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ABSTRACT Cryptocurrency has recently attracted substantial interest from investors due to its underlying
philosophy of decentralization and transparency. Considering cryptocurrency’s volatility and unique charac-
teristics, accurate price prediction is essential for developing successful investment strategies. To this end,
the authors of this work propose a novel framework that predicts the price of Bitcoin (BTC), a dominant
cryptocurrency. For stable prediction performance in unseen price range, the change point detection tech-
nique is employed. In particular, it is used to segment time-series data so that normalization can be separately
conducted based on segmentation. In addition, on-chain data, the unique records listed on the blockchain that
are inherent in cryptocurrencies, are collected and utilized as input variables to predict prices. Furthermore,
this work proposes self-attention-based multiple long short-term memory (SAM-LSTM), which consists
of multiple LSTM modules for on-chain variable groups and the attention mechanism, for the prediction
model. Experiments with real-world BTC price data and various method setups have proven the proposed
framework’s effectiveness in BTC price prediction. The results are promising, with the highestMAE, RMSE,
MSE, and MAPE values of 0.3462, 0.5035, 0.2536, and 1.3251, respectively.

INDEX TERMS Blockchain, cryptocurrency, Bitcoin, deep learning, prediction methods, change detection
algorithms.

I. INTRODUCTION
With the advent of blockchain technology, there has been
significant change in the form of currency as well as transac-
tions. From its emergence to the present, currency’s core role
has been a means of payment as a medium of value delivery.
This function relies on trust in the currency that is guaranteed
and stabilized by a central agency (e.g., government, bank).
However, central authorities have a critical shortcoming;
there is the possibility of depravity that could risk transac-
tion reliability. The blockchain, an open, anti-counterfeiting,
and tamper-proof ledger, has created a currency called cryp-
tocurrency. Based on blockchain technology, cryptocurrency
can be trusted without the guarantee of a central authority,
thus breaking away from the traditional relationship. Cryp-
tocurrency that guarantees decentralization and transparency
presents the possibility of a monetary system that relieves the
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risks of fraud and protects privacy [2]. The dominant cryp-
tocurrency, Bitcoin (BTC), is an exemplary cryptocurrency
in terms of its difference from existing traditional currencies.
BTC is limited to 21million issuances, resulting in practically
no inflation that is caused by a central government’s currency
printing [3]. This strengthens the meaning of decentraliza-
tion, leading cryptocurrency to function not only as a method
of payment but also as a means of value storage. In fact,
in addition to traditional investment vehicles, investing in
cryptocurrencies is currently deemed one of the most effec-
tive ways to increase asset value.

With market capitalization at all-time high, BTC has been
ranked in the top 10 of entire assets, which shows people’s
overwhelming interest in cryptocurrency. However, cryp-
tocurrency differs from traditional financial products in sev-
eral aspects. First, it could simultaneously function as value
storage, method of payment, and platform. In addition, sev-
eral types of cryptocurrencies, including BTC, do not nec-
essarily correlate with traditional assets, such as gold and
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crude oil, and even exhibit dissimilar behavior compared to
stocks [4]. Unlike traditional assets (e.g., gold, stock, fiat
money, etc.), cryptocurrency is intangible, volatile, and lacks
an entity of ownership (i.e., corporation). Another distinc-
tive characteristic of cryptocurrency is the existence of on-
chain data, which contain information acquired from the
blockchain [6]. On-chain data consist of valuable information
regarding the blockchain network, including transactions,
block size, and mining difficulty. Thus, existing traditional
asset classification criteria and indicators cannot be directly
applied to cryptocurrency. Considering the aforementioned
points, a novel approach that reflects cryptocurrency’s dis-
tinct characteristics is imperative for successful applications.

Accurately predicting cryptocurrency price forms the basis
of successful investment, as it helps to establish risk man-
agement strategies and optimization methods that consider
uncertainty and the possibility of loss. Furthermore, in order
to achieve stability and maximum profits, investment strate-
gies like portfolio management could also be reinforced by
accurate price prediction [7]. However, since the market has
a dynamic structure dominated by complex factors, it is diffi-
cult for investors and stakeholders to successfully make prof-
its. Therefore, developing an accurate price prediction model
is essential for establishing profitable investment strategies.

Recently, due to their ability to model non-stationarity
in time-series data (unlike traditional approaches), machine
learning methods have been widely used in predicting prices
for financial products [8]. However, this work has found
that there exist two issues in the literature. The first issue
is due to a recent upsurge and plummet in cryptocurrency
prices. As shown in Fig. 1, since the price moves in an unex-
pected range that has been previously unseen, constructed
machine learning-based models are not able to predict future
prices accurately. This problem does not apply only to cer-
tain prediction algorithms but could affect practically every
prediction model constructed based on price data within a
moderate range. This work therefore proposes a novel method
to address the aforementioned problem using a change point

FIGURE 1. Price of Bitcoin (BTC).

detection (CPD) technique. In particular, during training,
input data are segmented with CPD so that each segmented
data has its own statistical characteristics. Based on segmen-
tations, data are normalized separately to effectively reflect
severe fluctuations. This has proven to be a practical solu-
tion to the first issue by the experiments in this work. The
second issue that this work addresses for improvement of
the cryptocurrency price prediction literature is that many
existing works utilize only trite variables, such as historical
prices and social media data. This work suggests using exten-
sive blockchain-associated variables to enhance the ability of
price prediction approaches. The proposed framework uses
on-chain data, which are the most important factors for cryp-
tocurrency price prediction, as independent variables. The
contributions of this work to the literature are as follows:

1) Extensive blockchain-associated on-chain data are col-
lected and used for cryptocurrency (i.e., BTC) price
prediction.

2) Input variables are categorized into multiple groups
based on domain knowledge and are utilized separately
within a proposed prediction model.

3) For stable price prediction performance using non-
stationary time-series data, the CPD technique is
employed.

4) A novel prediction method dubbed SAM-LSTM is
proposed; this method uses multiple LSTM modules
for different input variable groups and a self-attention
mechanism for extracting rich information immanent
in on-chain data.

An overview of the proposed framework for predicting
the price of cryptocurrencies is illustrated in Fig. 2. The
remainder of the paper is organized as follows. Section II
discusses existing literature related to this work. Extensive
data collection and selection, as well as detailed descriptions
of methods used in the proposed framework, are illustrated
in Section III. In addition, experiments with various setups
based on real-world data, including on-chain data, and the
corresponding results are detailed. The conclusion is drawn,
and future works are illustrated in Section V. A summary of
acronyms used in this work is presented in Table 1.

II. PRELIMINARIES
This section discusses preliminary materials, including exist-
ing works related to blockchain technology, cryptocurrency,
and price prediction. In particular, existing cryptocurrency
price prediction approaches based on machine learning and
deep learning methods are discussed in depth. Additionally,
applications for the CPD technique, an essential component
of this work’s proposed framework, are illustrated.

A. CRYPTOCURRENCY
The first blockchain technology-based cryptocurrency that
functions as an electronic peer-to-peer transaction system
without a trusted third party was allegedly proposed by S.
Nakamoto in 2009 [9]. The underlying philosophies of
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FIGURE 2. An overview of the proposed price prediction framework.

TABLE 1. Summary of acronyms.

cryptocurrency are threefold: safety, decentralization, and
blockchain transparency. In the blockchain, each block con-
tains transaction information that is distributively stored
using its own hash value to prevent fraud or infringe-
ment [10]. Nodes, which are participants in the blockchain
network, act as financial institutions so that the existence
of a central agency is no longer necessary. The information
recorded in each block is transparently disclosed. These are
called on-chain data and are applied as indicators. Due to
these innovative characteristics, cryptocurrency has gained
much attention from the public, and many cryptocurrencies
have been created.

Many cryptocurrencies that exist today have various pur-
poses and usages depending on type. In all, BTC is the
most popular cryptocurrency in terms of market capitaliza-
tion. Although originally intended as an alternative payment

method, BTC is now considered a speculative asset due to
its high volatility and limited issuance, which make it unsuit-
able for use as a real currency [11]. Similar to BTC, Lite-
coin (LTC) can be used for transactions and also functions as
a means of value storage due to limited issuance. In contrast,
cryptocurrencies that control volatility to faithfully perform
their role as ameans of payment, called stable coin, exist [12].
The most famous stable coin with the largest market capital-
ization is Tether (USDT). It is issued oneUSDT per dollar and
is stabilized through an arbitrage mechanism [13]. In addi-
tion to these cryptocurrencies, Ethereum (ETH) provides an
ecosystem where decentralized applications (Dapp) can be
implemented based on the blockchain [14]. Ripple (XRP)
has a dissimilar purpose in the sense that it acts as a bridge
between cryptocurrencies, whose transactions are not active,
in a centralizedmanner [15]. Although these cryptocurrencies
(i.e., BTC, LTC, USDT, ETH, XRP) have different inherent
characteristics, they share coherent relationships that affect
each other’s prices. In particular, all cryptocurrencies affect
the price of BTC in both direct and indirect manner.

B. PRICE PREDICTION
Macroeconomic variables, such as GDP, interest rate, and
inflation rate, are considered important factors that influence
the prices of conventional assets, such as gold, stock, and fiat
money [5], [16], [17]. These indicators are commonly used
in asset pricing and price prediction tasks. Another variable
widely used in predicting conventional asset value is technical
indicators, such as historical value, candles, trading volume,
and moving average [18]–[20]. This work also utilizes some
of the aforementioned factors, such as transaction sizes, trans-
fer volumes, and market capitalization, which are associated
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with the price of cryptocurrency that exists in the on-chain
data.

However, there are unique indicators for each asset based
on distinctive characteristics used for price prediction. For
instance, in the case of gold, scarcity, profitability, and polit-
ical anxiety are considered in price prediction, since these
factors affect demand and supply, which determine market
equilibrium [21]. Stocks also have exclusive factors, such
as income statements, financial statements, and cash flow
statements, that are used for price prediction. In addition,
factors like insider ownership and investor protection are
also exploited [22]. Exogenous factors derived from social
media (e.g., Twitter) data have also been utilized for stock
price prediction [23]. In the case of the valuation of fiat
money, the country’s financial situation, monetary policy, and
economic power are price determinants [24]. As shown in
the conventional asset examples, to predict the price of cryp-
tocurrency, a unique set of influencing factors should be taken
into consideration. To this end, this work utilizes on-chain
data that consist of factors that comprehensively reflect the
ecosystem, market, and participation of cryptocurrency.

C. CRYPTOCURRENCY PRICE PREDICTION
Several recent works on cryptocurrency price prediction,
especially BTC, have used various methods. In order to deal
with cryptocurrency prices that have enormous fluctuations
and non-stationarity, a dominant branch of research is based
on machine learning methods [25], [26]. In particular, not
only conventional machine learning algorithms but also more
sophisticated methods, such as reinforcement learning (RL)
and deep learning (DL)-based approaches, have been pop-
ularly utilized for handling the volatility of cryptocurrency
prices.

Traditional machine learning algorithms, such as linear
regression (LR) and support vector machine (SVM), use
the sliding window data technique to predict daily BTC
prices [27]. Chen et al. also suggest employing machine
learning algorithms that use high-dimensional features to
classify daily price movements [28]. Rebane et al. compare
the ability of conventional auto-regressive integrated mov-
ing average (ARIMA) models and recurrent neural network
(RNN)-based seq2seq models to predict prices and prove
the superior efficacy of neural network-based models [29].
Multi-layer perceptron (MLP) and long short-term mem-
ory (LSTM) are also used to predict daily cryptocurrency
prices [1]. Sin et al. employ an ensemble approach based
on multiple MLP modules to classify BTC price move-
ments [30]. However, MLPs used in existing works do not
fully utilize the sequentiality of time-series data and thus are
limited in the sense that only a fixed number of the data’s days
can be used (e.g, 7 days) to predict prices. For predicting BTC
prices, neural networks that handle time-series data well, such
as RNN and a convolutional neural network (CNN), have
been most frequently adopted. Lahmiri and Bekiros address
the chaotic dynamics of cryptocurrency markets and show
that LSTM has greater predictability than standard neural

networks (e.g., GRNNs) [31]. BTC price prediction has been
conducted by machine learning algorithms and RNN-based
methods that only use historical price data, such as open
price, close price, and volume [32]. Patel et al. exploit LSTM
and gated recurrent unit (GRU)-based prediction models in a
hybrid scheme that especially focuses on predicting the price
of LTC and Monero [33]. Awoke et al. also use LSTM and
GRU to predict BTC price [34].

In addition to only using price data, other exogenous
factors that directly and indirectly influence cryptocurrency
prices have also been utilized for prediction. Biswas et al.
use an LSTM-based prediction model that uses exoge-
nous factors, including stock market capitalization, vol-
ume, distribution, and high-end delivery, to predict BTC
prices [35]. Bai et al. suggest using other cryptocurrencies’
price data to classify BTC price movement [36]. In addi-
tion, Alessandretti et al. introduce a machine learning-based
prediction framework based on the daily price data of mul-
tiple cryptocurrencies [37]. Using a single-layer feedfor-
ward network (SLFN), Kurbucz utilizes transaction network
data for BTC price movement prediction [38]. Like the
above-mentioned works that take the joint interdependence of
cryptocurrencies into account, this work also considers awide
variety of exogenous factors for price prediction. In particu-
lar, this work’s proposed framework utilizes various on-chain
data, which are associated with the blockchain technology
that underlies cryptocurrencies, in a novel way.

Other works utilize social media data for price predic-
tion. Mohapatra et al. introduce a real-time cryptocurrency
price prediction platform with Twitter data that use senti-
ment analysis techniques based on natural language pro-
cessing (NLP) algorithms [39]. Wolk proposes using various
machine learning algorithms, such as support vector machine
(SVM), decision tree (DT), and gradient boosting, for social
media sentiment analysis-based cryptocurrency price predic-
tion [40]. Based on Twitter data and Google trends, his work
discusses social media’s impacts on major cryptocurrency
prices. The same user-based data types have been used with
various deep learning methods to predict short-term price
fluctuation [41]. Aggarwal et al. compare several neural
network-based models, such as GRU, LSTM, and CNN,
with varying hyperparameters in price prediction results [42].
Socioeconomic factors, including Twitter and gold price, are
also utilized.

Shahbazi and Byun propose an RL-based price prediction
for cryptocurrencies (e.g., LTC, Monero) [43]. In addition,
inverse RL with agent-based modeling (ABM) predicts BTC
price movements [44]. In their work, rather than modeling
the relationship between BTC price and input variables, the
synthetic behavior data of agents in a simulated market is
modeled. Jiang and Liang use a CNN with the RL algorithm
for optimal portfolio management [45]. Given the histori-
cal price data of cryptocurrency, the proposed model out-
puts weights for the portfolio given feasible sets. Betancourt
and Chen also suggest using deep RL for optimal portfo-
lio management with a dynamic number of cryptocurrency
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assets [46]. Schnaubelt uses RL methods to optimize cryp-
tocurrency order placement so that the model learns optimal
placement strategies that resemble realistic policies in estab-
lished markets [47].

D. CHANGE POINT DETECTION (CPD)
CPD is a technique used to detect abrupt and significant
changes in the behavior of time-series data [48]. There is
a growing need to find ways to segment and detect edge,
event, and anomaly in various application domains, such as
finance [49], [50], genomics [51], speech recognition [52],
and monitoring systems [53]. As the need for recognizing
notable patterns in large time-series data increases, multiple
works on CPD that consider computational complexity (i.e.,
time, cost) for practical applications have been conducted.
For instance, binary segmentation (BS) [54] and variations
of exact search algorithms based on dynamic programming
(DP), such as the segment neighborhood method [55] and
optimal partitioning algorithm [56], are designed to mini-
mize cost function over the numbers and locations of change
points. Among several existing CPD algorithms, pruned exact
linear time (PELT) is the most widely used algorithm [57].
PELT not only efficiently reduces computational costs by
adopting a pruning step that removes ineffective potential
change point values but also achieves higher segmentation
accuracy than other CPD methods [57], [58]. PELT’s basic
objective function is provided in (1).

m+1∑
i=1

[C(x(τi−1)+1:τi )]+ βf (m). (1)

where:
m: number of change points
τ1:m = (τ1, . . . , τm): timestamps (i.e., positions) of
change points
C: cost function for a segment
f : regularization term
β: regularization coefficient

Several works have applied CPD methods on economic
and financial data for trend analysis and anomaly prediction.
Fryzlewicz applies a variation of the BS algorithm called
wild binary segmentation (WBS) on narrow time intervals
to detect trends in the S&P 500 index [49]. Fu et al. pro-
pose a specialized binary tree representation for financial
time-series segmentation [50]. Pepelyshev and Polunchenko
suggest a real-time financial surveillance monitoring system
that uses CPD methods to detect multi-cycling sequential
changes and anomalies [59]. Zhu et al. utilize CPD tomonitor
and identify changes in risk dependence structure in bank-
ing data [60]. In addition, CPD uses stock return data to
detect change points in a company’s status [61]. Existing
works on CPD applications have been focused on simply
detecting change points in time-series data. However, in this
work, CPD technique is further utilized for data normaliza-
tion based on CPD segmentation results. To the best of our
knowledge, there is no prior work that applies CPD to handle

the data normalization of non-stationary time-series data
(e.g., BTC prices).

III. PROPOSED PRICE PREDICTION FRAMEWORK
This section illustrates the overall framework proposed in
this work. The proposed framework consists of five phases.
First, extensive variable sets have been collected from on-
chain data. Second, some variables are selected from the
acquired dataset based on significant statistical correlations.
Third, the segmentation of input data based on the CPD tech-
nique (PELT) is conducted. Fourth, the proposed price pre-
diction model, composed of LSTM and the attention mecha-
nism, is illustrated. Finally, an experimental setup, including
data preprocessing, evaluation metrics, and implementation
details, is provided. The complete algorithm for the proposed
price prediction framework is presented in Algorithm 1.

A. EXTENSIVE VARIABLE COLLECTION
In this work, BTC price is selected as a prediction target due
to several reasons. First, BTC not only has the largest number
of transactions among existing cryptocurrencies but also has
the largest number of owners (i.e., address/wallets) [62].
In addition, a large number of on-chain data has direct rela-
tionships with BTC and so are deemed effective in price
prediction. For these reasons, this work, as well as many
existing works in the literature, has focused on BTC price
prediction using various data types. Daily BTC price data and
other associated data that will be detailed later are collected
from March 27, 2018 to November 16, 2021, having 1,331
time stamps (i.e., data points) in total. The BTC price trends
used in this work are shown in Fig. 1.

Taking the distinct characteristics of blockchain-based
cryptocurrencies (e.g., BTC) into account, diverse variables
related to price are selected and used in this work. However,
other exogenous variables that have been used in existing
works (e.g., Twitter, Google Trends) in addition to on-chain
data are not utilized, since one of this work’s main contribu-
tions is to validate the efficacy of on-chain data-based cryp-
tocurrency price prediction. To this end, an extensive variable
collection is first conducted. On-chain data consisting of
254 variables are collected and used. Detailed information on
all variables is shown in Table 8 in the Appendix A.

B. VARIABLE SELECTION
Since using all 254 variables collected is not only computa-
tionally but analytically excessive, a variable selection is per-
formed. First, variables in available data with shorter periods
and different time units (e.g., non-daily) are abandoned. Next,
for a primary comparison of variable importance, a cross-
correlation function (CCF) [63] is employed. According to
(2), CCF values between the BTC price and each on-chain
data variable, are computed using time lags from -3 to 3.
Based on the computed CCF values, 42 variables with the
highest CCF values, which are strongly related to BTC price,
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Algorithm 1 The Proposed Price Prediction Framework That Takes Multivariate Data D Consisting of Price Data as Well as
on-Chain Data From March 27, 2018 to November 16, 2021
Input: raw data D = {v1, v2, . . . , v254} F Containing 254 variables, where v1 is BTC price

CCFs← {}
for i = 2 to 254 do F Compute CCF between BTC price and on-chain variables
compute ρv1vi ; CCFs.append(ρv1vi )

end for
sorted← GetSordtedIndices(CCFs); topSet← sorted[1:42]
Dselected ← D[topSet] F Select 42 variables with the highest CCFs
group Dselected F Divide variables into five groups
compute S ← PELT (Dselected ) F Segment data using CPD
for all segment s ∈ S do F Separately normalize data within each segmentation
normalize Dselected [s]

end for
transform {(Xb, yb); b ∈ (1, . . . ,N )} ← SidingWindow(Dselected ) F Apply a sliding window method
define SAM-LSTM F Employ the proposed prediction model
Train and evaluate SAM-LSTM.

are selected.

ρyz(s, t) =
E[(ys − µys)(zt − µzt )]√
E[(ys − µs)2]E[(zt − µt )2]

. (2)

where:
y, z: time-series data
s, t: time points
µ: mean value

After variable selection, 42 variables related to BTC price
are divided into five groups: 1) price, 2) adoption, 3) distri-
bution, 4) market, and 5) valuation. A detailed description of
the variables that belong to each group is provided in Table 2.
The criteria for grouping used in this work are as follows. The
daily price of BTC, as well as other major cryptocurrencies
(i.e., ETH, XRP, LTC), belongs to the group ’price’. Con-
sidering that the cryptocurrency market is unlike the stock
market, 00:00 UTC is considered the price of the day. The
variables that denote how much people participate in the
cryptocurrency ecosystem and the fundamental information
of the current blockchain phase belong to the group ’adop-
tion’. Variables associated with the cryptocurrency distribu-
tion, including individual addresses, exchanges, and miners,
fall under the group ’distribution’. Those related to total
supply and demand and exchange supply and demand, which
practically determine the real-time cryptocurrency prices in
the market, belong to the group ’market’. This group also
includes the data tracking activities of addresseswith a certain
balance amount and investors with distinct characteristics,
such as long-term and short-term holders. For the last group
’valuation’, variables used to check the fairness of cryp-
tocurrency prices are chosen. The descriptive statistics of the
selected variables that correspond to each group are shown in
Table 3.

C. SEGMENTATION
As previously mentioned, the CPD technique is used in this
work to segment the time-series data. In particular, PELT [57]

is used as a component of the proposed framework. Using
the algorithm, the BTC price time-series data are segmented
into 6 groups that are deemed to have different statistical
characteristics. Segmentation results, including a detailed
time range, are provided in Table 4 and are visualized in
Fig. 3. In particular, each segmented time-series data has a
different mean value. For instance, the mean value of the
sixth segment is more than ten times higher than that of
the first segment, as shown in Table 4. In this work, the
CPD-based segmentation results are utilized for data normal-
ization. Each segmented time-series data is normalized (e.g.,
standardized) individually using one’s own statistics. This has
two benefits that help solve the aforementioned problem of
machine learning prediction models not performing well on
unseen price ranges. First, as data is normalized according
to the statistics of each segmentation, the scale difference
problem could be resolved. Second, as all data fall into certain
ranges after normalization, price fluctuation trends and their
implicit dynamics are better captured and reflected in the
data. These two benefits of using the CPD technique resolve
the scale problem and significantly increase the prediction
performance of neural network-based models [64].

D. PRICE PREDICTION MODEL
1) LONG SHORT-TERM MEMORY (LSTM)
Analogous to many existing works on cryptocurrency pre-
diction that use deep learning-based approaches, the pro-
posed prediction model also employs LSTM [65], one of
the most powerful RNN-based algorithms. Commonly used
in sequence modeling tasks, such as natural language pro-
cessing (NLP) and time-series forecasting, LSTM can han-
dle data expressed in a sequential order [66]. Thus, LSTM
is used as a primary feature extractor that directly takes
time-series data as input to extract meaningful temporal infor-
mation in the proposed model. LSTM recurrently updates
hidden states using the output from the previous time step
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TABLE 2. Description of selected variables used in the proposed framework.

56238 VOLUME 10, 2022



G. Kim et al.: Deep Learning-Based Cryptocurrency Price Prediction Model That Uses On-Chain Data

TABLE 3. Descriptive statistics for selected variables.

as a current input to learn sequentiality within time-series
data. In addition, by using a cell state, LSTM not only
learns long-term dependencies in sequences but also prevents

gradient vanishing and exploding problems from happening.
The cell state, the so-called memory cell, retains impor-
tant sequential information during training. In addition, the
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TABLE 4. Segmentation results using PELT.

FIGURE 3. Segmentation of time-series data using CPD.

distinct internal mechanism of LSTM contains three gates
(i.e., input, output, forget gates) that control the amount of
information to be forgotten or updated [67]. The detailed
architecture of LSTM is shown in Fig. 4. The computation
of LSTM at time step t is defined as follows:

ft = σ (Wf xt + Uf ht−1). (3)

C̄t = tanh(Wcxt + Ucht−1). (4)

it = σ (Wixt + Uiht−1). (5)

ot = σ (Woxt + Uoht−1). (6)

Ct = ft � Ct−1 + it � C̄t . (7)

ht = ot � tanh(Ct ). (8)

where:
Wf ,Wc,Wi,Wo,Uf ,Uc,Ui,Uo: trainable weight
matrices containing bias terms
�: Hadamard product

2) ATTENTION MECHANISM
The attention mechanism, designed to help a model learn
where to attend to during training, is an additional component
that can be used within a neural network architecture [68].
Recently, attention has become a basis of modern seq2seq

FIGURE 4. An internal architecture of long short-term memory (LSTM).

methods (e.g., BERT, ELMo, transformer) in sequence
modeling for machine translation and document classifica-
tion [69]–[71]. The attention mechanism is especially useful
in situations where a large amount of information is pro-
vided to the model so that the model must selectively exploit
important parts. In this regard, the proposed model of this
work employs an attention mechanism in order to learn to
attend to various input variables that more accurately predict
BTC price. Multiple experiments in the next section further
validate the effectiveness of using the attention mechanism
in the proposed model. The attention mechanism also pro-
vides model interpretability to some degree [72] by using the
computed attention scores that showwhere and howmuch the
trained network has learned to attend to the training data.

There are several forms of the attention mechanism with
varying internal computations, placement within neural net-
works, and softness [73]. Because LSTM uses multivariate
time-series data for prediction in this work, the attention
mechanism is attached to the end of LSTM module. A self-
attention, the so-called Bahdanau attention, which uses rep-
resentations (i.e., annotations as in [68]) generated from the
LSTM module, is employed in the proposed model as shown
in Fig. 5. The computation of the attention mechanism is
shown as follows:

ej = a(hT , hj). (9)

αj =
exp(ej)∑T
k=1 exp(ek )

. (10)

c =
T∑
j=1

αjhj. (11)

where:
j: timestamp within time-series data for j = 1 · · · T
a: alignment module parametrized as a feedforward
neural network with a tanh activation

3) PROPOSED ARCHITECTURE
As the selected variables are separated into five groups
(i.e., price, adoption, distribution, market, valuation), the
LSTM module is constructed for each variable group that
has hidden units proportional to the number of variables,
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FIGURE 5. A diagram of the attention mechanism.

as shown in Fig. 2. In particular, each LSTM module for
five variable groups has hidden units with size 32, 18, 22,
42, and 8, respectively. Furthermore, for each LSTMmodule,
the attention mechanism is employed so that the final output
is computed using representations with the weights of the
computed attention scores. Using multiple LSTM for differ-
ent variable groups associated with BTC prices should have
several benefits. First, each variable group, divided according
to domain knowledge, is used as a separate input for multiple
LSTMmodules, thus encouraging the model to learn optimal
price dynamics. This use of LSTM with separate variable
groups can also be seen as one type of secondary supervi-
sion for network training. Furthermore, different attention
mechanisms employed for the LSTMmodules learn to attend
differently to extract richer and diverse timely information
from the multivariate input data.

As mentioned above, multiple LSTM modules with atten-
tion mechanisms extract meaningful feature representations
from input data. In order to utilize the extracted represen-
tations to predict future prices, MLP is employed in the
proposed model so as to aggregate them and make price
prediction.MLP is a standard neural network architecture that
contains multiple fully connected layers and nonlinear acti-
vation functions between layers. This architecture is not only
flexible to manipulate but also proven to model very complex
underlying functions [74], which is a desirable characteristic
for cryptocurrency prediction. An ordinary form of a single
layer computation of MLP is given in (12). In the proposed
model, an MLP-based prediction module is used on top of
multiple LSTM module outputs.

hi+1 = g(Wihi). (12)

where:
hi: ith representation
Wi: weights
g: activation function

The entire architecture, including multiple LSTM mod-
ules with the attention mechanism and the MLP-based

prediction model, is dubbed SAM-LSTM, which stands
for self-attention-based multiple LSTM. To reiterate, SAM-
LSTM consists of two parts. First is a primary feature extrac-
tors using multiple LSTM modules for different variable
groups with distinct self-attention mechanisms. Second is an
MLP-based module that aggregates extracted representations
from multivariate time-series inputs to predict the final price.

E. EXPERIMENTAL SETUP
This section illustrates data preprocessing, evaluation metrics
for prediction performance, and implementation details. Data
preprocessing includes 1) data normalization based on seg-
mentation results using PELT [57] and 2) data transformation
using a sliding window method. The experiments conducted
in this work consist of two parts. First, LSTM-based models
are compared in terms of BTC price prediction performance.
Using only historical BTC price data, three methods are
compared in an ablative manner: 1) LSTM without CPD
(i.e., naïve LSTM); 2) LSTM with CPD; and 3) LSTM
with CPD and the attention mechanism. Second, using the
selected variables that are separately grouped as inputs, the
proposed method (i.e., SAM-LSTM) is employed to predict
BTC prices. Extensive variable group combinations are tested
within the proposed SAM-LSTM.

1) DATA PREPROCESSING
To validate the effectiveness of the proposed SAM-LSTM to
predict BTC prices, a series of data preprocessing have been
conducted. First, each input variable is normalized via stan-
dardization according to (13). When CPD (i.e., PELT [57])
is used, each segmentation of the entire time-series data is
separately normalized using its own statistics (i.e., mean and
standard deviation). In this way, intense fluctuations are bet-
ter reflected in a moderate manner after data normalization.
Figure 6 visualizes the effects of the proposed CPD-based
normalization, in which data show fluctuations in a modest
range, while still maintaining distinctive patterns.

xscaled =
x − x̄
σ

. (13)

where:

x: original independent variable
x̄: mean value
σ : standard deviation value
xscaled : scaled independent variable

In addition, like many other existing works on the price
prediction, a sliding window method is employed for data
preparation in this work [75]. Since the existing BTC price
data, as well as multivariate time-series data, are lengthy
(length=1,331), the sliding window is applied to crop the
given data into multiple samples. Considering weekly BTC
price trends, the sliding window method with n=7, follow-
ing [1], is selected. This selection makes the prediction model
take a 7-day long multivariate time-series data as input and
outputs the next day’s future price (i.e., price of day 8). The
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FIGURE 6. Effects of CPD-based normalization preprocessing.

FIGURE 7. Sliding window for time-series data preparation.

sliding window method applied in this work is illustrated in
Fig. 7.

Since the prediction uses sequential multivariate time-
series data, the holdout sets are divided with a ratio of 8:2
so that the first 80% of the data are used for training, while
the remaining 20% are used for evaluation.

2) EVALUATION METRICS
Since the target is a price, which is a continuous variable,
several evaluation metrics for regression tasks are selected
to validate the experimental results. Mean squared error
(MSE), mean absolute percentage error (MAPE), mean abso-
lute error (MAE), and root mean squared error (RMSE) are
used. In particular, MSE is used as a loss function for net-
work training. The equations for the metrics are defined as
follows:

MAE =
1
N

N∑
t=1

|xt − x̂t |. (14)

MSE =
1
N

N∑
t=1

(xt − x̂t )2. (15)

RMSE =

√√√√ 1
N

N∑
t=1

(xt − x̂t )2. (16)

MAPE =
100
N

N∑
t=1

|xt − x̂t |
|xt |

. (17)

TABLE 5. Model performance comparison using univariate price data.

where:
xt : actual value
x̂t : predicted value
N : number of data

3) IMPLEMENTATION
The experiments are conducted on a graphical processing
unit (GPU) Tesla V100 with an open source library Tensor-
Flow [76]. During model training, Adam [77] with a learning
rate of 0.01 with a decay rate of 0.0005, β1 of 0.91, and β2 of
0.98, is used as an optimization algorithm with a batch size
of 32. Parameter optimization for the LSTM modules in the
proposed prediction model utilizes backpropagation through
time (BPTT) algorithm, which is one of the simplest and
intuitive ways to train recurrent models based on gradient
based optimization technique, as detailed in Appendix B.
In addition, layer normalization [78] is used inside the net-
work architecture to stabilize the training process. In order to
prevent model overfitting, early stopping, which terminates
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TABLE 6. Performance comparison of the proposed method with different configurations.

the training procedure when the validation loss seems to be
saturated, is employed. During the experiments, ten trials that
use distinct random seeds are conducted for each configura-
tion to obtain the error bars (i.e., standard deviations) for the
results.

IV. RESULTS AND DISCUSSION
This section illustrates experimental results based on two
parts. First, the effects of CPD and the attention mechanism
utilized within the proposed SAM-LSTM method are vali-
dated through the task of predicting univariate BTC prices.
After confirming the efficacy of the two techniques, the price
prediction performance of SAM-LSTM is verified.

A. CPD AND ATTENTION MECHANISM
The first set of experiments compares the methods with
and without two techniques: CPD (i.e., PELT [57]) and the
attention mechanism. In order to first verify their efficacy,
only historical BTC price data are used as an input for the
models. A comparison of the three methods’ price predic-
tion performances is shown in Table 5. When comparing
LSTM without CPD to LSTM with CPD, the latter shows
significantly improved prediction performance in terms of
three metrics: MAE, RMSE, and MSE. In fact, as shown
in Fig. 8, LSTM without CPD is unable to learn intense
fluctuations, especially during the price upsurge phase. This
presents two inherent problems with using LSTM in a naïve
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FIGURE 8. The wrong prediction results from LSTM without CPD.

manner. First, since the time-series data are normalized using
all-time statistics, including that of price upsurge and decline,
the fluctuation trends are not well reflected in the data, so the
model cannot learn well. In addition, especially during the
test stage, the trained model cannot effectively predict unseen
data, which are outside of the price range of training data. The
use of CPD (i.e., PELT), one of the techniques proposed in
this work, has shown to handle the aforementioned problems
well. In addition to using CPD for data normalization, the
attention mechanism is attached to LSTM, and the perfor-
mance of the model with CPD and the attention mechanism
outperforms the model without the attention mechanism,
as shown in Table 5. In fact, the proposed model using
both CPD and attention mechanism shows better scores in
terms of MAE, RMSE, and MSE, except for MAPE. MAPE
of the proposed model that is slightly worse than a naïve
LSTM might be due to the fact that MAPE uses ground truth
value as a denominator for calculation, which is different for
eachmodel configuration. Thus, based on the aforementioned
results, the efficacy of CPD and the attention mechanism are
validated.

B. SAM-LSTM
As the use of CPD and the attention mechanism have shown
to be effective in price prediction, the proposed method,
which employs both, is used for price prediction. In particular,
multivariate on-chain data are used as an input for the models.
The proposed SAM-LSTMemploysmultiple LSTMmodules
with the attention mechanism and an MLP-based prediction
module. Each LSTM module takes each group’s input vari-
ables separately, and the MLP-based module aggregates the
extracted representation and outputs a final price prediction
result. A comparison of the two models, 1) LSTM with CPD
and the attention mechanism that uses on-chain data and
2) SAM-LSTM that uses on-chain data, is detailed in Table 6.
While the number of used variable groups as inputs is the
same for the two models, internal architectures are different.
The input variables are fed into the model as a whole for
the first model whereas in the second model (SAM-LSTM),
multiple LSTMmodules take corresponding variables in each

FIGURE 9. Prediction results.

TABLE 7. Attention score distribution.

group separately. Using various variable group configurations
according to Table 2, BTC price prediction tasks are con-
ducted. In Table 6 the cells with a gray background denote
a configuration in which the proposed SAM-LSTM outper-
forms LSTM without CPD. The numbers in bold denote
the best-performing configuration and model. Based on the
results, all configurations that use various on-chain input
data better perform than those that only use univariate price
data (compared with Table 5). This indicates that using rich,
expressive multivariate on-chain data as an input is effective
for price prediction. Furthermore, SAM-LSTM outperforms
all other input variable group configurations in 15 out of
16 configurations in terms of MAE. In terms of RMSE and
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TABLE 8. Description of all variables (bolded variables are used for the proposed method).

MSE, SAM-LSTM outperforms the others using the same
configuration in 9 out of 16 configurations. This indicates
that when rich multivariate input data are used for price pre-
diction, SAM-LSTM, which uses multiple LSTM modules
for each variable group with the attention mechanism, better
learns the underlying dynamics that influence BTC prices.
The prediction results for the best performing SAM-LSTM
with CPD are visualized in Fig. 9.

The variable groups used in the best performing
SAM-LSTM model with CPD applied, which are ’price’,
’adoption’, and ’market’, can be found in Table 2. Using the
best performing SAM-LSTM after training, attention scores
are computed using the test data. For each data sample, the
attention scores for each LSTMmodule are computed accord-
ing to (10). For each separate attention mechanism attached
to multiple LSTM modules, the computed attention score
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distribution is shown in Table 7. The different SAM-LSTM
modules are shown to have learned where (i.e., which time
stamp of the given multivariate on-chain data) to attend to
during training for price prediction. In particular, each mod-
ule has learned different patterns within each dataset type,
as shown in the attention score distributions in Table 7. For
instance, the attention scores for variable group ’adoption’
has higher values for days 5 and 6 compared to that for
variable groups ’price’ and ’market’. In addition, attention
scores for the ’market’ group differ from the ’price’ group.
It is important to note that during training, data closer to the
prediction point have been shown to have more influence.
Specifically, according to the attention scores, the input data
of the two to three latest days have shown to most influence
price prediction.

V. CONCLUSION AND FUTURE WORKS
The authors propose a novel approach that uses multi-
variate on-chain time-series data to predict cryptocurrency
prices. BTC price prediction is conducted within the pro-
posed approach. Unlike traditional machine learning-based
models, a CPD-based normalization technique enables price
prediction models to predict unseen price ranges. Various
on-chain variables are selected, grouped according to their
inherent characteristics, and used as input variables for price
prediction. The proposed price prediction model (i.e., SAM-
LSTM), which consists of multiple LSTMmodules with sep-
arate attention mechanisms and an MLP-based aggregation
module, extracts distinctive features from grouped on-chain
variables.

This work has five main steps. First, extensive variable
collection using on-chain data is conducted. Second, based
on CCFs, significant on-chain variables are selected as input
variables and grouped according to their characteristics.
Third, time-series data are segmented and normalized within
each segmentation using a CPD technique called PELT [57].
Fourth, SAM-LSTM, which uses multiple LSTM for distinct
on-chain variable groups and attention mechanism for price
prediction, is proposed. Finally, the effectiveness of using
CPD and SAM-LSTM in BTC price prediction is verified
through rigorous experiments.

One limitation of this work is lack of a performance com-
parison with existing cryptocurrency price prediction meth-
ods. In fact, there are several reasons for being unable to
conduct comparative experiments. First, each work in the
literature uses different input data in terms of time spans,
input data types (e.g., social media data, Google Trends),
preprocessing steps, etc. In particular, existing works that use
price data before recent plummet are not guaranteed to yield
similar prediction results. In a similar vein, comparison with
recent studies that claim to have considerable price prediction
performances, such as [79]–[81], will be conducted in the
future. Developing a holistic framework for cryptocurrency
price prediction remains one possible future work. In partic-
ular, a unified framework that uses variables associated with
prices, including on-chain data and social media data, should

not only be developed, but a comprehensive aggregation
model should also be created to model the price dynamics of
the cryptocurrency market [6], [82]. In addition, a real-time
price prediction model that uses various input data to make
more frequent predictions (like hourly or per-minute) is worth
being developed.

APPENDIX A
See Table 8.

APPENDIX B
Parameters of LSTM modules (Wf and Uf ) in the proposed
price prediction framework is optimized based on backprop-
agation through time (BPTT) as shown below.

∂L
∂Uf
=

∑
t

t+1∑
k=1

∂L(t + 1)
∂ x̂t+1

∂ x̂t+1
∂ht+1

∂ht+1
∂hk

∂hk
∂Uf

. (18)

∂L
∂Wf

=

∑
t

t+1∑
k=1

∂L(t + 1)
∂ x̂t+1

∂ x̂t+1
∂ht+1

∂ht+1
∂hk

∂hk
∂Wf

. (19)
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