by modeling the UWA channel in [3].
The model was created using the AN product, signal-to-
noise ratio (SNR), and band selection, where A represents
attenuation and N represents ambient noise. In [9], simula-
tions using ray-theory-based multipath Rayleigh underwater
channel models for shallow and deep waters are carried out
to investigate transmission losses between transceivers, the
effects of bit error rate, maximum internode distances for
different networks and depths, the effect of weather season,
and variability of ocean environmental factors. The authors
in [20] proposed a channel model for tracking dynamic UWA
channels by using the channel’s correlation as the state-space
model in the Kalman filter in order to improve tracking.
The authors of [6] calculated the channel route loss, changed
the log-distance model to produce a model suitable for an
underwater IoT network, and created an empirical channel
model for medium-distance UWA channels based on real
measurement data. In [21], a non-stationary two-dimensional
wideband channel model was designed for UWA communi-
cation and evaluated with measurement data.

Various deep learningmodels have been proposed tomodel
UWA communication channels. For example, in [22], a deep
learning network based signal detection was employed for
full-duplex cognitive UWA communication with self inter-
face cancellation. Automatic modulation classification of
underwater communication signals using a combination of
the convolutional neural network (CNN) and LSTM [23].
A similar task has been done in [24] using blind equalization
in conjunction with a CNN. Because it is difficult to identify
modulation during actual communication due to the complex
and unstable nature of UWA communication systems, sev-
eral machine learning methods were used in [25] to classify

the modulation type in their quest to find an efficient link
adaptation method based on channel quality of an underwater
communications network. In [26], the authors employed a
DNN to create a deep learning-based receiver for single
carrier communication in a UWA channel utilizing data from
the sea. When compared to the traditional channel-estimate
based decision feedback equalizer, the DNN based receiver
consistently performed better. The authors in [27] also uti-
lized the DNN to estimate channel parameters based on data
from the Bellhop Ray model simulation of the UWA envi-
ronment. When compared to traditional channel estimation
methods such as least square andminimummean square error
(MMSE), the DNN outperformed the LS algorithm and is
comparable to the MMSE algorithm in terms of bit error rate
and normalized mean square error. A deep learning-based
UWA orthogonal frequency-division multiplexing (OFDM)
communication system was constructed by representing the
receiver as a DNN in [28] and [29]. The deep learning UWA
communication systems could easily recover the transmitted
symbols after training without using explicit channel esti-
mation and equalization. In [30], the authors developed a
depth learning-based underwater target recognition approach
employing CNN and an extreme learning machine for UWA
target classification and recognition.

RC has been applied in wireless communications for pre-
dicting wireless channel or state conditions, symbol detec-
tion, and measuring the channel SNR. For example, in [31],
the performance of an extreme learning machine and an
ESN for forecasting wireless channel conditions was com-
pared. These two methods were used to forecast the SNR for
single-input single-output systems in both pico-cellular and
micro-cellular contexts. For multiple-input multiple-output
orthogonal frequency-divisionmultiplexing (MIMO-OFDM)
systems, an ESN-based symbol detector was used in [32]. The
efficiency of the adopted symbol detector outperforms tradi-
tional symbol detectors based on channel estimation meth-
ods in terms of BER performance according to simulation
results. In [33], a new RC-based detector called windowed
ESNwas designed for MIMO-OFDM symbol detection. This
resulted in significant improvements in interference cancel-
lation and nonlinear compensation, as well as the ability
to improve short-term memory fundamentally. The authors
in [15] looked at a simplified fading channel model, defined
the transmission properties of satellite communication chan-
nels, and devised an ESN-based approach for measuring
channel SNR. For the categorization of multivariate time
series, the authors in [34] applied an unsupervised approach
for creating multivariate time series (MTS) representations
(also known as reservoir model space). The parameters of a
one-step forward predictor that forecasts the future reservoir
state rather than the future MTS input were used to create the
reservoir model space. The results revealed that RC classi-
fiers are substantially faster and achieve higher classification
accuracy. In [35], an ESN was utilized to train an RNN
to predict channel state information in a wireless OFDM
system, which resulted in a significant decrease in training
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time, implementation, and computing complexity. RC has
also been applied in UWA communications. For example,
transfer learning was introduced to ESNs in [36] to develop a
channel model that predicts shallow water dynamics. Exper-
imental results showed that transfer learning helped improve
the predictions.

In this work, we leveraged the capabilities of RC and
deep learning to build a data-driven channel model using
a real experimental UWA communications dataset collected
from Lake Tahoe under various environmental conditions.
Different from the existing works, the goal of this work is to
model the UWA channel and be able to perform sequence-
to-sequence prediction, i.e., when a sequence of transmit-
ted data is fed into the model as input, the corresponding
sequence of data is expected to be received at the receiving
end of the UWA channel will be predicted. The obtained
UWA channel model in this work would be very useful as
a candidate plugin module when large scale simulations of
UWA communications are needed, or a large amount of data
need to be generated for UWA channels with high fidelity
while it is difficult to obtain that kind of data from physical
underwater data collections.

III. UWA DATASET
A. REAL-WORLD UWA COMMUNICATIONS DATA
COLLECTION
Underwater communication testbeds were built to collect the
UWA communications data for training and further evaluate
the developed learning-based channel modeling. To fully
study the developed technique, a series of experiments have
been conducted. It includes the lab-based experiment and
the open-water test and the set-ups for these experiments
are as summarized in the block diagrams in Figure 2. In the
lab-based experiment, a water tank was used. For the open-
water experiment, the experiments were carried out at Lake
Tahoe. Lake Tahoe, as seen in Figure 3, is a large freshwa-
ter lake in the Sierra Nevada Mountains that straddles the
California-Nevada state line. According toWikipedia, it is the
largest alpine lake in North America and at a maximum depth
of 1, 645 feet (501 meters), it is the second deepest lake in the
United States. Lake Tahoe is also said to be the 16th deepest
lake in the world, and the fifth deepest in average depth. This
work does not target sea or ocean environment which has its
unique characteristics such as the ocean salinity and we rec-
ognize that some modifications and refining the model might
be needed to properly transfer it for the ocean environment.
By taking advantage of our access to Lake Tahoe, a very large
lake that has a lot of similar characteristics as the undersea
environment, such as waves, aquatic-life disturbances, etc.
the developedmodel may be served as a referencemodel to be
modified and transferred to ocean environment. In the future,
authors plan to further evaluate the developed algorithm in
more uncertain environments such as open sea.

For the developed underwater data acquisition system,
the transducer is made watertight and other electronic sys-

FIGURE 3. The test bed at Lake Tahoe.

tems including MCU have been packed inside a watertight
enclosure tube from BlueRobotics Inc., the manufacturer.
To collect enough underwater communication data, we have
deployed transducers at 1-2 meters below the water sur-
face and the distance between Tx and Rx is around 3-5
meters. For each experiment scenario, the source signals were
first coded through an oscillator along with the microcon-
troller (MCU) module. The coded signal strength was then
enhanced through an amplifier circuit. It was important to
strengthen the signals because the strength of the transmit-
ted signals changes or drops along with the communication
distance underwater. To stabilize the signal strength along
the transmission path, the amplifier limiter circuit has been
used to amplify or enhance the signal strength. Next, the
enhanced signals were passed through a quadrature phase
shift keying (QPSK) modulation block which outputs con-
tinuous signals. The continuous signals were then passed
through a raised cosine transmit filter and finally to an ultra-
sonic ceramic transducer (200LM450) which doubles as the
transmitter, as shown in Figure 4. The transmitted I/Q data
has been collected at the transmitter and used as input during
the training of the channel model. The transmitter and the
receiver were placed horizontally apart and at a perpendicular
distance below the water level.

At the receiver end, the transmitted continuous signals
were captured by the receiver/ ultrasonic ceramic transducers
(200LM450). The received I/Q data has been collected at
the receiver and used as ground truth for the training of the
channel model. The received signals are then reformulated,
demodulated, and decoded through the automatic gain con-
trol (AGC) circuit as well as a series of filters including the
raised cosine receive filter. Using the Schmitt trigger with an
analog to digital converter (ADC) circuit, the received signals
can be digitalized for further decoding in the workstation.
The collected time-series data at the receiver corresponds to
the channel impulse response (CIR) of the UWA channel.The
receiver setup is as shown in Figure 5. The sampling rate of
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FIGURE 4. Transmitter set-up.

FIGURE 5. Receiver set-up.

acquisition used is 1, 000, 000 and the length of each data
object is 60 seconds. The sonar working frequency is 200kHz
and the digital signal transfer speed is 2K/s. Research has
shown that deep learning requires large amount of data to
obtain good performance [37]. To collect sufficient data to
train our deep learning models and for our models to work
well, we used a sampling rate of 1 MHz to obtain time-series
data containing 60 seconds of I/Q samples.

B. DATA CHARACTERISTICS
For the purpose of modeling the UWA channel using machine
learning and RC models, data collected at the transmitter
(ultrasonic ceramic transducer) just before the channel were
used as the input to our models while the data collected
at the receiver, immediately after the channel were used as
the ground truth for training the models. Four different data
categories were collected and used to train, evaluate and com-
pare the performances of the trained models. The datasets are
described as follows: The first category of data, subsequently
referred to as Data 1, were collected using the water tank as
the communication channel with no external disturbance. The
second category of data collected termed Data 2 were also
collected from the lake with no artificial/external disturbance
introduced. The third category of data termed Data 3 were
also collected from the lake but with the introduction of mild
external disturbance.

TABLE 1. UWA data description.

The disturbance was introduced to create a more realistic
underwater scenario. The fourth category, termed Data 4,
was also collected from the lake but with the introduction of
strong external disturbance to mimic a more chaotic under-
water scenario. To model the waves or disturbance in the
lake, a vibration platform was used to inject the vibration
that generated waves in the lake. For all the categories of
data, 60, 000, 000 samples were collected using the same
transmission settings and parameters. These data descriptions
are summarized in Table 1 below.

IV. RESERVOIR COMPUTING
RC is a time-dependent data processing paradigm influenced
by neuroscience [15]. It is a class of recurrent neural net-
work (RNN) model in which the recurrent component is pro-
duced randomly and subsequently fixed [16], [17]. The RC
methodology builds an RNN with random synaptic weights,
dubbed the reservoir, in order to avoid the gradient-descent
procedures of the training algorithms for a typical RNN.
In [16] and [38], RC shows how an RNN with fixed con-
nectivity can memorize and produce complicated Spatio-
temporal sequences. RC has also been demonstrated to be
a valuable tool for modeling and predicting dynamic sys-
tems [12], [13]. It was demonstrated in [14] that RC is capable
of forecasting massive chaotic systems.

Despite this significant simplification, the recurring ele-
ment of the model (the reservoir) has a huge number of
dynamic properties that can be used to solve a wide range of
problems [18]. It is also pertinent to state that RC involves less
computation and thus has reduced training time dramatically.
The normal workflow of solving a task using RC requires
handling two key steps: (1) designing a suitable reservoir for
the specific task under consideration, and (2) determining a
readout function that will adequately map the state of the
reservoir to a target output [39]. One of the concerns of RC
is that the design is mainly driven by a succession of ran-
domized model-building stages, leaving researchers to rely
on a series of trials and errors [40]. In this work, a novel
approach to designing the reservoir using a pre-trained deep
learning model as the reservoir has been proposed. Although
this may not be advantageous if the reservoir of the ESN can
be designed properly using randomized weights, it provides
a systematic way to set up the reservoir, which is valuable
because there does not exist a systematic way for the design
of reservoir for diverse real-world applications.

There are two popular RC approaches: the Liquid State
Machines (LSM) and ESN [41]–[43]. Both architectures
attempt to model biological information processing using
similar principles [44]. In this work, ESN is chosen because
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FIGURE 6. Typical architecture of an ESN [47].

of its close relationship to RNN/LSTM and allows direct
performance comparison between these different models.

A. ECHO STATE NETWORK
ESNs are dynamical artificial neural networks and belong
to the general class of RNN. This approach is prominent
and is based on the discovery that if a random RNN has
certain algebraic features, then training a linear readout from
it is typically enough to provide outstanding performance in
practical applications [45]. ESNs have a topology of nonlin-
ear processing elements that is densely interconnected and
recurrent, forming a ‘‘reservoir’’ that stores information about
the history of input and output patterns. The outputs of these
internal processing elements are referred to as the ‘‘echo
states’’. The titles of the echo states stem from the input
values echoing throughout the reservoir’s states due to the
reservoir’s recurrent nature [16], [46]. These echo states are
fed into a memoryless but adaptive, usually linear, readout
network, which generates the network output. The architec-
ture of a typical ESN is shown in Figure 6. ESN has the unique
property of just training the memoryless readout, whereas
the recurrent topology has fixed connection weights. This
reduces the complexity of RNN training to simple regression
while maintaining the recurrent topology, but at the same
time, it imposes significant constraints on the overall archi-
tecture that has yet to be resolved [44].

As shown in Figure 6, ESN has three layers; the input layer,
the dynamic reservoir, and the output layer. The input weight
matrixWin connects the input layer to the dynamic reservoir.
The internal weights of the dynamic reservoir, W define the
linkages inside the reservoir. The output weight matrix Wout
connects the dynamic reservoir to the output layer. Feedback
weightsWfb are used to feed the output back into the dynamic
reservoir. The fundamental structural distinction between an
ESN and the conventional RNN is the connectivity of neurons
within the dynamic reservoir [32] and one major advantage
of RC over regular RNN is that simple regression algorithms
may be used to alter output weights [45].

Through the weighted input connections, the input layer
of neurons delivers the stimulus to stimulate the reservoir.
Through the weighted feedback connections, the output layer
of neurons transmits teacher-forced outputs to the reservoir.
The reservoir is trained to generate weighted connections
from the reservoir to the output based on the input stimuli
and feedback from the teacher-forced outputs [35]. Specific
values are used to weigh the connections between each layer
of neurons and between neurons in the reservoir. Let us
consider a recurrent discrete-time network withK input units,
N internal processing elements, also known as nodes and L
output units. The value of the input unit at time, t is U =
[u1(t),u2(t), . . . ,uK (t)], the value of the internal units is
X = [x1(t), x2(t), . . . , xN (t)] and those of the output units
are Y = [y1(t), y2(t), . . . , yL(t)]. An N × K matrix, Win,
defines the weights of connections from the input layer to
the dynamic reservoir W, which is an N × N matrix for
connection between the nodes. Also, an L × N matrix, Wout
defines the connection from the reservoir nodes or process-
ing elements to the output units. Lastly, Wfb, which is an
N ×L matrix defines the connection weights of the feedback
from the output layer to the reservoir [44]. Only the output
weights Wout , are computed during training, while the rest
of the connection weights are generated randomly and fixed
throughout the training and testing stages [35]. In Figure 6,
assuming u(t) is the input vector at time step t , the activations
of hidden nodes, also known as the echo states, x(t) are
updated according to equation (1).

x(t) = f(Winu(t)+Wx(t − 1)+Wfby(t − 1)) (1)

where f is an hyperbolic tangent activation function of the
hidden unit, W, Win and Wfb are the matrices of hidden-
hidden, input-hidden, and output-hidden connections, respec-
tively [44]. Equation (1) can thus be rewritten as

x(t) = tanh(Winu(t)+Wx(t − 1)+Wfby(t − 1)) (2)

This equation is also known as the state transition equation.

B. TRAINING THE READOUT LAYER
As mentioned in Section IV-A, when training the ESN, only
the output connection matrix Wout is updated while other
connection matrices are kept constant. The training process
involves driving the reservoir with the input time series data,
u(t) to generate the corresponding states, x(t) using Equa-
tion (2). All the states are then collected into a matrix X and
the target data (ground truth) are collected into another matrix
Ŷ. The output weights are then computed in closed form using
Equation (3) given by

Wout = ŶXT (XXT
+ λI)−1 (3)

where I is an identity matrix and λ is the Tikhonov regu-
larizer which is a fixed positive number used to determine
the sensitivity of the system [48]. Since we are dealing with
batches of sequence data, Equation (3) becomes

Wout = A(B+ λI)−1 (4)
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where A =
∑

i ŶiXT
i and B =

∑
i XiXT

i . The output from
the readout layer is also computed using the simple output
layer equation given by

y(t) = fY (Wout · x(t)) (5)

where fY is the output nonlinear activation function [45]. The
task of training the readout is then reduced to a simple linear
regression problem of minimizing the squared error. The
regression model minimizes the mean square error between

predictions, Y and the ground truth, Ŷ, i.e.,
∥∥∥Y− Ŷ

∥∥∥2
2
.

C. ECHO STATE PROPERTY
In RC, one important criterion that must be satisfied is the
echo state condition, especially when working with ESN.
In essence, this condition states that the effect of a prior state
and a previous input on a future state should fade away or
vanish with time. In other words, it is stated that the dynamics
of the ESN should be uniquely controlled by the input [44].
The echo state condition is defined in terms of the spectral
radius, ρ(W) of the reservoir weight matrix,W. Specifically,
assuming λ1, λ2, . . . , λn are the eigenvalues of the reservoir
matrixW, then its spectral radius, ρ(W) is defined as

ρ(W) = ‖W‖ = max{λ1, λ2, . . . , λn}. (6)

The echo state condition is satisfied ifW is scaled such that its
spectral radius ρ(W) is close to or inferior to 1 as expressed
in Equation (7) given by

ρ(W) : ‖W‖ < 1. (7)

The spectral radius is the largest absolute eigenvalue of the
matrixW and is a crudeway ofmeasuring howmuchmemory
the reservoir can hold, with small values indicating a short
memory and large values indicating a longer memory, up to
the point of over-amplification, when the echo state condition
no longer holds [47], [49]. Another important consideration
with the echo state property is that it must guarantee that
the memory capacity is not reduced to zero since one of the
advantages of using RNNs is their capacity to have a memory
of the inputs. The reservoir output should be able to recreate
the input with a K steps delay [46]. Spectral radius of W can
be specified by a user and used backward in the design or
initialization of the reservoir so that we could guarantee the
performance. It is a design choice, and it does not depend on
data.

One of the foci of this paper is using ESN for modeling
the UWA communication channel. A known challenge with
working with ESN is that there is no predefined systemic way
of designing the dynamic reservoir for a specific application
or use case. As of today, the design of the ESN relies heavily
on the selection of the spectral radius. A suggested method
of producing an appropriate reservoir, according to [39], is to
optimize their dynamics for the range of activities to be
expected, such that the readout layer may simply extract the
information it requires. The dynamic reservoir, W alongside
Win and Wfb are usually randomly generated at network

FIGURE 7. An example ESN architecture with pre-trained LSTM as the
reservoir.

initialization [41], [45] and stay fixed or left untrained during
the network’s lifetime [34]. However, there aremany different
weight matrices with the same spectral radius that can be
generated, and they don’t all have the same performance
with respect to the mean square error (MSE) or mean abso-
lute percentage error (MAPE) for functional approximation.
According to [44], different randomizations with the same
spectral radius perform differently on the same problem.
To improve the performance of ESNs, many simple meth-
ods have been proposed. Some of these methods include
increasing non-linearity by augmenting non-linear expansion
with polynomial functions of reservoir activities, increasing
reservoir size, averaging predictions from many reservoirs,
introducing delay lines into the readout system, providing
neurons with a diversity of time constants, and having the
reservoir adapt to input statistics via intrinsic plasticity [50].
Also, the behavior of the reservoir, according to [18] can be
controlled bymodifying the spectral radius ρ(W), the sparsity
(or the probability of connection), which is the percentage of
non-zero connections, and the number of hidden units in the
reservoir, N .

In this study, we investigated the effect of different ini-
tialization approaches for the reservoir with respect to the
spectral radius, sparsity, and the number of hidden units and
then compared their performances in terms of the MAPE.
We also propose the use of pre-trained deep learning mod-
els e.g. LSTM, DNN, etc. into the ESN architecture to act
as the reservoir instead of using some randomized vectors
as the dynamic reservoir, thus leaving us with a modi-
fied ESN architecture such as one shown in Figure 7. The
pre-trained deep learning models were trained with the same
datasets. This architecture makes use of the weights from
the pre-trained model and as with standard architecture of
the ESN, only the output connections are modified during the
learning process i.e training only occurs in the readout layer.
The two established deep learning models experimented with
are the deep neural network (DNN) and the long short term
memory (LSTM). The LSTM is a variant of RNN with the
ability to learn input data with long-term dependencies [51]
while the DNN is a deep learning architecture with more than
one hidden layer that are fully connected [52].
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V. TRANSFER LEARNING
Transfer learning can be defined as the process of improving
learning in a new task or domain by transferring knowledge
acquired from another related task or domain that has already
been trained. In other words, transfer learning relates to
situations in which what has been learned in one domain
is used to improve generalization in another domain [53].
In transfer learning, a base model is first trained on a base
dataset and task. The learned features are then transferred
to the target domain to be trained on a target dataset and
task. This method is more likely to succeed if the features are
generic, i.e., applicable to both the base and target domains,
rather than being specific to the base domain. This approach
is known as the ‘‘pre-trained model approach’’. The purpose
of transfer learning is to quickly obtain the learning model
by leveraging commonalities between tasks. In this study,
transfer learning for RC has been considered. Specifically,
transfer learning using simulated RF data and Bellhop based
simulated UWA channel data has been performed. In this
case, the base domain is RF wireless communications or
simulated UWA communications, and the target domain is
real-world UWA communications.

VI. RESULTS AND DISCUSSION
In this section, we provide the experimental set up such as the
hyperparameters’ settings in section VI.A. Then the detailed
performance of ESN is evaluated in section VI.B. Perfor-
mance evaluations of modified ESN and transfer learning are
carried out in section VI.C and section VI.D, respectively.
Together they provide a comprehensive performance analysis
of the proposed schemes.

A. COMPUTING EXPERIMENTAL SETUP
Multiple sets of experiments were carried out and model
performances are evaluated using the MAPE. The MAPE
value is the average of all the absolute percentage errors in
predictions. To compute the MAPE, percentage errors are
added together without respect to sign, as shown in equa-
tion (8) where At is the actual value and Ft is the predicted
value.

MAPE =
1
n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (8)

MAPE provides a fairly intuitive interpretation in terms of
relative error when evaluating regression problems, and it
is preferable in the assessment since it provides the error
in terms of percentages, avoiding the problem of positive
and negative errors canceling each other out. The better the
prediction, the smaller the MAPE and values recorded in
the result tables below are the average value from multiple
repeated experiments.

We started the set of experiments by training popular deep
learning models such as DNN and LSTM and compare their
performance with a typical setup of an ESN. The experi-
mental results are given in Tables 4, 12, 13, 15, 16, 18.
The hyper-parameters used for each of the models built in

TABLE 2. Hyper-parameters for DL models and ESN.

TABLE 3. Hyper-parameters for in-depth ESN experiments.

these experiments are summarized in Table 2, where the
first column gives the index of the tables that contain the
experimental results using these hyper-parameters. Here α is
the learning rate,HL is the number of hidden layers, LN is the
number of nodes per hidden layer, BS is the batch size andNE
is the number of epoch used.

In order to study the effects of various hyper-parameters on
ESN performance, a set of in-depth ESN experiments have
been done. The experimental results are given in Tables 7,
8, 9, 10, 11. The hyper-parameters used for the different
setups of the ESNs are listed in Table 3. The first row gives the
index of the tables that contain the experimental results using
these hyper-parameters for ESNs. In the first column, IM is
the initialization method used, ρ(W ) is the spectral radius,
N is the reservoir size, AF is the activation function used,
and RM is the regression method used for training the output
layer. X is Xavier initialization method, G is normalized
Xavier initialization (gloriot) method,HE is HE initialization
method, Ri is ridge regression, Li is linear regression, La is
lasso regression and HT is hyperbolic tangent.

B. PERFORMANCE EVALUATION OF THE ESN
Two major categories of experiments, with several sub-
experiments, were carried out here to build and evaluate ESN
models on different data quality and with different network
setups. These experiments include (1) comparison of per-
formance between DL models and ESN; and (2) in-depth
performance evaluation of ESN with different setups.

1) COMPARISON OF PERFORMANCE BETWEEN DL MODELS
AND ESN
Deep learning models and ESNs were built, trained, and eval-
uated usingData 3 (data from experiments in Lake Tahoewith
mild disturbance) and Data 4 (data from experiments in Lake
Tahoe with strong disturbance, hence has the poorest quality).
Model parameters used are provided in Table 2. Results from
these experiments were recorded in Table 4. It is observed that
ESN outperforms DNN and LSTM, as expected. Moreover,
it is clear that ESN outperformsDNN and LSTM inMAPE by
a big margin when the dynamical system that we try to model
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TABLE 4. Performance Comparison of Deep Learning Models against ESN
on Data 3 & Data 4.

TABLE 5. Model performance comparison for different initialization
approaches.

becomes more chaotic, and the data quality deteriorated.
The average times taken to train each of the models using
the same data size on a GPU using a single core are also
recorded. It is observed that ESN takes a much shorter time to
train compared to DNN and LSTM. For example, it takes an
average of 2.3 hours to train the LSTMmodel and an average
of 6.7 minutes to train the ESN model on the same dataset.

2) IN-DEPTH PERFORMANCE EVALUATION OF ESN WITH
DIFFERENT SETUPS
This set of experiments seeks to explore and investigate the
effect of different ESN setups, using hyper-parameters listed
in Table 3, on the performance of our ESN channel models.
The experiments carried out here are itemized below.

a) Using different Reservoir Initialization Methods: As
mentioned in Section IV, RC is not principled enough
as there is no systematic way of defining the dynamic
reservoir. The reservoir is usually randomly generated at
network initialization. In addition to randomly initializ-
ing the reservoir, we explored the option of using some
other weight initialization approaches used in general
deep learning [54]–[56] and investigated how they affect
the performance of the ESN. For the four categories of
data, we ran experiments using the random, Xavier, nor-
malized Xavier (gloriot), and HE initialization methods
while keeping all other parameters constant. The model
performances when each of the initialized methods were
used are recorded in Table 5. This experiment, however,
was carried out without taking into consideration the
echo state property.

b) Enforcing the Echo State Condition: An investigation
into the spectral radii of the matrices generated by each
of the initialization approaches used above revealed,
as shown in Table6, that only the Xavier initialized
reservoir matrix satisfied the echo state property at all
instances. Both Gloriot and HE initialization methods
have spectral radius, ρ(W) greater than one for different
reservoir sizes. In this experiment, we ensured that the
echo state property is satisfied by normalizing the matri-

TABLE 6. Spectral radius check for different proposed initialization
approaches.

TABLE 7. Model performance comparison for different initialization
approaches with normalized spectral radius [ρ(W) < 1].

TABLE 8. Model performance comparison for different spectral radius.

ces such that the spectral radius is less than one and the
results from this experiment are as recorded in Table 7.

c) Using different Spectral Radii: Here, we varied the spec-
tral radius such that it is greater than 0 but less than 1 at
an incremental step of 0.1, ensuring the echo state prop-
erty is still obeyed while keeping every other parameter
(the initialization method, the number of nodes in the
reservoir and the activation function used) constant. The
MAPE values are as recorded in Table 8. Figure 8 is a
graphical plot of the MAPE values for different spectral
radii across all the data categories.

d) Using different Reservoir Sizes: Next, we investigated
the effect of varying the number of nodes in the dynamic
reservoir, N on the performance of the model while
keeping other parameters (spectral radius, initialization
method, and the activation function) constant. Results
from this experiment are as recorded in Table 9. Figure 9
shows a graphical plot of the MAPE values for the
different reservoir sizes across all the data categories.

e) Using different Activation Functions: Instead of the
hyperbolic tangent (tanh) used in the state transition
equation (2), the effect of using some other activation
functions are investigated. In addition to tanh, we also
experimented with ReLU and Sigmoid activation func-
tions. Using the Sigmoid and ReLU activation functions
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FIGURE 8. MAPE plot for different spectral radius.

TABLE 9. Model performance comparson for different sizes of the
reservoir.

FIGURE 9. MAPE plot for different reservoir sizes, N.

TABLE 10. Model performance comparison for different activation
functions.

required normalizing the input data since the sigmoid
function only gives an output between 0 to 1 and that of
the ReLU function is between 0 and∞. Then the outputs
of the activation functions are ‘unnormalized’. Results
from these experiments are recorded in Table 10.

f) Using different Regression Models: In minimizing error
at the readout layer, the only layer where training occurs
in the network, we also investigated the effect of three

TABLE 11. Model performance comparison for different regression
model used at the readout layer.

FIGURE 10. Sample plot of ESN predicted data.

different regression models on the performance of the
network - ridge, linear, and lasso regression, while keep-
ing every other parameter constant. The results from
these experiments are recorded in Table 11. A sample
plot of ESN predicted data is as shown in Figure 10.

Summary of results in Section VI-B: Observations from
these experimental results are summarized below:

• ESN models perform better than the popular deep learn-
ing models such as DNN and LSTM, especially when
the data quality becomes poor as seen in Table 4 when
we used the dataset with the poorest quality. It is
observed that ESN takes a much shorter time to train
compared to DNN and LSTM, as expected.

• It is also observed that the echo state condition must
be satisfied in order to get a good performance. For
example, the MAPE values in Table 5 improved as seen
in Table 7 when the reservoir matrices were normalized
and ρ(W ) < 1 was enforced.

• RC is very robust against different spectral radii, activa-
tion functions, and regression methods used for training
the output layer. For instance, there were no significant
differences in performance of the models in Tables 8, 10
and 11when different spectral radius, activation function
and regression model respectively were used.

• When the size of the reservoir, that is the number of
nodes in the reservoir, matches the size of the input
sequence into an ESNmodel, the model performs better.
For example, in Table 9 the models gave the best per-
formance, across all data categories, when the reservoir
size was set to 578, which corresponds to the size of the
sequence of the input data used in these experiments.

C. PERFORMANCE OF THE MODIFIED ESN
In a bid to improve the performance of the ESN, we exper-
imented with the use of pre-trained deep learning models
as a replacement for the reservoir, as highlighted in Fig-
ure 7, instead of randomized W using Data 3 and examine
how it affects the performance of the network. Specifically,
we used pre-trained DNN (PDNN) and LSTM (PLSTM),
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TABLE 12. Performance comparison of deep learning models, ESN and
ESN with pre-trained deep models as reservoir on data 3.

deep learning models, for these experiments, and the results
are shown in Table 12.

When compared to the performances of the deep learning
models, it is observed that the ESN with pre-trained deep
models as reservoir did show some improvements in perfor-
mance. There was a 13.42% improvement in the performance
of the DNN and a 7.64% improvement in that of LSTM but
did not do better than the conventional ESN model. Thus,
using pre-trained deep models as a replacement for the reser-
voir in the ESN might not be necessary.

D. TRANSFER LEARNING PERFORMANCE
Two categories of experiments were carried out to investigate
if transfer learning would help improve the performance of
the ESNs as stated in Section V. Under each category, three
experiments were carried out.

1) MODEL TRAINED USING RF DATA
This experiment seeks to leverage trained models from the
RF domain using simulated RF data and transferring them
into real UWA communication domains. RF datasets were
generated using MATLAB simulation of an additive white
gaussian noise (AWGN) channel. Just as with UWA data
generation, signal bits were generated and passed through a
quadrature phase-shift keying (QPSK) block before sending
to a raised cosine transmit filter (RCTx) block. The output of
the RCTx block was first saved and then fed to the AWGN
block as the transmitted signal. The output of the AWGN
channel is also saved as the received signal used for training
our models. These datasets were used in the sub-experiments
itemized below.

a) Training and testing models with RF data: Deep learning
models and an ESN were trained to model the AWGN
channel and tested directly using solely the generated RF
data. These deep models were saved and then used as the
reservoir in training the readout layer of our proposed
ESN architecture and also evaluated using the RF testing
data. The results from these experiments are as recorded
in Table 13.

b) Using RF pre-trained models and testing on Data 3:
Models from the experiment above were saved and
then evaluated directly using Data 3 test dataset. The
results from this experiment are as shown in Table 14
where RFP-DNN, RFP-LSTM, and RFP-ESN repre-

TABLE 13. Model performance when models were trained and evaluated
using simulated RF data.

TABLE 14. Model performance when RF-Pretrained models from Table 13
were evaluated directly with data 3.

TABLE 15. Model performance when RF-Pretrained models from Table 13
were re-trained with Data3 and evaluated with data 3.

sent RF-Pretrained DNN, RF-Pretrained LSTM, and
RF-Pretrained ESN models respectively.

c) Refining RF pre-trained models and testing on Data 3:
Next, we fine-tuned the pre-trained models from sub-
experiment i by re-training the models with Data 3 train-
ing data and re-evaluating the resultant model with Data
3 test data. Results from this experiments are as recorded
in Table 15.

2) USING BELLHOP SIMULATED DATA
The next set of experiments seeks to import pre-trained mod-
els built from simulated datasets generated using the BELL-
HOP ray mathematical model [1]. Although the Bellhop
model is a well established mathematical model for UWA
channel modeling [19], it failed to perform well in a real-
world scenario. When used to predict the received signals,
with real UWA data from Data 3 as the input to the model,
the average MAPE value is 57.30%. As with the RF data,
these simulated Bellhop datasets are used in the experiments
itemized below.

a) Training and testing models with Bellhop data: Deep
learning models and an ESN were trained and tested
using these BELLHOP generated data. The results from
these experiments are as recorded in Table 16.

b) Using Bellhop pre-trained models and testing on Data
3: The pre-trained models, from Table 16, were saved
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TABLE 16. Model performance when models were trained and evaluated
using Bellhop generated data.

TABLE 17. Model performance when Bellhop-Pretrained models from
Table 16 are evaluated directly with data 3.

TABLE 18. Model performance when Bellhop-Pretrained models from
Table 16 were re-trained with data 3 and evaluated with Data 3 testing
data.

and then evaluated directly using Data 3 test data.
These deep models were saved and then used as the
reservoir in training the readout layer of our proposed
ESN architecture and also evaluated using the bellhop
testing data. The results from these experiments are
as shown in Table 17 where BHP-DNN, BHP-LSTM,
and BHP-ESNmean Bellhop-Pretrained DNN, Bellhop-
Pretrained LSTM, and Bellhop-Pretrained ESN, respec-
tively.

c) Refining Bellhop pre-trained models and testing on Data
3: Pre-trained models from Table 16 were fine-tuned
by re-training the models with Data 3 training data and
re-evaluating the resultant model with Data 3. Results
from these experiments are as recorded in Table 18.

Summary of Results of Section VI-D:

• Transfer learning does not perform well when transfer-
ring models trained with very different data or domains.
For example, using models built with simulated RF data
and transferring directly to underwater data did not give
a good result as observed in Table 14.

• On the other hand, transfer learning tends to perform
reasonably well when the base domain is related to
the target domain. For instance, when models trained
with simulated Bellhop data were transferred and eval-

uated directly on underwater data, there was a notable
improvement in performance as seen in Table 17.

• Transfer learning can be further improved by refining
or fine-tuning the pre-trained base model with the target
datasets. When both RF pre-trained and Bellhop pre-
trained models were retrained using the UWA datasets,
improvements in the performance of the models are
observed in Tables 15 and 18.

VII. CONCLUSION
Two key objectives were pursued in this work. The first
objective is to mitigate the approximations and unrealistic
assumptions made by the mathematical models for UWA
channel models by providing a data-driven approach to UWA
channel modeling. To achieve this first goal, data generation
and collection experiments were carried out in a water tank
and in Lake Tahoe under different levels of disturbances.
Then the obtained datasets were used to train deep learning
models (DNN and LSTM) as well as the ESN to obtain mod-
els with high fidelity in a real-world scenario. It is observed
that ESN performs better than DNN and LSTM in terms of
prediction accuracy and has much less computational cost in
terms of training time. The performance gap becomes larger
when the data quality gets worse (more chaotic data), which
is in agreement with previous studies in the literature that
RC is very effective in modeling chaotic dynamical systems.
The second objective is to examine how RC performs under
various setups including different initialization methods of
the reservoir, various spectral radii, the reservoir size, the
activation function used, and the regression method used for
training the output layer. It is shown that ESN is quite robust
to these different settings as long as the spectral radius satisfy
the echo state property. It is also observed that when the size
of the reservoir matches the size of the input sequence, the
ESNmodel performs better. Furthermore, the performance of
transfer learning in ESN is also evaluated. Although Bellhop
mathematical model has a very poor performance by itself,
when ESN models trained with simulated Bellhop data were
transferred and evaluated on real-world underwater data,
there was a noticeable improvement in ESN performance.
Lastly, a modified ESN implementation was examined where
the reservoir of the ESN is replaced with a pre-trained deep
learning model. Though this approach gives a slightly better
performance when compared to pre-trained deep learning
models, it is not as efficient as the conventional ESN.

In this study, the trained ESN model, using real-world
UWA communications data, is a data-driven black box model
that performs sequence-to-sequence or point-to-point predic-
tion very well with time-series I/Q data as the input to the
model. It could be used to carry out large scale simulations
of UWA communications or obtain a large amount of high
fidelity data when it is difficult to obtain that kind of data
from physical underwater data collections. While it provides
a more realistic model when compared to mathematical mod-
els, it may also be over specified due to the peculiarities of
the measurement environment. It could also be generalized
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to model a network setting with multiple transceivers or
could be refined to model the ocean environment or any
other environment with time-series data. For instance, we can
generalize the developed channel model to a network setting
with multiple transmitting-receiving (Tx/Rx) pairs, as long
as the multiple Tx/Rx pairs are orthogonal. If we consider
multiple simultaneous transmissions in non-orthogonal UWA
channels, new channel model must be trained based on new
datasets that capture the mutual interference. The model can
also be trained in the reverse direction to recover the trans-
mitted signals based on the received signals, which may be
an alternative implementation for the software-based receiver.
This is one of our future efforts.
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