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ABSTRACT The Near-Infrared (NIR) Diffuse Optical Tomography (DOT) aims to reconstruct optical-
property images of tissue and identify and localize breast tumors. This study has developed an efficient
and fast DOT reconstruction method based on Deep Learning (DL) algorithm. The DL has already been
applied in DOT application with limitations such as a limited dataset and the reconstruction of absorption
coefficients only. We solve the problem of a limited dataset by generating a large dataset with multiple
phantoms and inclusions at various positions. Moreover, a single Deep Neural Network (DNN) model
has been designed to reconstruct absorption coefficients and scattering coefficients. For evaluation of the
proposed DNN models, the phantom experimental dataset has been used where the results of the proposed
DNNmodels outperform the results of the Tikhonov Regularization (TR) method and other Artificial Neural
Networks (ANN). Moreover, it is shown that the DNN model with batch normalization layer results in
improved spatial resolution, based on Contrast-and-Size Detail (CSD) analysis, as compared to DNNmodels
without batch normalization layers.

INDEX TERMS Batch normalization, convolution deep neural networks, diffuse optical imaging, inverse
problem, sensor to image domain.

I. INTRODUCTION
Optical imaging has become one of the primary preclinical
and clinical imaging modalities due to recent developments
in photonics and molecular probes. In optical imaging, light
diffusion is a fundamental restriction that limits the spatial
resolution of deep-tissue imaging. A forward model and an
inverse model are used in DOT to produce the tomographic
image. It is essential to understand the optical properties of
biological tissues to develop DOTmodels. There are multiple
benefits of optical imaging compared to other imaging tech-
niques, such as its non-invasive nature, relatively low cost,
and portability (which allows repeatable imaging procedures
under differing patient conditions).

Despite the significant advances made in new technolo-
gies and improved temporal and spatial resolution, reduced
cost, and broader application in recent decades, many
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improvements can still be made, including accurate recon-
struction, localization, reducing acquisition and discomfort,
while increasing clinic throughput and accuracy. As tumors
have higher levels of vascularization than the surrounding
tissue, resulting in different light absorption characteristics;
in addition, relative Hb/HBO concentrations can distinguish
tumors from background tissue and discriminate between
cancers with various rates of activity. Furthermore, it should
be noted that the optical properties depend primarily upon the
type and concentration of hemoglobin in the tissue. In addi-
tion, the optical absorption coefficient, the optical scatter-
ing coefficient, and the mean cosine of the scattering phase
function are essential factors known as the reduced scattering
coefficient. Continuous-wave (CW), frequency domain (FD),
and time-domain (TD) are three types of systems used in
DOT.

As a result of the ill-posed and ill-conditioned nature of
the current methods for solving inverse problems in DOT, the
amount of information obtained from a sample is severely
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limited. The resolution and noise of these methods are also
low. Thus, there is a need for an alternative method for
providing a faster and more accurate diagnosis when diffuse
optical tomography is used to obtain images of human breast
tissue. To solve inverse problems in diffuse optical tomogra-
phy, we discuss several deep learning networks. A number of
applications of deep learning have been actively investigated,
including the classification of images, computer vision, and
regression analysis, and the accuracy of these tasks has been
proved to be state-of-the-art. As of today, deep learning and
DOT are in their early stages of development. Most imple-
mentations have utilized basic tools and simplified imple-
mentation scenarios. DL has attracted extensive attention and
has had a profound impact on nearly every facet of modern
life. Deep CNNs, on the other hand, can learn complicated
patterns or objects in large data repositories as well as or
better than humans. Regression tasks and inverse problems
have recently been solved using DL methods.

II. LITERATURE REVIEW
A. CLASSICAL APPROACHES
For the last two decades, NIR light has been extensively
investigated and applied for optical breast imaging [1].
A classical method consists of the ‘forward problem,’ that
is, of predicting the measured fluence at the detectors
given a geometric model of the optical parameters, back-
ground parameters, as well as the position and functional-
ity of the source and detector are necessary for studying
the propagation and inverse problems of light in diffuse
tissue. In addition to regularization, optimization, statistical
modeling, and parametric representations, signal processing
techniques are employed. In order to stabilize inversions
of forward models, regularization techniques are used to
eliminate ill-conditioning caused by the ill-posedness of the
inverse problem. It is much less expensive than conventional
imaging techniques such as magnetic resonance imaging.

Due to optical scattering, high-resolution modalities using
low-energy photons are limited in depth to just a few mil-
limeters, resulting in rapid degeneration of the image qual-
ity. Reconstruction of the optical properties of DOT images
usually suffers from low spatial resolution owing to the dif-
fusive nature of NIR light in tissues. DOT is a functional
technique that estimates the intrinsic biophysical composition
of tissues including the concentration of total hemoglobin,
oxyhemoglobin, water, and lipids [2]. It is non-invasive, has
deep penetration, and does not cause harm to patients during
screening in comparison with other classical imaging tech-
niques such as X-ray mammography and ultrasound imaging.
It reconstructs tomographic 2-D/3-D images of absorption
and scattering coefficients. Diffuse optical imaging (DOI)
involves utilizing NIR light between 650nm and 1000nm
to image biological tissue in the diffusive regime, assessing
the difference between tumor and normal breast tissue blood
oxygenation [3].

DOT describes a process of reconstructing a spatial map of
optical absorption coefficients (chromophore concentrations

FIGURE 1. Geometry for the off-centered target case and illustration of
parameters of phantom design.

related to absorption) and scattering coefficients from flu-
ence measurements, using an analytical model for describing
photon propagation [1]. It is also important to note that the
quality of the results obtained depends on how the image
is acquired and how it is reconstructed [4]. In the nonlinear
approach, the inverse problem is regarded as the optimiza-
tion of an objective function representing the sum-squared
difference of the measurements to the diffusion model, plus
additional regularization terms representing prior knowledge
like smoothness, sparsity, and total variation [5]. Whereas
some analytical approaches do not need the inversion of
the sensitivity matrix [6], their convergence is slow. When
three parameters refractive index, absorption, and diffusion
coefficients are unknowns, no unique solution exists to
the inverse problem(reconstructing optical coefficients from
a forward model) which results in degradation of image
reconstruction [7]. Important parameters for phantom design
i.e. Region of Interest (ROI), size of inclusion, off-center,
diameter, contrast, and background are shown in Figure 1.

B. DEEP LEARNING APPROACHES
A deep learning approach is superior to classic methods as it
is capable of learning features from raw input data directly.
Furthermore, it can be used to create more sophisticated
models with greater accuracy from complex datasets, which
cannot be achieved by a basic regression function alone [8].
DLmethods also enhance the images via (a) noise and artifact
reduction that results from learning prior information [9] (this
is critical for DOT systems with a low number of measure-
ments when regularization methods do not perform well)
and (b) accurate image reconstruction to better recover the
optical properties of tissue [10]. D L techniques have been
used to tackle the inverse scattering issue [11]. Investigation
of DL has drawn researchers’ attention extensively since
DL can solve complicated patterns in huge datasets of any
sort [12]. In addition, it can also be applied to medical image
reconstruction [13], where it has demonstrated encouraging
results.
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The use of deep learning algorithms as opposed to con-
ventional inverse problems has been shown to produce bet-
ter results in terms of data processing, image segmentation,
and image reconstruction. Research is taking place in this
area as it becomes necessary for high-resolution imaging of
mammalian tissues to identify any anomalies present there
to develop a robust, affordable, and non-invasive system.
DL approach proposed in [14] has been used for recover-
ing the absorption coefficient inside a phantom made from
propylene with a vertically oriented cylindrical cavity, while
the cavity is filled with different acetyl inclusions that have
different optical properties.

The DOT breast imaging community has attempted to
reconstruct human tissues, but most of the initial efforts were
focused on improving the localization to obtain absorption
profiles of the object under study. It has become increas-
ingly important in recent years to develop mathematical and
computational methods for the simultaneous reconstruction
of several different optical quantitative features. Yedder et al.
[15] applied theDL algorithm to detect abnormality inside the
phantom with 240 measurements and a limited-angle view.
On the other hand, Sabir et al. [16] also applied Convolution
neural networks (CNNs) to experimentally estimate the bulk
optical properties of breast phantom. Feng et al. [17] and
jalalimanesh et al. [18] use single dense layers and convo-
lution layers to reconstruct absorption coefficients by con-
sidering scattering coefficients constant for single phantom
measurements.

When light traverses centimeters of tissue, it experiences
significant scattering. As a result of this scattering, tissues are
difficult to image in terms of structure and function; the light
that is re-emerging from the tissue has traveled a complex
path and any localizations of absorption or scattering or other
optical parameters can be lost. Based on themeasured signals,
DOT reconstructs the medium’s optical properties and the
spatial distribution of those properties. Researchers work-
ing in the area of medical image analysis have studied the
benefits of using DL algorithms in different ways to recon-
struct those properties. There have been several studies that
have explored how computer vision can be used to analyze
the outcomes of medical examinations, such as blood tests,
X-rays, ultrasounds, and magnetic resonance imaging (MRI)
[19]. In the DL, different tasks are performed, including
detecting tumors, localization of tumors, improving spatial
resolution, classifying cells, and detecting various diseases.
Since the advent of efficient computational infrastructures
such as graphics processing units (GPUs) and cloud com-
puting systems, DL has become increasingly important in
various fields [3], including image reconstruction in medical
diagnosis.

The inverse scattering problem has been addressed with
machine learning approaches in a few preliminary works.
Kamilov et al. [11] proposed the second beam propagation
method, in which the unknown photon flux is computed using
a backward-propagation algorithm, to compute a non-linear
inverse scattering solution for optical diffraction tomography.

By using a neural network to simulate the dynamical scatter-
ing of fast electrons, Broek and Koch [20] have developed an
earlier version of the beam propagation method. There has
been some evidence [16], [21] developing over the last few
years that convolutional neural networks are able to better
estimate bulk optical properties and increase imaging speed
compared to other existing methods, suggesting the potential
of using convolutional neural networks (CNN) in conjunction
with optical tomography. In another article [22], methods
for propagating light from angled sources in compressed
breast tissues characterized by subsurface inhomogeneities
were combined with novel inverse problems and deep learn-
ing methods. To detect and reconstruct test objects, a deep
learning algorithm, called U-Net, was developed.

C. CONTRIBUTION
The contribution of this paper can be summarized as
four-fold:

• We design two non-identical deep neural network algo-
rithms based on 1D and 2D convolution layers, followed
by the BatchNormalization (BN). Our experiments show
that the BN indeed has positive effects on localization
and reconstruction of optical properties.

• To the best of our knowledge, a deep learning net-
work based on the BatchNormalization Convolution
neural network BNCNN) layers and 1D CNNs has been
not used in varied medical image reconstruction most
specifically in DOT inverse problems to date.

• The simultaneous recovery of absorption and scattering
coefficients was done in the same model that trains the
network with FD data.

• Key challenges as potentially promising strategic direc-
tions for further study were discussed in order to deal
with sensor domain raw data instead of image domain
since most CNN models are based on image domain
input data.

D. ORGANIZATION OF THE PAPER
A complete schematic diagram of the presented work can
be seen in Figure 2. In the first section, we give a brief
overview of raw data (radiance data), followed by data col-
lection (simulation and experimental) along with presenting
a variety of essential imaging parameters; we then summarize
preprocessing for network input, either signal or image, later
we introduce two neural networks based on input data, and
finally, we explain how our proposed networks successfully
reconstruct optical properties, i.e., absorption and scattering
coefficients.

III. DATA PREPARATION
This study includes (a) numerical modeling for creating a
training dataset and (b) experimental verification for the
test. The former aimed to evaluate the learning of proposed
networks based on datasets to recover the absorption and
scattering coefficients of defects inside a biological phantom.
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FIGURE 2. Organization of the paper showing different sections.

The use of computational propagation models is essential
for understanding the physics behind DOT and simulating
DOT measurements but is also necessary to determine the
fluence rate corresponding to a particular reconstruction.
In practice, data collection from the forward computation
(fluence rate) for themodel development is the first step in the
DOT image reconstruction, and the inverse model follows it.
Afterward, the collected data is analyzed to uncover helpful
information and gain a deeper understanding of the data.

The latter was conducted to verify the reconstruction,
localization, and accuracy of optical properties based on
DL. An example of the 2-D circular phantom, including an
inclusion discretized by triangular meshes, light sources and
detector positions, and other factors, is shown in Figure 5.

A. NUMERICAL MODELLING FOR THE TRAINING,
VALIDATION, AND TEST DATASET
Reconstruction of an image using DNNs requires a large
dataset of pairs (X, Y), where X denotes radiance data and
Y denotes the predicted optical properties. X is obtained by
the forward computation based on the finite element method.
In radiance data (X), we have two kinds of data in the
different domains for human tissue the reduced scattering
coefficients are much higher than the absorption coefficients.
In the current study, we employed an in-house coded program
[23], [24] to generate a dataset by the TR method to simulate

FIGURE 3. Experimental platform with the measurement on
semi-ellipsoid phantom for the frequency-domain system.

FIGURE 4. Discretization of forward problem sample: A finite element
meshes, each triangle is an element and each vertex is a node.

FIGURE 5. Circular Phantom surrounded by source and detector position:
orientation of the sources(circles) and the detectors(squares) are shown
surrounding the circular object in an alternating pattern.

photon propagation inside circular phantoms with a diameter
of the range that varies from 60−150 mm; the absorption
and scattering coefficients of the phantom are in the range
0.005−0.03 mm−1 and 0.5-3 mm−1, respectively. The phan-
tom includes one or two inclusions associated with varying
radii. The radius of inclusions/tumors is randomly selected
from the range of 2.0 to 30 mm. The phantoms are discretized
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TABLE 1. Numerical dataset preparation.

into 8192 triangular meshes with 4425 nodes totally for
solving the forward model, an example of triangular meshes
i.e. 19 nodes and 24 elements are depicted in Figure 4. Our
dataset is sufficiently rich with over 90 different phantoms
ranging in size from 60 to 150mm and with frequencies
from 10 to 100MHz. We also include homogenous samples
in the dataset so our train network is capable of detecting
the absence of tumors. Table 1 describes the specifications
of numerical data set preparation, T, V, Te, homo, si, di,
s-d, partition, µa. µs′ denotes Training, validation, Testing,
Homogeneous, single Inclusion, two Inclusions, and Source-
detector position around the phantom, based on the number of
inclusions, absorption coefficient, and scattering coefficient
respectively.

The unstructured finite element mesh is mapped to a regu-
lar pixel grid of 2 × 64 × 64 to reconstruct absorption and
scattering coefficients.16 measurement points are assumed
to be evenly spaced around the circular circumference of
each image reconstruction for each of 16 excitation posi-
tions, resulting in a total of 16 × 15 = 240 amplitude
measurements and 16 × 15 = 240 phase measurements
(16 source positions and 15 detector positions). We generate
20,000 samples in total, where the distribution is 15,000,
4,000, and 1,000 samples used for training, validation, and
testing sets, respectively. The simulation test set is synthe-
sized by adding 40% additive noise to the network input
to mimic experimental data during boundary measurements.
In order to consider the effect of experimental errors, the
noise was added to the generated simulation data during data
modeling.

B. EXPERIMENTAL SETUP FOR PHANTOM DATASET (TEST
DATASET)
An experimental test dataset (phantom) was created by gath-
ering measurement data obtained previously through the
phantom test at the laboratory. Twelve samples were chosen,
each with 16 source locations and 15 detectors (Figure 6).
As tissue is a turbid medium with significant scattering, the
light follows a highly complicated path. As a result of a high
scattering level, not many photons are measured. Wemeasure
a few photons due to the presence of scattering. However,
the first arriving photons are assumed to have followed a

FIGURE 6. Illustration of source and detector positions around the
circular phantom.

FIGURE 7. Photograph of the cylindrical phantom system on the top of
the phantom a target suspension system has been incorporated into a
rotatable stage, which provided accurate manipulations during the data
collection procedures.

direct path (few scattering events) through the tissue. It is
needed to calibrate the input data from experiments before
employing them to test the trained deep learning model. The
calibrated data were computed accordingly, provided that
both homogeneous and inhomogeneous data are present from
the same phantom case.

Phantoms with cylindrical (Figure 7) or semi-ellipsoid
(Figure 3) provide an excellent solution to mimic
tumor/background contrast in the breast. Cylindrical and
semi-ellipsoid tissue-mimicking phantoms with varied inclu-
sions were prepared using silicone as the matrix, mixed with
carbon and titanium dioxide powders to adjust absorption
and scattering properties. Further, the calibration phantom
was designated and employed with the properties µa =

0.006 mm−1 and µs′ = 0.6 mm−1 to simulate human breast
tissue. 2 × 16 × 15 (optical properties’ detector positions’
sources positions) floating-point values are used as the input
data for each sample. These values are normalized log ampli-
tude and normalized phase. A 64× 64 grid of absorption and
scattering coefficients is generated as a result. Table 2 shows
the specifications of sample parameters presented in this
paper from the test dataset for further discussion afterward.
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TABLE 2. Parameter estimation for phantom test dataset.

IV. METHODOLOGY
We reconstruct optical properties using two non-identical
DNNs based on 1D and 2D convolution layers, and each layer
is followed by the BN [25]. The simultaneous recovery of
absorption and scattering coefficients has been made in the
same model that trains the network with FD input data. Since
most CNN models are based on image domain input data,
we also discussed key challenges for further study to deal with
sensor domain raw data (fluence rate/radiance data/boundary
measurements) instead of image domain.

In the rest of this section, we focus on iterative and non-
iterative computational models for the propagation of light in
diffusive tissue, which are helpful for DOT imaging, particu-
larly in frequency-domain imaging, in the presence of absorp-
tion as scattering coefficients in the particular parameter of
interest.

A. ITERATIVE RECONSTRUCTION
Most of the classic image reconstruction methods are itera-
tive. As the photon diffusion equation has a non-linear nature,
it generally requires a two-step procedure, including forwards
and inverses. In general, iterative reconstruction minimizes
a cost function based on two terms where the first term
describes the data(radiance) and the second term describes
a regularization term based on some preliminary informa-
tion. The DOT generates a map of spatial optical absorp-
tion and scattering coefficients using fluence measurements
based upon a forward model for describing photon prop-
agation. Several image reconstruction methods have been
developed depending on the light propagation model, mea-
surements, geometry, and optimization scheme [26], [27].
Iterative reconstruction methods need to improve the physics,
sensors, and noise statistics of an imaging system, increasing
cost and time.

In DOT, the inverse problem needs a solution where µ(r)
is required to be calculated based on the measurement data
8(r) and light source information. The process starts by
assigning some initial guess µ(r), then solving the forward
measurement to get the corresponding 8(r), then comparing
it with the measured 8(r) to check for some criteria. If those
criteria are met, then the computation is stopped and µ(r)
is obtained as a result. If they aren’t, then update µ(r) and
repeat the process until those criteria are met. The forward

FIGURE 8. Classical Method: An iterative reconstruction.

measurement can be solved either by analytic solutions or
numerical solutions. The inverse problem is solved by iter-
atively updating µ(r). This update depends on the compari-
son between computed 8(r) from the forward solution and
measured 8(r). Figure 8 illustrates a complete schematic
diagram of the iterative reconstruction process. Generally, it’s
described by the data-model misfit difference. This value is to
be minimized concerning unknown µ(r) until convergence is
reached. This minimization problem can be formulated with
either the linearmethod or the non-linearmethod. An iterative
reconstruction method i.e., TR is used to create a training
dataset.

1) TIKHONOV METHOD
There are multiple models to describe the heavily scattered
NIR light propagation in DOT among which the diffusion
approximation equation is widely used. Tikhonov method is
one of the most important classical methods for reconstruct-
ing optical coefficients in DOT. With the diffusion approxi-
mation equation, the relationship between the photon density
8(r) and optical property distribution µ(r) can be defined
based on equation 1. It is very likely that biological tissues
scatter photons in the forward direction, but due to the diver-
sity of scattering events, the scattering direction can also be
random. This problem belongs to a class of problems referred
to as inverse problems.

The behavior of interactions among a large num-
ber of photons in turbid media can be described by
the radiative transport or Boltzmann radiative transport

VOLUME 10, 2022 57855



N. Murad et al.: Reconstruction and Localization of Tumors in Breast Optical Imaging via Convolution Neural Network

equation (RTE) [28]:(
1
v
∂

∂t
+ �̂ · ∇ + µt

)
L(r, �̂, t)

= µs

∫
4π

f (�̂, �̂′)L(r, �̂, t)d�̂′ + Q(r, �̂, t), (1)

where v is the speed of photons in the medium, and L(r, �, t)
is the radiance (power per unit area and unit solid angle) as
a function of position r, in the direction � at time t. µt =
µs′ + µa is the optical transport coefficient. Here � is the
scattering phase function, and Q(r, �, t) is the radiant source
function. The left-hand side of Eq. (1) accounts for photons
leaving a small element in phase space, and the right-hand
side accounts for photons entering it. The radiative transport
equation can be simplified based on diffusion theory if the
scattering probability is much larger than that of absorption,
or µs′ � µa, with an isotropic source.

The complete RTE accurately describes light propagation
through tissue, but an analytical solution can be applied only
to a limited number of scenarios. Consequently, an approx-
imation is applied, the diffusion approximation, which is
an expansion of the RTE in first-order spherical harmonics.
Hence, the reduced scattering coefficient is assumed to be
larger than the absorption coefficient. To this extent, the
radiance is expressed as the weighted sum of the photon flux
rate, which is the integral of the radiance over a given solid
angle, and the current density is defined as the net flow of
energy per unit area per unit time. After several mathematical
manipulations, it is possible to simplify and rewrite the RTE
in diffusion form. Diffusion approximation to the transport
equation can also represent NIR photon movement in highly
scattering media, such as living tissue. Diffusion model data
are then derived from the frequency domain calculation as
below, i.e.(
−∇ · D(r)∇ +

(
µa(r)−

iω
c

))
8(r, ω) = Q0(r, ω), (2)

In this case, the isotropic source Q0, at a position r delivers
light through turbid media at source frequency. Additionally,
8 represents the fluence rate at position r observed at a
frequency ω, µa(r) is the optical absorption coefficient, and
D(r) denotes the optical diffusion coefficient which is defined
as the value of D(r) = 1/3(µs′ (r) + µa(r))
A diffusion-based approximation can be used if the scat-

tering probability is much greater than absorption within the
medium. For this approximation to work, the reduced scat-
tering coefficient must be small compared to the absorption
coefficient. This reduced value is equivalent to the scattering
rate needed to achieve a uniformly (or isotopically) random
scattering function in terms of scattering coefficients.

B. NON-ITERATIVE RECONSTRUCTION
This work focuses on the FD system, which uses a laser
source (a few MHz – 1 GHz) to irradiate the tissue and
measure the amplitude and phase of diffusing waves. Using

the additional information provided by the stage, it is possible
to measure both the absorption coefficient and the scatter-
ing coefficient simultaneously. By measuring the phase shift
(delay) and amplitude decay of the detected signal compared
to the incident one, it is possible to obtain information about
tissue’s absorption and scattering properties in FD. The use of
NIR light for DOT has several disadvantages, the most impor-
tant of which is the complexity and iterative nature of the
inverse problems involved in reconstructing the tomographic
image from the obtained data. The section below discussed
how inverse problems could be efficiently solved using non-
iterative DL networks.

1) BPNN
In previous studies, researchers have developed a non-
iterative reconstruction method based on Back Propagation
Neural Networks (BPNN) to reconstruct DOT images [17].
BPNN was performed using a circular phantom with a diam-
eter of 80 mm for 22000 samples, absorption coefficients
of 0.01 mm−1, reduced scattering coefficients of 1.0 mm−1,
containing 16 sources, and 16 detectors uniformly arranged
in its circumference. Diameters of 6, 8 characterize one inclu-
sion case, and 10 mm, while diameters of 8 mm characterize
two case studies. A constant reduced scattering coefficient
was assumed for inclusions and the background.

PBNN is limited to one particular phantom design dataset,
and it is not applicable for more than one phantom sam-
ple dataset (complex); the scattering coefficients, which are
kept constant, make it simpler to reconstruct images using
backpropagation neural networks. The scattering coefficients
in human tissue are higher than the absorption coefficients,
which makes it challenging to reconstruct both properties
simultaneously in one network since neural networks are
based on learning; therefore, it is challenging to train a
neural network to recover both properties simultaneously
when the input data is complex and in a completely different
domain (µs′ � µa ).

C. PROPOSED DOT RECONSTRUCTION FRAMEWORK
A significant challenge for developing non-iterative DNN
models is that the distribution of radiance data between each
layer changes during the training stage as the changes are
made to the parameters of the previous layer, which compli-
cates the process. Consequently, the training rate is lower, the
learning rates are slower, and the parameter values must be
initialized carefully, making it challenging to train non-linear
models. In this section, deep convolutional neural network
models are described based on 1D and 2D convolution layers.
The code used for training the neural network is available at
https://github.com/Nazish-Murad/1D-2D-BNCNN

1) 1D DATA IMAGE RECONSTRUCTION
The 1D data sequences (amplitude and phase) in DOT prob-
lems are collected from the forward model for image recon-
struction. However, it is time-consuming to convert the 1D
samples to 2D format. In addition, the original measured
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FIGURE 9. Detailed 1D convolutional layer structure and extracting
features.

signals may be polluted by fiber attenuation, photodetector
saturation, and fiber-subject contact problem, which result
in wrong features being created in the 2D maps. Moreover,
most simulation examples currently used in DOT imaging are
simple ones, which do not represent the powerful generaliza-
tion capabilities of network models. Therefore, the 1D-CNN
is suitable for analyzing sensor data over time as a CNN
with generalization capabilities. In order to reconstruct DOT
images, a 1D-CNN model with a structure of convolutional
layer, pooling layer, BN layer, and complete connection layer
is proposed. The 1D measurement data series of DOT can
be directly contributed to the 1D-CNN without 2D map
conversion. This allows mutually maintaining the correla-
tion of original signals to extract critical features for image
reconstruction.

This part of the paper utilizes a 1D-BNCNN algorithm to
achieve image reconstruction. As the collected signals are
subject to noise interference, the pooling operation of CNN
preserves the characteristics and removes redundancy. Each
input layer consists of 240 (16 × 15) values for phase and
amplitude, and each output layer consists of 4096 (64 × 64)
values for both absorption and scattering coefficients. The
convolutional, BN, and full connection layers are employed to
establish the relationship between inputs and outputs. In con-
volutional layers, padding = ‘‘same’’ and stride = 1 were
adopted. The seven convolutional kernels have sizes of 1 ×
480×64 (for the first six convolution layers), and 1×480×8
(for the final convolution layer) are employed. The numbers
of kernels among them are 64 and 8, respectively. The net-
work description is shown in Figure 10, and the details are
shown in Table 3. Considering the boundary measurements,
the network input size is 2×240 and considering the unknown
absorption.

Furthermore, for scattering coefficients, the network
output size is 2×64×64. With 1-D convolutions, we extract
the features and their strength from 1-D data (boundary
measurements). Convolutional layers are more memory effi-
cient than fully connected ones, as fewer parameters need
to be learned; therefore, the model is less likely to overfit
data (Figure 9). During the training phase, the network for
the numerical study was trained for 50 epochs at a learn-
ing rate of 0.0001; further, a batch size of 32 was chosen
for the network. The training process takes approximately
five seconds per epoch (5 × 50 = 250 seconds for full
training).

FIGURE 10. The layout of the Proposed 1D BNCNN showing layers
structure.

TABLE 3. Selective hyperparameters of BPNN, 1D-BNCNN, and
2D-BNCNN for training.

2) 2D DATA IMAGE RECONSTRUCTION
In the first step, the ‘‘noisy’’ simulated data is supplied to
the 2D CNN, convolutions are performed with seven layers
of 3 × 3 kernels, and both the same padding and stride are
set to 2 × 2, preserving as much spatial extent of the input
as possible. In addition, the convolutional layers comprise
the same number of filters followed by BN layers. Two fully
connected layers consisting of 64 and 8192 hidden units
follow the convolution-pooling layer. An activation function
and BN layers follow every convolutional and linear layer.
2D convolution layers followed by two fully connected layers
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FIGURE 11. 2D BNCNN building block showing the collection of different
layers and flow of data transformation.

and BN layers mimicking 2D data are generated (can be seen
in Table 3). Final results are computed using soft plus. The 2D
network model detected the anomalies accurately and proved
that acceptable results could be attained using a 2D form of
optical measurements. Figure 11 provides the complete 2D
BNCNN model description.

V. RESULTS
This study examines the effects of the DL networks on
DOT by training several model architectures. We proposed
and developed that reconstruction method because classi-
cal regularization-based algorithms tend to produce over
smoothed images, which leads to poor image quality and
inaccuracies in the reconstruction process. This framework
utilizes two networks to improve the results and the loca-
tion of tumors from DOT research since it prevents model
divergence and facilitates faster convergence through higher
learning rates.

The following subsections provide qualitative analysis of
reconstructed optical properties and more details for ran-
domly selected samples from simulation and phantom test
datasets.

A. PERFORMANCE ANALYSIS
It is challenging to compare reconstruction methods since
there are no clearly defined tools to assess the quality of
such a non-linear reconstruction problem, but the relation-
ship between inclusion size and its contrast can be detected.
A contrast resolution is defined as the resolution measure-
ment based on the contrast of optical property values of
inclusions relative to the background. Each corresponding
image can be visualized as a CSD resolution map. Over
the region of interest, contrast resolution and size resolu-
tion are calculated to analyze the quantitative information of
the reconstructed images [29], [30]. It is based on accuracy

and density/saturation and has the benefit of being readily
applied. According to this definition, the contrast resolution
refers to a comparison between a sample’s optical property
values and those of the surrounding background, i.e.,

R2D0cont =

(
maxincl/min

back
)
Recon(

maxincl/min
back

)
Orig

, (3)

and

R2D
cont
=

{
2− R2D0cont , if R2D0cont > 1
R2D0cont , otherwise

, (4)

where ¯max and m̄in represent the average of maxima and
minima over all of the specified inclusion zones, due to
the potential of some oscillations in these regions So that
it matches the [31] concept of contrast for assessing the
visibility of a structure, the above equation is further changed
as follows:

R2D0cont =

((
maxincl −min

back
)
/min

back
)
Recon((

maxincl −min
back

)
/min

back
)
Orig

≡
(1I/ 〈I 〉)Recon
(1I/ 〈I 〉)Orig

≡
CRecon

COrig
, (5)

where C and I denote contrast and intensity, respectively.
Moreover, to avoid probable outlier values that act as noise
in images, the percentile values instead were employed; for
instance, ¯max and m̄in were replaced by the 90th and the 10th

percentiles. Additionally, the size resolution was defined as

R2Dsize =

√√√√{[1− (RMSE incl)Recon_to_Orig(
RMSE incl

)
Orig_to_Base

]
R2D
cont

}

≡

√
R2D0size · R

2D
cont
, (6)

The RMSE (root mean squared error) is determined over
the whole 2D imaging domain/region of interest, between
the original (specified) value of inclusions and the base-
line (reconstructed) value, to evaluate the resolution of overall
inclusion sizes. For the background optical coefficients, the
baseline values were utilized. As a precaution against size
overestimation, the contrasting resolution is included in the
size resolution. During the evaluation process, we combined
the two measures of contrast and size to a single numeri-
cal CSD analysis, which allowed us to compare the results
between the three reconstruction methods, i.e.

R2Dcontrast−size−det ail =
√
R2Dcont · R

2D
size, (7)

The CSD is used to cope with the drawbacks of only contrast-
detail analysis. The integrated contrast and size resolution
evaluate both the contrast precision and the size accuracy for
the image reconstruction scheme. It is worth noting that the
measure emphasizes accuracy to prevent overestimation.
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FIGURE 12. Image reconstruction of the one-inclusion phantom case (#M4) (upper: µa images, lower: µs’ images) (a)
ground truth of the designated phantom, and the image reconstruction through (b) BPNN: Back propagation neural
network, (c) Classical method tikhonov regularization(TR), (d) 2D BNCNN: 2 Dimensional batchnormalization
convolution neural network, and (e) 1D BNCNN: 1 Dimensional batchnormalization convolution neural network.

TABLE 4. Parameters and other specifications of test dataset.

B. NUMERICAL AND PHANTOM RESULTS
Two random case studies (Table 4) are carried out from
simulation and phantom test datasets. As a demonstration
of the proposed methods, a breast-like phantom (circular
phantoms only) was examined under different conditions to
determine how it improves both resolution and contrast when
reconstructing an image via the DL approach. The images
were evaluated using the CSD analysis, which characterizes
spatial resolution limits, signal-to-noise limits, and the trade-
off between contrast and size of objects. Using a thresh-
old (contrast-to-noise ratio = 0.3) in images, the minimum
acceptable noise level is approximated, which can be used to
measure the human perception of objects and the hemoglobin
concentration. For classical method comparison, we use the
results of the Tikhonov regularization method [29], and for
learning method comparison BPNN is used. The same net-
work has been considered for our dataset used for the BPNN
method.

Figures 12 and 14 can be considered as two rows (upper
row for absorption coefficient recovery and the bottom row

for scattering coefficient recovery) and five columns for all
other methods in presented case studies of a single as well
as two inclusions. The ground truth images are shown in
the first column; the reconstructed images using Tikhonov
regularization, 2D BNCNN, 1D BNCNN, and BPNN are
given in the second, third, fourth, and fifth columns, respec-
tively. In Figures 12 and 14, results of localization of tumors
using 1D corresponding circular profiles through the centre
of inclusions and along the x-axis for absorption (upper
row) and scattering (bottom row) coefficients are shown.
The green solid lines denote all methods reference solu-
tion/ground truth. The blue triangle solid lines represent the
1D BNCNN method, while purple diamond-solid lines rep-
resent the results of 2D BNCNN. The comparison is made
for both classical and learning-based methods, where black
dotted lines and dash-dot red lines denote the Tikhonov
regularization and BPNN solutions respectively. Moreover,
R2D
cont. denotes 2D contrast,Ro2Dsize initial contrast, R2D

size 2D
size, and R2D

csd contrast size resolution over the region of
interest, respectively. The sizes and the actual values of both
optical properties for each case are shown in Table 4.

1) PHANTOM CASE M4 STUDY
In this case study, we use a sample from the phantom test
dataset composed of 5-mm diameter inclusion located at
10 mm off the center phantom(left) as an example for discus-
sion. From the second to the last column of Figure 12, we can
see that the most values of recovered optical properties using
TR are merged with the background (smooth edge problem)
compared to ground truth, the recovered optical properties
using 1D BNCNN and 2D BNCNNmatched with their actual
values. Compared with Figure 12 (b) and (c), the results from
the proposed 1D BNCNN in Figure 12 (d) and (e) outperform
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FIGURE 13. 1D Circular profile through center of inclusion of reconstructed images from the phantom case (#M4) of Fig. 12, upper row for
absorption and lower for reduced scattering coefficients.

those from TR and BPNN, especially for the one inclusion
case from the experiment dataset (lab/phantom data). It is
to be noted that a higher contrast was reconstructed using
1D BNCNN (for both optical properties) and 2D BNCNN
(capture absorption successfully while scattering coefficient
has some edge smoothness problems). Compared to the pre-
vious simulation results using one inclusion, 2D BNCNN
has offered more improvement in contrast and size than
the other reconstruction algorithms. The corresponding 1D
profiles through the centers of the inclusions and along the
x-axis are plotted for comparison of the four schemes as
shown in Figure 13. One can easily observe that a good
agreement is found between 1D BNCNN and 2D BNCNN
for single inclusion cases. It is observed that for the phantom
experiment dataset, two inclusions reconstruction is difficult
due to the complex structure of contrast and background,
and our proposed models are simple, which can be seen
in the scattering coefficient plot of 2D BNCNN presented
in Figure 13. Taking BPNN into consideration, it can be
observed that it is not performing well (Figure 12). However,
1D BNCNN is more efficient and accurate for localizing
tumors in breast imaging when phantom data is considered.
The performance analysis based on CSD comparisons for the
one inclusion from Figure 12 is listed in Table 5. The contrast
and size resolution for the displayed sample in both schemes
are presented in Table 5. It can be observed that proposed
networks produce an excellent resolution. Our experiments
show that the 1D has positive effects on localization and
reconstruction of optical properties. The proposed networks
were validated by considering the classical method and learn-
ing method already available in the recent literature. The
test set results of our networks were compared with those
obtained from the TR and BPNN and the reference solutions.
Both networks’ numerical and phantom results were found

TABLE 5. Individual case performance analysis based on CSD resolution
(phantom case study).

in good agreement with TR and those learning approaches
available in the literature.

2) SIMULATION CASE 12238 STUDY
Figure 14 illustrates the ability to recover images with two
inclusions using one iterative and three non-iterative meth-
ods. Here, we present two inclusions sizes of 12.15mm
(top right) and 2.87mm (bottom left) in a radius, phantom
diameter 87mm case study from the simulation test dataset.
Both inclusions are reconstructed and localized successfully
via proposed networks without merging (smooth edge) to the
background. Both inclusions can be observable and recon-
structed with their centers positioned correctly for both pro-
posed algorithms. Despite this, it is possible to determine
the inclusions’ shape and edges using 1D BNCNN and 2D
BNCNN even when the second inclusion is too small, i.e.
2.87mm. Both the networks are found well-balanced and
preserve the edge smoothness. However, the scattering and
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FIGURE 14. Image reconstruction of two-inclusions simulation case (upper: µa images, lower: µs’ images) (a) ground truth of the designated
phantom, and the image reconstruction through (b) BPNN: Back propagation neural network, (c) Classical method tikhonov
regularization(TR), (d) 1D BNCNN: 1 Dimensional batchnormalization convolution neural network, and (e) 2D BNCNN: 2 Dimensional
batchnormalization convolution neural network.

absorption coefficients of inclusions with small radii were
underestimated, and the images could not be recovered by
Tikhonov’s regularization-based reconstruction method and
BPNN.

A good agreement with a reference can be seen in the
reconstruction of both properties. However, both optical coef-
ficients give better localization (as shown in Figure 15) for
both proposed networks. In contrast, BPNN performs very
poorly (a straight line) compared to our proposed network and
TR. This shows that BPNN can only reconstruct simple case
studies (absorption coefficient only) and will not perform
well for complex data (Figure 14). The DL networks can
capture one and two inclusions in the 1D solution profile.
However, the 2D BNCNN captures the edge more sharply
and more efficiently. The CSD for DL in Table 6 concerning
reference solution, classical method, BPNN. The quantitative
results are summarized and will be discussed in later sections.
Compared with Tikhonov regularization and BPNN, the val-
ues from analysis detail of optical properties obtained using
1D BNCNN and 2D BNCNN are significantly higher and
greatly improved (contrast-to-noise ratio= 0.3), which shows
that 1D NN and 2D BNCNN can yield higher reconstruction
resolution accuracy.

VI. DISCUSSION
A high level of distortion that results from absorption
and scattering makes image reconstruction extremely chal-
lenging. A scattering of highly scattered light results in
the detection of a blurred image of the underlying struc-
tures. Consequently, it is challenging to acquire quantitative

TABLE 6. Individual case performance analysis based on CSD resolution
(simulation case study).

information on structural and functional characteristics
within DOT. The location of the reconstructed object is pretty
accurate after we have solved the inverse problem and pre-
processed the data. It is important to note that the MSE is
calculated concerning the intensity of each pixel within the
image. TheMSE of the inverse problem is very low due to the
background noise and apparent mismatches at the boundary.

Additionally, one should note that although the location
is reasonably accurate, the optical property reconstruction
is not good in TR and BPNN due to the different contrast
between the ground truth and the reconstructed image. Vari-
ous techniques have been proposed in the past to overcome
these challenges, with varying success. Toward the objec-
tive of quantitatively assessing these reconstructed images
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FIGURE 15. 1D Circular profile through center of inclusion of reconstructed images from the simulation case of Fig. 14 upper row for absorption
and lower for reduced scattering coefficients.

from using DNN, two measures (contrast and size resolution)
defined in the previous section are calculated over the ROI.
The contrast resolution focuses on determining the difference
between the optical properties of inclusions as compared to
the background region, whereas the size resolution focuses on
the area of the inclusions compared to the total area.When the
reconstructed result is identical to the expected, the resolution
value equals one accordingly.

Based on the simulation and phantom experiments results,
we can say that the optical images reconstructed by a learning
reconstruction technique strongly depend on the selection of
convolution layers, especially when the inclusions are slight.
The absorption and scattering coefficients from breast phan-
toms were reconstructed in the study using the architecture
based on TR, BPNN, and deep neural networks. Implement-
ing a neural network architecture for the image reconstruction
aims to visualize and improve the spatial resolution of the
reconstructed absorption and scattering-coefficients images
of breast phantoms. A fast reconstruction method based on
the DL approach is presented to recover the absorption as
well as scattering coefficients of the biological phantom.Here
we use a DOT scanning system, as shown in the previous
section, with one source and one detector at 16 circular
uniformly distributed locations, i.e. 240 (16 × 15) measured
data, which reduces the cost of instrumentation, much lower
than that of a typical DOT scanning system. The compu-
tational complexity of a 1D BNCNN under similar condi-
tions (the same configuration, network, and hyperparameters)
is substantially lower than that of a 2D BNCNN or com-
pact design. Compared to the same number of layers in a
1D BNCNNmodel, a 2D BNCNN takes longer to train than a
1D BNCNN.

A. CONTRAST SIZE DETAIL ANALYSIS
In order to assess the imaging performance, a CSD analysis
has been performed to determine the minimum detectable
contrast level for inclusions. The proposed network can have
a better contrast precision and size accuracy for the image
reconstruction over TR and BPNN while the higher number
of samples passes the threshold. The deep learning tech-
nique beat the other approaches by determining validation
measures and contrast and size resolution. Compared with
other regularization-based algorithms, we find that the pro-
posed algorithms provide significant improvements in image
accuracy and quality compared to the TR and BPNN-based
algorithms. Table 5 and Table 6 summarize the calcula-
tion of the two measures over a 2D ROI for all images in
Figures 12 and 14, respectively. Table 6 simulation dataset
and Table 5 phantom dataset performance show that the con-
trast and size are significantly improved by the reconstructed
optical property images derived from 1D/2D BNCNN.

B. CLASSIC AND LEARNING METHOD COMPARISION
In our work, we also compare the proposed techniquewith the
widely used TR and BPNN [17] in the same conditions. Our
results (Figures 12 and 14) show that the suggested approach
produces tremendous progress in accuracy and image quality
compared to the TR- and BPNN-based approaches. Numeri-
cal simulation experiments proved the improved performance
of the suggested approach. We present in Tables 5 and 6 the
results of qualitative analyses conducted when comparing the
tumor and background and determining the significance of
DL in DOT.

The number of samples is improved in resolution (Table 5),
which indicates that the recovered images are nearly the
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TABLE 7. Batch normalized network comparison; p_set: phantom dataset, s_set : simulation dataset.

same as the ground truth image. Similar results can also be
observed in other cells in Table 6. These results show that 1D
BNCNN and 2DBNCNN outperform TR and BPNN in terms
of higher accuracy and better image quality.

C. EFFECT OF NORMALIZATION DURING TRAINING
Batch Normalization (BN) [25] matches the current state
of the art on different challenges by reducing the internal
covariate shifts within the model and speeding up the learning
process significantly. The BN can be seen as an additional
layer, in the same way as fully connected or convolutional
layers, that can be inserted into the model architecture. Deep
architectures have been notoriously slow to train because
of their internal covariate shift in BN layers. In the case of
DOT image reconstruction, the use of batch-normalization
layers improves the resolution and localization of lesions.
There are several possible causes of covariate shift. One is the
difference in distribution between the training and test sets.
During the training phase, the distribution of activation across
layers changes due to the changes in network parameters
known as the internal covariate shift. One possibility for a
covariate shift in DOI results from different distributions of
input signals (both amplitude and phase) as well as different
sets of training (from simulation with employed artificial
noise added) and testing (both simulation and phantom exper-
iments). As a result, batch-normalized models achieve better
validation and test accuracies across all test datasets.

The CSD analysis is carried out to check the effect of
batch normalization layers for the resolution of image recon-
struction of optical properties of the breast. By comparing
batch-normalized and non-normalized networks, the effects
of normalization on the training are investigated. To reduce
expensive computations of covariance matrices, we normal-
ized each input feature to have a zero mean and a standard
deviation across each layer. It can be observed in Table 7
(simulation test samples and experimental test samples) that
more samples pass the threshold in the presence of BN layers.

Comparing the model for batch normalized layers to other
learning models, including BPNN, our model still success-
fully predicts most optical characteristics.

VII. CONCLUSION
The first 1D-CNN architecture for solving an inverse problem
in DOT to reconstruct both optical properties in a frequency
domain system using 1D data has been experimentally
demonstrated. This paper has developed an excellent resolu-
tion, simple to implement deep learning networks for local-
izing and reconstructing optical properties in simulations
and the phantom case study. According to our results, the
proposed networks can reconstruct good-quality imagesmore
effectively than other optimization-based methods (TR). It is
noteworthy that the method trained on simulated data is
also able to reconstruct images from actual experimental
data (phantom) successfully. An essential advantage of the
proposed approach is that image formation is fast compared
to both iterative methods of Tikhonov regularization and non-
iterative methods of BPNN reconstruction. However, it was
observed that 1D BNCNN gives better localization and res-
olution of tiny inclusions than the 2D BNCNN in phantom
case studies. At the same time, 2D BNCNN performs low for
phantom cases in single inclusion and two inclusions.
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