
Received May 9, 2022, accepted May 19, 2022, date of publication May 25, 2022, date of current version June 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3177743

Instruction Set Extension of a RiscV Based
SoC for Driver Drowsiness Detection
SEYED KIAN MOUSAVIKIA 1, ERFAN GHOLIZADEHAZARI 2, MORTEZA MOUSAZADEH 1,
AND SIDDIKA BERNA ORS YALCIN 2
1Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Urmia 5756151818, Iran
2Department of Electronics and Communication Engineering, Istanbul Technical University (ITU), Maslak, Istanbul 34469, Turkey

Corresponding author: Morteza Mousazadeh (m.mousazadeh@urmia.ac.ir)

This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) and the Ministry of Science,
Research and Technology of Iran (MSRT) under Project 119N641, and in part by Urmia University and Istanbul Technical University with
the support of Tabriz University and the Center for International Scientific Cooperation of MSRT.

ABSTRACT This paper describes the design and implementation of a driver drowsiness detection (DDD)
system using a modified RiscV processor on a field-programmable gate array (FPGA). To detect drowsiness,
Convolutional Neural Network (CNN) is implemented on a RiscV processor. The CNN is trained to classify
four primary driver’s expressions, including distraction, natural, sleep, and yawn. The trained CNN accuracy
is 81.07% on validation data. Furthermore, due to FPGA memory limitations, written C code for the trained
CNN is optimized in numerous ways. Optimizations include the usage of dynamic fixed-point data types
and dynamic memory allocations. On the other hand, the processor is modified by adding three custom
instructions, including custom store, conv2d(2 × 2), and multiply and accumulation (MAC) to enhance
the computation rate. As a result, the processor with custom store, conv2d(2 × 2), and MAC as custom
instructions achieved the best result in terms of latency, with an improvement factor of 1.7 over the base
processor and 1.25 over the processor with only custom store and multiply and accumulation (MAC) in
exchange of slight increase in area.

INDEX TERMS Convolutional neural network, driver drowsiness detection, FPGA, hardware implementa-
tion, modified RiscV processor.

I. INTRODUCTION
Driver fatigue and drowsiness are the leading cause of human
casualties in traffic accidents. Moreover, property damage
is another concern for governments. To minimize these
casualties, automotive companies have spent a tremendous
amount of time and money to design systems that detect
drowsiness and sleep and then alert the driver in these
situations [1]. These systems must detect drowsiness before
it leads to accidents; subsequently, the designed system must
have high accuracy [2].

In recent years, neural networks, especially convolutional
neural networks (CNNs), satisfy many requirements. These
networks are noticed widely due to their outstanding
functionality in classification with considerable accuracy [3].
Furthermore, these neural networks are implementable on
the field-programmable gate arrays (FPGAs) by utilizing an

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

embedded processor [4]. The embedded processor receives
the camera’s input, processes it, and finally illustrates the
network’s output on remarkably basic peripherals like seven
segments or even light-emitting diodes (LEDs). In this paper,
a CNN model is trained to detect driver drowsiness. More-
over, this trained model is implemented on the FPGA, which
requires noticeable modification in the model parameters due
to the shortage of resources in low-cost FPGAs. Even though
shortage of resources on low-cost FPGA’s can be challenging;
still FPGA’s are a great choice for hardware designers.
The hardware designer can easily change the architecture
of the designed system inside of the FPGA by adding or
removing some lines of code, which is not possible on
other hardware’s like GPU’s. Moreover, application-specific
integrated circuit (ASIC) implementation out of FPGA is also
possible.

Despite a wide range of research, many considered
drowsiness the main parameter of car accidents, yet driver
distraction leads to car accidents. Moreover, humans yawning

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 58151

https://orcid.org/0000-0001-5914-8040
https://orcid.org/0000-0002-9614-9699
https://orcid.org/0000-0003-0699-5208
https://orcid.org/0000-0003-0851-8501
https://orcid.org/0000-0001-6829-2263

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

is a noticeable sign of sleepiness. As an immediate result,
designing a system that can detect driver drowsiness is
highly recommended. This paper proposed decreasing car
accidents by considering driver drowsiness and distraction.
The hardware architecture of our designed system is such that
it can form a system on a chip (SoC) compatible with future
ASIC implementation. Moreover, for the embedded proces-
sor instruction set architecture (ISA), RiscV is considered [5].
Due to its simplicity and being completely open-source, it is
easily possible to modify and change the ISA to make the
processor optimized for any application. According to the
research firmSemico, the number of chips that include at least
some RISC-V technology will grow 73.6 percent per year to
2027, when there will be some 25 billion AI chips produced,
accounting for US $291 billion in revenue [6]. On the
other hand, due to utilizing an embedded processor, the
implementation of CNN becomes less challenging because
of the ability to implement the designed CNN in C/C++.
Additionally, codes in C/C++ can be compiled and translated
into RiscV machine-level code due to a reliable RiscV GNU
Tool-chain found in [7]. Optimizations on the software side
are done by managing memory efficiently, as an instance in
the compiler, appropriate linkers, and decreasing the number
of parameters. Likewise, optimizations on the written code
are considered due to the shortage of memory resources on
low-cost FPGAs. These optimizations reduce the size of the
machine-level code.

The organization of the paper is as follows. Section II pro-
vides information regarding previous research in designing
driver drowsiness detection systems and RiscV processors.
Section III describes the software design of the CNN and the
dataset utilized for system training and validation. Moreover,
the model’s modifications for software optimizations on the
implemented CNN are explained in this section. Section IV
provides information concerning hardware implementation
and optimizations. In Section V, results and achievements
of the paper are illustrated. Finally, section VI concludes the
paper.

II. RELATED WORK
By increasing the number of cars and trucks, the rate
of car accidents increases regretfully. In these accidents,
driver drowsiness has the most dominant role. Subsequently,
researchers in both industry and academic endeavor to reduce
the rate of car accidents by designing a system to detect
drowsiness.

Between researches in the area of driver drowsiness
detection, a significant number of them utilize biomed-
ical methods to detect drowsiness. In [1], the authors
provide valuable information about psychological signals
that can detect a driver’s drowsiness level. Authors also
measured drowsiness levels utilizing various methods like
Electroencephalography (EEG), Electrocardiography (ECG),
Electrooculogram (EOG), and Electromyogram (EMG). The
measured accuracy of some methods like EEG and ECG is
above 95%. In [8] utilizing an EEG headset, brain activity

is recorded, and via k-nearest neighbor and support vector
machine (SVM) 95.8% and 93.8% accuracy were achieved.
In [9], with ECG signal and the same classifiers of [8]
driver drowsiness was detected, and above 90% accuracy
was achieved for only two class classifications. In [10], the
validity of detecting driver drowsiness by measuring the
muscle activity associated with steering wheel grip with
the help of EMG was analyzed. The results indicated that
the validity of the proposed algorithm, needs to be more
robustly tested with additional subjects and with different
experimental designs. In [11], five methods for drowsiness
detection, i.e. subjective reporting, driver biological features,
driver physical features, vehicular features while driving,
and hybrid features are discussed and compared, which
indicates all methods have pros and cons, and even though
some of the stated methods are very complex and need
many sensors; they still need improvement. As a result,
although the accuracy of these systems is considerably high in
certain situations, the usage of numerous sensors sometimes
simultaneously, and the increased complexity of the system
are the main downsides of this method. Moreover, the cost
of these methods is not affordable, and also the flexibility of
modifying these systems to add other options is poor.

The other method for detecting drowsiness is image
processing. These methods are great for high-level and
software approaches since they are hard to implement on
hardware without the help of high-level design languages
such as Matlab or Python. In [12], an intelligent surveillance
system is designed based on signal processing and embedded
tools, which has three interlinked modules, driver fatigue
detection, alcohol content detection, and vehicular crash
detection. Although the system is complete and practical,
the brain of the system is a Raspberry Pi microcomputer
which is not flexible and far from optimized for such a
huge task. In [13] however, an FPGA-based system for
drowsiness detection is proposed. The system utilizes two
signs to detect the driver’s drowsiness, closed eye, and open
mouth. Although the system is on FPGA, which means it
can be designed to be optimum in terms of power and delay
and suitable for ASIC implementations, the use of high-level
design tools, especially the use ofMatlab HDL coder, reduces
the hardware designers’ control on the final architecture.
In [14], a real-time system that utilizes computerized camera
to automatically track and process the driver’s eye using
Python, dlib, and OpenCV is proposed. With Python and
high-level libraries like OpenCV and dlib, small bare-metal
processors cannot host this method.

Another method that can be used for detecting drowsiness
is neural networks especially convolutional neural networks
(CNNs). In [15] DriCare, a driver drowsiness detection
method is proposed by using face landmark detection and
the help of CNN. Although the DriCare method accuracy
is about 92%, but the system is tested on an Intel Core
i7 CPU, which is a supercomputer in comparison with small
embedded processors. In [16], a real-time model based on
deep neural networks on an embedded processor is proposed.

58152 VOLUME 10, 2022

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

In this paper, utilizing minimal facial landmarks, accuracy
is about 89.5% for three-class classification, and a detection
speed is 14.9 frames per second (FPS) tested on Jetson TK1.
Although the network is modified for an embedded processor,
nothing about the hardware optimization is proposed since
the hardware is fixed and not flexible. In [17], a similar
approach using multi-task CNN (MTCNN) is proposed.
Eye and mouth characteristics are utilized for the driver’s
behavior model. Changes to these characteristics are used
to monitor driver fatigue. Again the accuracy is high (98%)
on the proposed datasets, but no discussion about hardware
is made.

In this paper, we decided to utilize neural networks to
detect drowsiness since image processing techniques are very
heavy to implement on embedded processors. Also, the use
of biomedical techniques can result in an accurate system in
some situations, but not affordable.

As a hardware-software codesign matter, the selected
method must run on suitable hardware. In recent years
RiscV has gained popularity due to its open-source nature.
For deep learning algorithms, however, the majority of
research indicates that the designers paired a base CPU with
an accelerator to decrease the latency of the implemented
neural network. In [18], the authors proposed a RiscV-based
hardware accelerator designed for the Yolo object detection
system. The designed system executed Yolo in 400ms.
In [19], the authors compared two hardware accelerators,
NVDLA and Gemmini, and they proved that NVIDIA’s
NVDLA accelerator outperforms Gemmini by 3.77x running
ResNet-50 on an equivalent configuration using the same
system setup. However, in [20], the author mentioned that
a high-end FPGA is required to test the NVIDIA’s NVDLA
accelerator. As a result, they proposed to integrate NVDLA
into a real RiscV SoC on the Amazon cloud FPGA using
a tool named FireSim. As a result, although adding an
accelerator to a base CPU is logical, but the added area
to the base processor requires higher-end FPGAs and, as a
result bigger chip which all leads to higher costs. Moreover,
the RiscV ISA is open, and the designer can add nearly as
many new instructions as is needed to make the processor
customized. In [21], a Laplacian filter SoC with RiscV
processor over wishbone protocol implemented. As a result,
hardware implementation by adding a single DSP block was
36 times better than software implementation of Laplacian
filter. Consequently, we tried to implement a very efficient
CNN regarding the number of parameters on a modified
RiscV CPU.

III. DATASET AND CNN MODEL
In this section, we propose the dataset, and our designed
CNN models. The dataset is described in III-A, and the CNN
models are described in III-B. In this paper, the classified
images depict various behaviors of drivers. In this case,
drivers yawn, sleep, and distraction are considered as criteria
that increase the probability of car accidents.

A. DATASET
In this paper, we consider several criteria which lead to
car accidents. While driver drowsiness is pivotal, consid-
ering driver distraction is essential as well. Consequently,
we designed the system by considering driver drowsiness to
detect yawning and sleeping. Furthermore, driver distraction
is considered. Despite numerous methods based on image
processing and machine vision, a dataset that addresses our
requirements is not supplied. Subsequently, in this paper,
frames of the videos from reference [22] are extracted to
design an accurate system. The frames of these videos are
extracted at the rate of 1 frame per second, then the frames are
labeled in four distinct classes, including normal, distraction,
yawn, and sleep. After the initial design with the extracted
dataset, several images were added to the dataset to increase
the system’s accuracy. In this paper, we consider a scenario
where the camera is fixed on the car’s mirror. Fig. 1 (a) to
(d), illustrate a sample of distinct classes, including normal,
distraction, sleep, and yawn, respectively.

For these classes, intending to improve the system accuracy
and sensitivity, extracted frames are augmented by adding
Gaussian noise to the images, changing the brightness of
images, translation, and rotation, as can be seen in Fig. 1 (e) to
(h). It must be noted that the system quality and received
images might be affected due to driving cars in tunnels,
bumpy roads, and the like. Consequently, we consider
Gaussian noise with a wide range of σ , including 0.01,
0.02, and 0.04. The reason for considering noises is due to
the various quality of the camera and changing the quality
of input images. Furthermore, while cars are derived at
different times, the light varies considerably. For this reason,
to improve the system sensitivity, the effect of the light is
considered. It must be noted that, due to the mobility of
cars, moving in various directions, and the hills and valleys
on the roads, the driver’s location, and position extracted
by the inputs of the camera witness conspicuous changes.
Consequently, the system cannot detect the correct position
of the drivers. For this reason, in this paper, we consider the
rotation of the images and translation. Overall, by considering
these criteria for data augmentation, the number of samples
for normal, distraction, yawn, and sleep are 5069, 5063, 5062,
and 5109.

B. CNN MODEL
Driver drowsiness detection systems have been used widely
due to their profound effects on society. In this paper, the
system is implemented on both sides; software, and hardware.
It must be noted that for designing the CNN, some limitations
must be considered related to the hardware shortage memory.
Furthermore, while the number of parameters of the CNN
has profound effects on the system accuracy, as the driver
drowsiness detection system must be real-time, the system
must be lightweight. The implemented CNN for this system
is presented by Model Summary 1, which has 3588
parameters:

VOLUME 10, 2022 58153

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

FIGURE 1. Extracted frames of driver expressions (a) Normal, (b) Distracted, (c) Sleep, (d) Yawn, (e) Gaussian Noise, (f) Brighter, (g) Translation,
(h) Rotation.

Model Summary 1: Implemented CNN Structure
Conv2D(4, (2,2), input shape = (100,100,1), activation =
’relu’)
MaxPooling2D (MaxPooling2D (2,2))
Conv2D(4, (2,2), activation = ’relu’)
MaxPooling2D(pool size = (2,2))
Conv2D(4, (2,2), activation = ’relu’)
MaxPooling2D(pool size = (2,2))
Conv2D(4, (2,2), activation = ’relu’)
MaxPooling2D(pool size = (2,2))
Flatten()
Dense(32, activation = ’relu’)
Dense(classes, activation = ’softmax’)

As illustrated by Model Summary 1, the system is
extremely lightweight and has a low number of parameters.
Input image size is 100 × 100, and images for training
and testing are grayscale. It must be noted that the CNN
model is designed based on the hardware limitations. For
implementing the model on the hardware, the input size of the
image and the number of filters alongside the size of the filters
in the first convolutional layer’s have a significant effect on
the area of the implemented model on hardware. Therefore,
memory usage is managed to use the minimum amount due
to a lack of memory on low-cost FPGAs. Besides the input
image and convolutional layers, the activation function of
all convolution layers is considered to be rectified linear
unite (RELU) in this model. Regarding the max-pooling
layers, stride size is two, and padding does not add. There are
also two fully connected layers at the end of the model, first
with RELU activation and second with SoftMax activation,
as four classes are considered. After training the model on the
described dataset, the achieved accuracy for validation data is
81.07%. Fig. 2 (c) and Fig. 2 (f) depicts the system accuracy
and loss in terms of the number of epochs for the CNNmodel.

In this paper, due to the hardware limitations, the designed
CNN is compact. The implemented CNN’s layers are listed in
Model Summary 1. It must be noted that in the system utilized
for driver drowsiness detection, the system accuracy must
be as accurate as possible. For this reason, two additional
models, CNN I and CNN II, are designed for having a
system with high accuracy. These models are implementable
like Model Summary 1, but they require more memory. The
CNN II model is depicted in Fig. 3. Regarding CNN I, the
first two convolution layers have three channels, similar to
CNN II. However, the remaining convolution layers in CNN I
have 4, 8, 16, and 32 channels. After each two convolution
layers, a max-pooling layer is considered. Additionally, the
first dense layer has 128 neurons. Furthermore, the size of
input images in CNN I and CNN II is 160 × 120, then the
number of parameters in CNN I and CNN II are 21,282 and
45,546, respectively. Moreover, CNN I and CNN II accuracy
and loss functions are depicted in Fig. 2.
Intending to evaluate the proposed models, we trained

several well-known models with our dataset, including
MobileNet V2, VGG-16, and Inception. While for Model
Summary 1, we trained the network with grayscale images,
this time, the networks are trained with an RGB version of
our dataset. In table 1 the CNN II accuracy and its number
of parameters are compared with famous state-of-the-art
networks. However, the reason for training with the RGB data
is that the models MobileNet V2, VGG-16, and Inception are
trained with the ImageNet dataset, which contains RGB data,
and the weights are extracted for RGB images. As a result,
for having a fair comparison between CNN II, and the pre-
trained models, CNN II is trained by RGB data as well. While
the accuracy of MobileNet is significantly higher than that of
CNN II, the accuracy of VGG-16 is approximately the same
as CNN II trained with RGB data. Moreover, the accuracy
of Inception is lower than CNN II. It must be noted that the
number of parameters in this pre-trained model is by far more
than the CNN II. These results indicate that although CNN I

58154 VOLUME 10, 2022

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

FIGURE 2. (a): CNN I Accuracy, (b): CNN II Accuracy, (c): Implemented CNN Accuracy, (d): CNN I Loss, (e): CNN II Loss, (f): Implemented CNN Loss.

and CNN II have more parameters than Model Summary 1,
but they are a much better choices than other networks like
VGG-16. Furthermore, if a bigger FPGA is available, CNN I
and CNN II are better candidates than networks like VGG-16,
Inception, and even MobileNet V2.

Also, we should mention that we trained all of the above
models with Python library, Keras, optimizer was Adam, and
loss function was cross-entropy. Furthermore, we extracted
the weights and biases of the Model Summary 1 for C/C++
implementation. In addition to designing the model with a
low number of parameters, the format of the weights and
biases are modified as well. The reasons and results of
modifications are explained in subsection III-C.

C. SOFTWARE OPTIMIZATION
This subsection covers optimizations considered in writing
C code to achieve minimum code size for the implemented
CNN. As we mentioned in subsection III-B, the lack of
memory in low-cost FPGA models leads to selecting the
CNN model, which has a low number of weights and biases.
Despite choosing a lightweight model, tackling these issues
requires even more consideration. Overall, for some systems,
especially memory-hungry systems, the memory unit on
FPGAs might be insufficient. For this reason, intending to
decrease the needed memory block size on FPGA, all of the
weights and biases are converted into fixed-point numbers.
For conversion from floating-point to fixed-point, a python
package named fxpmath is utilized [23]. Also, for a better
understanding of the fixed-point configuration in our design

FIGURE 3. The structure design of The improved CNN II model.

and comparing it to the famous IEEE 754 standard for float
numbers in Fig. 4, our fixed-point configuration can be seen.

VOLUME 10, 2022 58155

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

TABLE 1. CNN II accuracy and well-known models accuracy.

FIGURE 4. Configuration of utilized fixed-point number.

FIGURE 5. Accuracy evaluation of implemented CNN (Integer part is
equal 8 bits including 1 bit for sign).

Unlike hardware description languages likeVerilog or Very
High-Speed Integrated Circuit Hardware Description Lan-
guage (VHDL), in C or C++ programming languages, only
valid data types are 8bits, 16bits, 32bits, and 64bits, so there
are not many options for demonstrating network parameters.
As a result, 8bits for network parameters and 16bits for
intermediate variables are considered to reduce the compiled
code size compared to int(32bits) and double(64bits) in C
language programming, respectively. Nevertheless, utilizing
this modification requires more consideration to prevent a
considerable drop in the system accuracy. It is undeniable
that using 32bit float data types for computation and
demonstration of weights and biases in the system leads
to the same accuracy achieved in the training phase;
compared to the situation, the number of digits for saving
network parameters and computation is decreased. However,
by utilizing fxpmath, the system accuracy is recalculated.
We first tested the system accuracy with a wide range of
fraction bits (1 to 15 bits), changing just network parameters.
Fig. 5 demonstrates system accuracy while a wide range of
bits for fraction part is utilized. Note that the integer part of
the number is set to 8 bits. This test demonstrates that for
network parameters, the number of fraction bits (F bits) has
the most importance to systems accuracy.

As mentioned, in C/C++, data types are limited. As a
result, the second test was considered for finding the best
configuration for 8bit fixed-point representation. In this test,

TABLE 2. Accuracy evaluation of implemented CNN with fixed-point
parameters (whole number is 8 bits).

the whole number is 8bits (S + I + F), and the fraction part
is changed from 0 to 8 for finding the best configuration for
the network parameters. Table 2 indicates that 6 bits for the
fraction part and 1 bit for integer, including 1 bit for the sign
(I = 2,F = 6) results in 73.7% accuracy, which is the closest
accuracy to 81.07% achieved in validation accuracywith float
data types.

For other variables such as the input of the network and
the intermediate variables, fixed-point configuration must be
decided as well. Since in the training phase, the input of
the CNN is normalized between 0 and 1; as a result, all of
the 8 bits can be dedicated to the fraction part. However,
the utilized camera gives 565 output (5 bits for red, 6 bits
for green, and 5 bits for blue). As a result, converting the
input picture to grayscale, all three channels must be added,
leading to a maximum of 7 bits. Subsequently, the input layer
configuration is selected to be 7 bits for the fraction part,
leading 1 bit for the sign, which is always 0. For intermediate
variables after multiplying two 8-bit numbers, the result is
16 bits. These 16 bits results are reduced to 8 bits after all
the calculations of the layer are done. With this method, both
precision andmemory shortage can be satisfied. However, for
reducing 16 bits to 8 bits, the amount of right shift decides
the configuration of the 8-bit number. This configuration
must change throughout the network since, at the first layers,
numbers are small and close (more fraction bits are needed),
but at the final layers, numbers grow and become widespread,
so more bit for the integer part is needed. Fig. 6 supports
this idea and depicts the output range of each layer of our
implemented CNN for all of the pictures of our dataset.
This decision results in a dynamic fixed-point configuration.
Table 3 depicts the configuration of each layer’s output,
which is deduced from Fig. 6. Note that all weights have the
configuration of 1 bit for sign, 1 bit for integer, and 6 bits for
fraction part resulting from Table 2.

58156 VOLUME 10, 2022

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

FIGURE 6. Output histogram of (a) First, (b) Second, (c) Third, and (d) Forth convolution layer, (e) First dense layer.

TABLE 3. Fixed-point configuration of each layer’s output.

Finally, for the last dense layers configuration, we decided
to keep 16-bit representation, to better differentiate between
four classes of the network.

For the second optimization, due to an increase in the
number of intermediate variables after each convolution
layer, we utilized Dynamic Memory Allocation (DMA)
functions, especially Malloc() and free() in coding. By these
functions, the heap memory of the processor is allocated
and deallocated to the variables dynamically. For example,
by these functions, after calculating the first layer’s output,
there is no need for the first layer’s input to occupy the
memory anymore. Subsequently, the occupied memory is
released with the free() function and automatically reallo-
cated to the following layer’s variables. However, due to
the architecture of the RiscV compiler, usage of dynamic
memory allocation functions in C or C++ is not possible
unless the target embedded processor has an operating
system. The −libgloss library contains these functions, but
it applies to processors with an operating system. In this
case, we use a Bare-Metal processor on FPGA, so the
usage of −libgloss must be avoided in the Makefile of the
compiler. Then a specific version of the −sbrk() library for

the Bare-Metal systems compiler is considered to implement
dynamic memory allocation. Fig. 7 provides a block diagram
to indicate how to compile C codes that contain DMA
functions for Bare-Metal cpu’s. Also, in Fig. 7, we should
mention that the−sbrk() must be added at the first line of the
written C code before other functions to allow the compiler
to utilize DMA functions. Moreover, we endeavored to use
points stated in [24] to optimize the written Makefile and
linkerfile for the compiler.

Alongside the optimizations mentioned above for memory
usage, we optimized the code in terms of run time and
latency with the help of custom instructions. Overall, the
convolution function is the most called in this code. Algo-
rithm 2 depicts the pseudo-code of a standard convolution
which indicates that the multiply and accumulation (MAC)
operation frequently happens inside for loops. Due to
this reason, it was convenient to add MAC operation or
even the whole convolution operation to the hardware.
Besides, in the case of MAC operation, it can also be used
for two fully connected layers of our implemented CNN
network to reduce the run time of the code even more.
In Section IV, the hardware optimizations are explained by
considering the process of adding a custom store as custom0,
conv2d(2 × 2) operation as custom1, and MAC as custom2
to the Arithmetic Logic Unit (ALU) and processor decoder.
However, in C code optimization, Fig. 8 displays a block
diagram of how to modify the C code and the compiler to
utilize the help of custom instructions. It must be noted that
for conv2d(2× 2) operation as custom1, considering the 8bit
demonstration and comprehending the size of the convolution
filters is 2 × 2, only the first operand of the 32bit ALU is

VOLUME 10, 2022 58157

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

FIGURE 7. Compiling codes containing DMA functions for bare-metal
CPU’s.

FIGURE 8. Compiling codes containing DMA and custom instruction
functions for bare-metal CPU’s.

occupied. The second unused operand can be utilized if a
16bit representation is used.

Regarding the SoftMax activation function used in the
last layer of almost all CNN’s, instead of using (1), where
i is the target class; in the code, we compare outputs of the
final fully-connected layer and picked the index of the most
enormous number as the predicted class of the input picture.
This approach reduces run time and resource utilization since
for the processor, executing simple if statements are much
more straightforward than executing complex equations
like (1).

Finally, for better deducing the driver’s primary expression
and neutralizing unnecessary alarms, instead of just taking
one picture and then classifying it; based on frame rate, the
system classifies frames for 15 seconds, and after this time
is elapsed based on what class was selected more often, then
the driver’s expression is deduced. This method is used in all
of our implementations.

softmax(xi) =
exi∑#classes

j=0 exi
(1)

IV. HARDWARE IMPLEMENTATION AND OPTIMIZATION
This section describes hardware implementation and opti-
mizations of the trained CNN. As for the embedded

Algorithm 2: Normal Convolution
for i from 0 to (InputFeatureMapRowSize - 1)
for j from 0 to (InputFeatureMapColumnSize - 1)
oc[i][j] = 0
for k from 0 to (WeightMatrixRowSize - 1)
for l from 0 to (WeightMatrixColumnSize - 1)
oc[i][j] = oc[i][j] + w[k][l] * in[i+k][j+l]

end for
end for

end for
end for

FIGURE 9. Block diagram of ibex core.

processor, we utilized the Ibex core [25]. Ibex is an
RV32IMC, written in System Verilog, with two pipeline
stages, as shown in Fig. 9. The two stages of ibex core are:
instruction fetch(IF), instruction decoder(ID), and execution
block(EX), which are merged together [25]. First, instruc-
tions are fetched into a prefetch buffer. Then instruction
fetch controller supplies new instructions and their program
counter to the ID-EX stage. After that, the ID-EX stage
takes instructions and data from the IF stage, decodes them,
and executes the instructions. This stage is made up of
multiple sub-blocks such as controller, decoder, register
file, arithmetic logic unit (ALU), multiplier/divider block
(MULT/DIV), control and status register block (CSR), and
load-store Unit (LSU) as shown in Fig. 9.

We utilized Ibex core as the central processor because of
its simplicity and easy-to-understand architecture. Besides
these reasons, the Ibex core is small enough to fit nearly on
any low-cost FPGAs. Other more complicated RiscV cores
such as Berkley’s Rocket or BOOM found in the Chipyard
repository [26] can also be tested in future designs.

Additionally, two remaining building blocks of our design
are a camera module and a monitor. These modules can
communicate to IBEX through the designed Wishbone
B4 interface [27]. The choice of Wishbone over other
interfaces like AXI and AMBA [28] is because the Wishbone
interface is simple and open source, like IBEX and RiscV
ISA. Moreover, in our designed wishbone protocol, all
masters and slaves communicate through a shared bus called
interconnect with an arbiter register controlling masters
priority. Furthermore, slaves are selected according to their
base addresses, which masters apply. Subsequently, first,

58158 VOLUME 10, 2022

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

FIGURE 10. One MAC block.

FIGURE 11. Conv2d(2 × 2).

the camera IP becomes active and populates the RAM with
pixels. Next, the Ibex core instruction & data memory get
active and process the image with the written neural network
code inside the processor. Finally, the chosen class will be
demonstrated on LED’s. The overall structure of our system
with added custom instruction blocks is depicted in Fig. 13.
In this figure, the VGA block is optional and can be omitted
without affecting the system. Also, a built-in timer inside the
processor is used in the evaluation mode for measuring the
processing time in hardware implementation.

As mentioned, the most called function in our written
C code is the convolution function. In this function, the
most frequent operation is MAC. Besides the convolution
function, MAC operation is also used in fully connected
layers. MAC operation in our C code happens inside for
loops, as noted in Algorithm. 2. As a result, one MAC
operation can be added to the processor (Fig. 10). Moreover,
for the convolution function, since 2×2 convolutions are used
in our design, four MAC operations can be combined and
operate in parallel lanes to form one complete convolution
(Fig. 11). This instruction is called conv2d(2 × 2) since we
have two-dimensional convolutions with 2 × 2 filters in our
implemented CNN network.

In this way, each time the data iterates through for
loop, we gain a speedup relative to the method we use,
and this speedup is escalated each time the code calls a

FIGURE 12. R-type instruction format.

convolution function. However, the only downside of adding
the mentioned custom instructions is the overhead of resource
utilization in FPGA. Fortunately, this increase is negligible
for both cases, as we will discuss the results of adding these
instructions to hardware in the following section. As a result,
three custom instructions, one for storing kernel weights, one
for MAC operation that can be used in convolution and fully
connected layers, and one for whole convolution operation,
are added to the decoder and ALU stage of the Ibex processor.
Furthermore, these instructions read the rs1-register and rs2-
register as source operands and write back the result into
rd register like other R-Type instructions in RiscV ISA [5].
Moreover, the type of operation selection is done by funct7
and funct3 as shown in Fig. 12.
It is essential to note that MAC and convolution operation

both happen in a series of the first store instruction, requiring
previously stored data for operation. Besides adding this
instructions to the hardware of the core, RiscV GNU
Tool-chain must be recompiled to recognize the related
instructions for newly added custom instruction opcodes.

The other optimization we considered for lowering mem-
ory size is to make the picture size received from the camera
to the size that CNN is trained for. In camera modules,
however, the usual size of the output picture is VGA (640 ×
480), but its fractions like QVGA (320× 240) and QQVGA
(160 × 120) are also possible to achieve. On the other hand,
it is possible to adapt the image size from the camera inside
the C code by either cropping the image or manually resizing
it. Since cropping can worsen the accuracy because of losing
essential parts of the picture, resizing is preferred. Moreover,
in our design, the first resizing is handled inside hardware
by taking one of every two pixels coming from the camera.
While the camera supports standard QVGA (320 × 240),
its output images are resized to the QQVGA (160 × 120).
Using this trick in hardware resulted in a 14% reduction of
BRAM’s size on the utilized FPGA board with no added code
in the software. The second conversion, cropping, happened
inside C code, which converts QQVGA to 100×100 suitable
for the implemented CNN. This step does not require if the
CNN’s input is a fraction of the VGA like CNN1 and CNN2
networks, stated in III-B.

A. RASPBERRY PI IMPLEMENTATION
This subsection covers Raspberry Pi’s implementation of
the designed CNN. Since implementing the designed CNN’s
on FPGA is very time-consuming; it is recommended first
to implement them on Raspberry Pi to test the system’s
accuracy. Fig. 14 depicts our driver drowsiness detection
system utilizing a Raspberry Pi board. In this system, four

VOLUME 10, 2022 58159

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

TABLE 4. Comparison between custom instructions.

TABLE 5. Board utilization comparison between processors.

TABLE 6. Raspberry Pi and FPGA implementation comparison.

FIGURE 13. Overall system.

FIGURE 14. Designed system with raspberry pi board.

LED’s illustrate the current expression of the driver based
on the received picture. Also, a 5-inch HDMI resistive touch
screen is provided to demonstrate the pictures taken from the
camera and form a GUI (Graphical User Interface) for the
user.

Furthermore, implementing the designed CNN’s is
achieved via the MATLAB support package for Raspberry
Pi hardware [29]. Although all CNN models are trained
on the Keras framework, utilizing the NVIDIA Tesla K80

FIGURE 15. Designed system with FPGA (Nexys 4 DDR) board.

Accelerator, the CNN model .h5 file is converted to DAG
or series network format with the help of MATLAB Deep
Learning Toolbox Converter for TensorFlow models found in
Add-Ons section of MATLAB [30]. In this way, MATLAB
compiles the CNN model to the ARM-based processor
core of Raspberry Pi. However, MATLAB implements
the networks with IEEE754 standard, and also, on the
Raspberry Pi, the utilized camera is five megapixels instead
of 0.3 megapixels of OV7670 used on FPGA design. As a
result, the implemented design on Raspberry Pi will be the
best-case scenario and can achieve better results in terms
of accuracy compared to the same network implemented
on FPGA. Besides accuracy, the frame rate achieved by
Raspberry Pi can also be higher due to a much faster 1.2GHz
clock frequency and the fact of having multiple cores on
Raspberry Pi compared to a 50MHz clock and single core
of ibex.

V. RESULTS
In this section, the results of the designed system are
demonstrated. For hardware implementation on FPGA,
Nexys 4 DDR FPGA board [31] and OV7670 camera module

58160 VOLUME 10, 2022

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

FIGURE 16. Real word test of designed systems.

are used. For illustrating the system output and captured
images from the camera module, an HDMI monitor used
in Fig. 14 is connected to VGA connectors of the FPGA
board via VGA to HDMI converter 15. However, the monitor
block is optional and can be omitted when implementing the
real-world application. For latency evaluation, we enabled a
counter at the beginning of the C code and disabled it at the
end of the code tomeasure the run time of each code precisely.
As a result of an example picture from the dataset, latency is
390ms for ibex with no custom instruction, 289ms for ibex
with custom store and MAC used in convolution and fully
connected function, and 231ms for ibex with custom store,
conv2d(2× 2) for convolution and MAC for fully connected
function as shown in Table 4. For accuracy measurements,
we tested both FPGA and Raspberry Pi based systems in
real-world and deployed the system inside a car, as can be
seen in Fig. 16. Moreover, the accuracy results can be seen
in Tables 4 and 6. Besides for FPGA implementation, the
Vivado utilization table is considered to compare resource
utilization in both cases with andwithout custom instructions,
as shown in Table 5. Finally, Table 6 compares the FPGA
implementation with Raspberry Pi implementation.

Overall, results indicate that the processor with added
custom store, conv2d(2×2), and MAC operation can achieve
the best result in terms of latency but with negligible increase
in the usage of DSP blocks of the board.

VI. CONCLUSION
This paper discusses the implementation of a modified
embedded processor based on RiscV ISA for driver drowsi-
ness detection systems. The whole system consists of an
embedded processor, camera, and a monitor connected to
the VGA port of the FPGA. The drowsiness is detected
with a convolutional neural network. Implemented CNN
classifies input images taken from the driver into four
classes: distraction, natural, sleep, and yawning. Moreover,
system’s hardware and software parts are optimized for
this application. On the software side, Dynamic Memory

Allocation and the use of dynamic fixed-point numbers
instead of floating-point numbers for the weight, biases,
and intermediate variables of the CNN are used. On the
hardware side, three custom instructions, including a custom
store, conv2d(2× 2), and multiply and accumulation (MAC)
operations, are added to the processor’s ISA, decoder, and
ALU sections to decrease the run-time of the code. Also, the
camera module’s taken picture size is changed from QVGA
to QQVGA, intending to save more memory for CNN. As a
result, by adding a custom store, MAC, and conv2d(2 ×
2) as custom instructions, the improvement factor over the
base processor is 1.7, which is higher than the improvement
factor achieved by adding custom store and MAC as custom
instructions which is 1.35.

REFERENCES
[1] A. Chowdhury, R. Shankaran, M. Kavakli, and M. M. Haque, ‘‘Sensor

applications and physiological features in drivers’ drowsiness detection:
A review,’’ IEEE Sensors J., vol. 18, no. 8, pp. 3055–3067, Apr. 2018.

[2] A. Quddus, A. S. Zandi, L. Prest, and F. J. E. Comeau, ‘‘Using
long short term memory and convolutional neural networks for driver
drowsiness detection,’’ Accident Anal. Prevention, vol. 156, Jun. 2021,
Art. no. 106107.

[3] M. Hashemi, A. Mirrashid, and A. B. Shirazi, ‘‘Driver safety development:
Real-time driver drowsiness detection system based on convolutional
neural network,’’ Social Netw. Comput. Sci., vol. 1, no. 5, p. 289, Sep. 2020,
doi: 10.1007/s42979-020-00306-9.

[4] D. T. Nguyen, T. N. Nguyen, H. Kim, and H. J. Lee, ‘‘A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,’’ IEEETrans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1861–1873, Aug. 2019.

[5] RISC-V Specification, vol. 1, RISC-V, Unprivileged Spec V, Cham,
Switzerland, 2019.

[6] S. K. Moore, ‘‘RISC-V AI chips will be everywhere,’’ IEEE Spectrum,
New York, NY, USA, Tech. Rep., 2022.

[7] P. Dabbelt et al. (2020). GNU Toolchain for RISC-V, Including GCC.
[Online]. Available: https://github.com/riscv/riscv-gnu-toolchain

[8] S. Arif, M. Arif, S. Munawar, Y. Ayaz, M. J. Khan, and N. Naseer,
‘‘EEG spectral comparison between occipital and prefrontal cortices for
early detection of driver drowsiness,’’ in Proc. Int. Conf. Artif. Intell.
Mechatronics Syst. (AIMS), Apr. 2021, pp. 1–6.

[9] S. Murugan, J. Selvaraj, and A. Sahayadhas, ‘‘Detection and analysis:
Driver state with electrocardiogram (ECG),’’ Phys. Eng. Sci. Med., vol. 43,
no. 2, pp. 525–537, Jun. 2020.

[10] A. T. Satti, J. Kim, E. Yi, H.-Y. Cho, and S. Cho, ‘‘Microneedle array
electrode-based wearable EMG system for detection of driver drowsiness
through steering wheel grip,’’ Sensors, vol. 21, no. 15, p. 5091, Jul. 2021.

[11] G. Sikander and S. Anwar, ‘‘Driver fatigue detection systems: A review,’’
IEEE Trans. Intell. Transp. Syst., vol. 20, no. 6, pp. 2339–2352, Jun. 2018.

[12] V. S. Kumar, S. N. Ashish, I. V. Gowtham, S. P. A. Balaji, and E. Prabhu,
‘‘Smart driver assistance system using raspberry pi and sensor networks,’’
Microprocessors Microsyst., vol. 79, Nov. 2020, Art. no. 103275.

[13] S. Gupta, P. Jain, and E. Rufus, ‘‘Drowsy driver alerting system,’’ in Proc.
2nd Int. Conf. Electron., Commun. Aerosp. Technol. (ICECA), Mar. 2018,
pp. 1665–1670.

[14] A. A. Suhaiman, Z. May, and N. A. Rahman, ‘‘Development of an
intelligent drowsiness detection system for drivers using image processing
technique,’’ in Proc. IEEE Student Conf. Res. Develop. (SCOReD),
Sep. 2020, pp. 233–236.

[15] W. Deng and R. Wu, ‘‘Real-time driver-drowsiness detection system using
facial features,’’ IEEE Access, vol. 7, pp. 118727–118738, 2019.

[16] B. Reddy, Y.-H. Kim, S. Yun, C. Seo, and J. Jang, ‘‘Real-time driver
drowsiness detection for embedded system using model compression of
deep neural networks,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.
Workshops, Jul. 2017, pp. 121–128.

[17] B. K. Savas and Y. Becerikli, ‘‘Real time driver fatigue detection system
based on multi-task ConNN,’’ IEEE Access, vol. 8, pp. 12491–12498,
2020.

VOLUME 10, 2022 58161

http://dx.doi.org/10.1007/s42979-020-00306-9

S. K. Mousavikia et al.: Instruction Set Extension of RiscV Based SoC for Driver Drowsiness Detection

[18] G. Zhang, K. Zhao, B. Wu, Y. Sun, L. Sun, and F. Liang, ‘‘A RISC-V based
hardware accelerator designed for Yolo object detection system,’’ in Proc.
IEEE Int. Conf. Intell. Appl. Syst. Eng. (ICIASE), Apr. 2019, pp. 9–11.

[19] A. Gonzalez and C. Hong, ‘‘A chipyard comparison of NVDLA and
Gemmini,’’ Berkeley, CA, USA, Tech. Rep. EE 290-2, 2020.

[20] F. Farshchi, Q. Huang, and H. Yun, ‘‘Integrating NVIDIA deep learning
accelerator (NVDLA) with RISC-V SoC on FireSim,’’ in Proc. 2nd
Workshop Energy EfficientMach. Learn. Cognit. Comput. Embedded Appl.
(EMC), Feb. 2019, pp. 21–25.

[21] E. Gholizadehazari, T. Ayhan, and B. Ors, ‘‘An FPGA implementation of
a RISC-V based SoC system for image processing applications,’’ in Proc.
29th Signal Process. Commun. Appl. Conf. (SIU), Jun. 2021, pp. 1–4.

[22] S. Abtahi, M. Omidyeganeh, S. Shirmohammadi, and B. Hariri, ‘‘YawDD:
A yawning detection dataset,’’ in Proc. 5th ACM Multimedia Syst. Conf.
(MMSys), 2014, pp. 24–28.

[23] A. Franco, J. Charlong, and E. Badger. A Python Library for
Fractional Fixed-Point (Base 2) Arithmetic and Binary Manipula-
tion With Numpy Compatibility. Accessed: 2020. [Online]. Available:
https://github.com/francof2a/fxpmath

[24] M. Perotti, P. D. Schiavone, G. Tagliavini, D. Rossi, T. Kurd, M. Hill,
L. Yingying, and L. Benini, ‘‘HW/SW approaches for RISC-V code size
reduction,’’ in Proc. Workshop Comput. Archit. Res. RISC-V (CARRV),
2020, pp. 1–8.

[25] LowRISC. Ibex Core Documentation. Accessed: 2017. [Online]. Avail-
able: https://ibex-core.readthedocs.io/en/latest/

[26] A. Amid et al., ‘‘Chipyard: Integrated design, simulation, and implementa-
tion framework for custom SoCs,’’ IEEE Micro, vol. 40, no. 4, pp. 10–21,
2020, doi: 10.1109/MM.2020.2996616.

[27] R. Herveille, ‘‘WISHBONE system-on-chip (SoC) interconnection archi-
tecture for portable IP cores,’’ OpenCores, Amsterdam, The Netherlands,
Tech. Rep., 2010.

[28] (2011). A R M Limited. AXI Spec. [Online]. Available: http://
www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI%4_
specification.pdf

[29] MathWorks. MATLAB Support Package for Raspberry PI Hardware.
Accessed: 2014. [Online]. Available: https://www.mathworks.com/
hardware-support/raspberry-pi-MATLAB.html

[30] MathWorks. Deep Learning Toolbox Converter for Tensorflow Models.
Accessed: 2017. [Online]. Available: https://www.mathworks.com/matla
bcentral/fileexchange/64649-deep-learning-toolbox-converter-for-
tensorflow-models

[31] Digilent. Nexys 4 DDR Board. Accessed: 2013. [Online]. Available:
https://digilent.com/reference/programmable-logic/nexys-4-ddr/start

SEYED KIAN MOUSAVIKIA was born in Urmia,
Iran. He received the B.Sc. degree (Hons.) in
electronics engineering from the University of
Urmia, in 2019, where he is currently pursu-
ing the M.Sc. degree in electronics engineering.
From 2018 to 2019, he was a Researcher at Urmia
University, where he was involved in the design of
a signal generator based on direct digital synthesis
method (DDS) on field programmable gate arrays.
In 2020, he was a Researcher for the project

between TUBİTAK (The Scientific and Technological Research Institution
of Turkey) and the Ministry of Science, Research and Technology, Iran,
developing RISC-V based on SoC system for driver fatigue detection
algorithms. His current research interest includes HW/SW codesign with
the emphasis on deep learning and machine learning algorithms on field
programmable gate arrays.

ERFAN GHOLIZADEHAZARI was born in
Urmia, Iran. He received the B.Sc. and M.Sc.
degrees (Hons.) in electronics from Istan-
bul Technical University, Turkey, in 2021.
From 2017 to 2018, he was a Researcher at Urmia
University, Urmia, where he was involved in the
IR signal decoding project using NEC protocol for
controlling projection systems. His undergraduate
research was about wireless charger designing and
implementation. From 2020 to 2021, he was a

Graduate Researcher for the project between TUBİTAK (The Scientific
and Technological Research Institution of Turkey) and Ministry of Science,
Research and Technology, Iran, developing RISC-V based on SoC system
for driver fatigue detection algorithms. His research interests include
microprocessor architecture, embedded systems, and HW/SW codesign.

MORTEZA MOUSAZADEH was born in Urmia,
Iran. He received the B.S. degree in electrical
engineering from the Iran University of Science
and Technology, Tehran, Iran, in 2003, and the
M.S. degree in electrical engineering and the Ph.D.
degree in microelectronics from Urmia University,
Urmia, in 2006 and 2014, respectively. He is
currently a Professor at Urmia University. His
research interests include mixed mode IC design,
data converter, and AI accelerator.

SIDDIKA BERNA ORS YALCIN received the
bachelor’s and M.Sc. degrees in electronics and
communication engineering from Istanbul Techni-
cal University (ITU), Turkey, in 1995 and 1998,
respectively, and the Electrical Engineering degree
in applied sciences from Katholieke Universiteit
Leuven, Belgium, in 2005. She is currently an
Associate Professor at ITU. Her main research
interests include cryptography, embedded sys-
tems, and side-channel attacks.

58162 VOLUME 10, 2022

http://dx.doi.org/10.1109/MM.2020.2996616

