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ABSTRACT Microgrids (MGs) suffer from unpredictable faults on the feeders for various random reasons.
These faults could obstruct the stability of the MG operation and damage the components. Moreover,
many uncertainties elements affect the MG’s response to faults, such as faults’ types and locations and
resistances, MG operation modes, DG penetration levels, load variations, and system topologies. Therefore,
fault detection, classification, and location are vital for the MGs as they provide rapid restoration and protect
the components. This paper proposes an adaptive protection (AP) scheme for the future renewable electric
energy delivery and management (FREEDM) system. The proposed scheme is based on the convolution
neural network (CNN), in which themeasured current and voltage at buses are processed inmultidimensional
arrays for the images’ identification and classification. The gorilla troops optimization (GTO) technique has
been used to improve the CNN by acquiring the optimal architecture and hyperparameters of the proposed
CNN. The proposed protection scheme can detect the system fault, classify the fault type, and determine the
fault location using three proposed CNN-GTO protection scheme models. A communication channel has
been performed to transfer the data, information, and tripping signals between the different devices in the
FREEDM system. The proposed method is tested using a hypothetical FREEDM microgrid system under
different fault conditions. The results show that the proposed CNN-GTO models can detect, classify, and
location feeder faults in the FREEDM system with high accuracy. A comparison with the existing schemes
such as Support vector machine, Fuzzy logic, conventional CNN, and wavelet-based CNN is performed. The
optimized CNN-based GTO models can achieve an overall accuracy for fault detection, classification, and
location of 99.37, 99, and 98.2%, respectively.

INDEX TERMS Convolution neural network, gorilla troops optimization, FREEDM system, fault detection,
fault classification, fault localization.

I. INTRODUCTION
Nowadays, information and communication technology
development enables the system to form smart grids. The
main smart grid characteristics are self-healing, resiliency
towards physical and cyberattacks, customer accessibility,
optimal utilization of the system appliances, and depend-
ability and security of the distributed power. However, the
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bidirectional power and information transferring capability
make the smart grid’s control, operation, and protection is a
great challenge [1]. The microgrid (MG) is an active system
that consists of renewable energy resources (RERs), battery
energy storage devices (BESDs), and load demand at the
distribution system voltage. The integration of the RERs in
the distribution system improves the system performance,
supports the primary generation, avoids power disruptions,
and enables fast system recovery. Also, the reactive and active
power injection to the utility grid through the RERs can
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enhance the grid resiliency, minimize the losses, improve the
power quality by reducing the voltage sag, and maximize the
system reliability and security by an environmentally friendly
source. Besides, the penetration level of the RERs, type, and
location may affect the microgrid protection by bidirectional
fault current [2].

The future renewable electric energy delivery and manage-
ment (FREEDM) system is one of the essential models in
the smart distribution network. It contains RERs, solid-state
transformers (SSTs), and loads, where the energy manage-
ment is done locally and individually. This can be accom-
plished by monitoring all the system devices and RERs in
the local area. The control signals are then delivered to these
devices and RERs. In the FREEDM system, a communication
channel is performed for the data and information transferring
among the connected RERs and loads and the control cen-
ter [3]. There are many advantages of the FREEDM system,
including controlling the power flow, reducing the size and
weight compared with the traditional transformers, and the
plug-and-play capability for the RERs and loads. Moreover,
the integration of the RERs in the FREEDM system makes
the system protection and control is a great challenge [4].

Various protectionmethods can be applied in the FREEDM
system. These methods include current-based, voltage-
based, impedance-based, traveling wave, time-frequency
transform, harmonic content, and adaptive protection meth-
ods. The adaptive protection for the electrical grids can
be classified into conventional methods and artificial
intelligence-based methods. The conventional methods
include adaptive overcurrent, adaptive directional over-
current, adaptive differential, adaptive protection based
on symmetrical components, adaptive centralized protec-
tion, and decentralized adaptive scheme. According to
the different system operating conditions, most of these
methods are based on the online setting adaption. The
artificial intelligence-based methods include metaheuristics
optimization-based methods, fuzzy logic-based methods,
multi-agents system-based methods, and artificial neural
networks-based methods [5]–[7].

In literature, the optimization of the overcurrent relays
coordination in adaptive protection (AP) system was intro-
duced based on the linear programming (LP) method and
practical swarm optimization (PSO) [8]. The method was
tested on the real-time digital simulator (RTDS) and evalu-
ated for different distributed generations (DGs) penetrations
and locations. The ant colony optimization (ACO) was used
to carry out an AP scheme for obtaining the overcurrent
relays (OCRs) coordination [9]. The AP scheme-based ACO
was evaluated by comparing its performance with the GA,
and theACOhad better performance in selectivity, sensitivity,
and operating time. The differential Evaluation (DE) opti-
mization method was used to obtain optimal adaptive relays
coordination for network topologies [10]. It adjusted the coor-
dination settings of the OCRs and zone-2 of distance relays
based on the change in the network topology. Furthermore,
the PSO was used in the AP scheme by [11] to react to the

network topological changes. A modified version of PSO had
been advised to solve the OCRs coordination problem for
modern distribution systems. Moreover, the DE method was
used in [12] to mitigate the effects of DGs on the coordina-
tion of the directional OCRs using the AP scheme. It had a
better performance than other optimization algorithms like
GA, harmonic search (HS), and PSO in OCRs for solving
the coordination problem. An AP scheme was presented to
address all the protection challenges for distribution systems
due to connected DGs such as centralized control, multifunc-
tion protection, and optimal protection settings [13]. It was
based on finding the optimal setting of the relays and then per-
forming an online self-adjustment of their settings by using
two solvers: Baron and Ipopt. The simulation indicated that
the method had an efficient performance. An AP system for
MG using digital directional OCR and phasor measurement
units (PMUs) was presented in [14]. The current values were
measured by PMUs and acquired to determine the changes
in DGs penetrations, system topology, and MG operation
mode (grid-connected/isolated). Thus, according to estimated
changes, the coordination settings of the OCRs were updated.
The method was applied on seven buses MG, and the Ipopt
solver solved the coordination problem.

The AP schemes were also presented using fuzzy sys-
tems to optimize and update the OCR settings based on
grid parameters, pre-fault power flow, and circuit breakers
status [15]. The grid was simulated with the ETAP program,
and different DGs capacities and locations were studied.
However, only one type of fault was studied; three-phase
faults. A hybrid method of an adaptive fuzzy inference and
GA was introduced to obtain the current and time settings
of the OCRs [16]. The method was tested on a modified
IEEE-14 bus with DGs at various locations. A decentralized
AP scheme based on fuzzy logic to determine the optimal
parameters of the OCRs while considering the DGs was
presented in [17]. In addition, the AP scheme used the mag-
nitude of voltages to decrease the time between the pri-
mary and backup OCRs. The method was implemented using
ATP-EMTP software and testedwithDGs on the IEEE-13 bus
system.

The multi-agent system was used to implement the AP
system for the MGs by the Java agent development frame-
work [18]. To adapt the protection system for the changes
in the MG, the relays updated their characteristics in offline
mode, then detected the faults in online mode. The PSCAD
software simulated the faults and tested the multi-agent
system. Ref. [19] identified various agents; measurement,
breaker, relay, protection, and optimal coordination agents
for AP of the distribution system connected to the DGs. The
ETAP software simulated the distribution system with faults
at different DG statuses. Ref. [20] introduced an adaptive
protection scheme based on the multi-agent system and con-
sidered different operationmodes of the distribution grid inte-
grated with DG. These operation conditions were the various
DGs status and topology changes. The adaptive protection-
based multi-agent system of the MG integrated with PV
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systems was studied in [21]. The authors identified agents for
circuit breakers, relays, point of common coupling, and loads.

The artificial neural network (ANN) was used for pro-
tecting the distribution systems. An AP scheme-based radial
base function neural network (RBFNN) was developed [22].
The method was used to find the faulty line and locate the
fault from the source bus. Then the backtracking algorithm
was applied to coordinate the main and backup relays for
isolating the faulty line. Four faults were implemented in
the distribution network connected to DGs to evaluate the
AP method. The results were compared with other ANNs
presented in [23], [24] and illustrated that it had better perfor-
mance. An AP system for the distribution system connected
to the DGs and fault current limiter was explored by [25].
The overcurrent relays settings in this system were modified
using the decision tree and neural network topology-adjusted
method. A hybrid model of ANN and the support vector
machine (ANN-SVM) was used to implement an AP scheme
for theMGs [26]. The feedforward neural network was firstly
used to detect the fault and identify the faulty lines. Then
the SVM was used to estimate the fault location in the line.
Based on this identification, the protective settings could be
automatically re-adjusted in the ANN-SVM model to ensure
the relay operation reliability.

The convolutional neural network (CNN) is considered a
type of deep learning neural network based on the living
system’s visual construction. It is used in images identifi-
cations and classifications that process the data in multi-
dimensional arrays. The main advantages of CNN are that
it reduces the number of trained connections and hyperpa-
rameters compared to traditional neural networks [27]. The
CNNs were used for many classification problems in power
systems [28]–[34]. A predictive control system-based single
dimension CNNwas presented to improve the performance of
the grid-connected wind farms [31]. It added a static var com-
pensations control block to the convolution control systems.
The CNN was applied to predict the power system instability
mode and assess transient stability [32], [34]. The inputs
of the CNN are the phasor voltage measured by the phasor
measurement units, while the state of the system (oscillatory,
stable, and aperiodic unstable) is the output.

CNN also attracted the attention of power system protec-
tion researchers. Fault detection and classification method in
lines using a sparse convolution autoencoder were presented
in [28]. The convolution sparse autoencoder method used the
current and voltage waveforms to learn the features. Ref. [29]
developed a method to detect and classify the faults in lines
based on self-attention CNN and the wavelet transform (WT).
The discrete WT improved noise immunity performance by
denoising the faulty current and voltage signals. A protection
scheme based on the CNN was presented to differentiate
between the PV inverters faults and the distribution line’s
faults [30]. Moreover, the protection scheme could identify
the faulty section. Ref. [33] introduced a protection scheme
for MG by identifying the faults’ phase and location. The
protection scheme was based on the CNN and discrete WT.

The discrete WT processed the measured branch currents and
then fed them to the CNN.

Recently, evolutionary optimization techniques were
advised to obtain the optimal hyperparameters and construc-
tion of the CNNs [27], [35]–[41]. They are favorable because
of their ability to detect global solutions to complex problems.
The PSO method was employed to obtain the optimal values
of the hyperparameters of the CNN [35], [36]. A multi-level
PSO technique was involved to simultaneously find the opti-
mal hyperparameters and architecture of the CNN [37]. Two
optimization levels were involved; the first level was used
to obtain the optimal CNN architecture by determining the
optimal number of layers for convolution, pooling, and fully
connecting layers. The second level determined the CNN
configuration hyperparameters. Furthermore, other optimiza-
tion techniques were applied to obtain the optimal value
of some hyperparameters of the CNNs, such as GA [38],
[39], harmony search algorithm (HS) [40], microcanonical
optimization algorithm (MOA) [41], and fuzzy gravitational
search algorithm (FGSA) [27]. Most of the applied evolution-
ary optimization techniques purposed many restrictions on
the architectures of the CNN and/or parameters such as filter
size, pooling operation, and activation function. Although
these restrictions can lower the computational complexity,
they reduce the performance. So, the strategy to optimize the
parameters is yet to be developed.

An AP scheme is suggested for the FREEDMmicrogrid in
the present research. The suggested AP scheme relies on the
improved CNN with the gorilla troops optimization (GTO).
The proposed method can detect, classify, and locate the
faults in lines in the MG using the CNN with multi convo-
lutional and pooling layers. The GTO is proposed to obtain
an optimal architecture and hyperparameters of the proposed
CNN. The hyperparameters to be optimized include the
parameters in the three layers of the proposed CNN; convo-
lution, pooling, and fully-connected layers. The proposed AP
scheme consists of three models; CNN-GTO-I for the fault
identification and detection in the lines, CNN-GTO-II for
the fault type classification, and CNN-GTO-III for the fault
localization. A communication channel has been performed
to transfer the data, information, and tripping signals between
the different devices in the FREEDM system. The proposed
AP scheme has been verified and tested using the MATLAB/
Simulink environment using a hypothetical FREEDM sys-
tem. Different types of faults, such as three-phase fault,
line-to-ground fault, line-to-line fault, and double line to
ground fault, are applied to prove the effectiveness of the
proposed protection scheme. The suggested CNN is eval-
uated against the variation of the MG parameters such as
operation modes, DG penetration levels, load variations, and
MG topologies as a method for judging its performance.
For comparison, a comparison with the existing schemes is
performed.

The main contributions of the present study are as follows,
- Propose a new rugged technique for MG protection
based on the CNN combined with GTO Algorithm.
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FIGURE 1. Proposed FREEDM system structure.

- Propose various CNNs with multi convolutional and
pooling layers to detect, classify and locate the faults.

- Design a GTO algorithm to obtain the optimal architec-
ture and hyperparameters of the proposed CNNs.

- Study the performance of the suggested CNNs when
the designed GTO optimizes its architecture, compare
the accuracy and examine the evolution effectiveness
of GTO.

- Evaluate the performance of the proposed GTO-CNN
against variation in different MG parameters (fault
types, locations, fault resistance, MG operation modes,
DG penetration levels, load variations, and system
topologies).

- Compare the performance of the proposed AP scheme-
based CNN-GTO with other methods (SVM, CNN,
Fuzzy logic, andWT-based CNN) to clarify the superior
performance protection of MGs.

- Verify the proposed AP scheme for various uncertain
elements such as (fault types, fault locations, fault resis-
tance, MG operation modes, DG penetration levels, load
variations, and system topologies) for the protection of
the FREEDM systems.

The following paragraphs are organized as follows;
Section 2 introduces the proposed FREEDM system archi-
tecture, while section 3 describes the system dataset. The
CNN method is represented in section 4; however, the GTO
is illustrated in section 5. The hyperparameter optimization
of the proposed CNN by GTO and the proposed adaptive
protection scheme for the FREEDM system are performed
in sections 6 and 7. Section 8 represents the system results
and discussion. Finally, section 9 presents the conclusions of
the paper.

II. PROPOSED FREEDM SYSTEM ARCHITECTURE
The structure of the proposed system is shown in Fig. 1.
The system relies on FREEDM, which is considered the

TABLE 1. FREEDM network parameters.

distribution systems’ future technology. The proposed system
comprises three connected microgrid sources and two loads
with four buses. The microgrid sources are based on the
RESs such as photovoltaic (PV), wind energy (WE), and
BESDs. These sources are connected to the SST, consisting
of three stages; AC/DC, DC/DC, and DC/AC, with two DC
links called MVDC and LVDC. The SST can provide the
control system with a high degree of freedom and improve
the modulation and hardware design. Each transmission line
has two fault isolating devices (FID) and a fast solid-state
circuit breaker. The main part of the FREEDM system is the
distributed grid intelligence (DGI), that can be represented as
the master control center. It is connected to each device in
the FREEDM system, such as SSTs and FIDs. It is used in
collecting all the data and information from all these devices
and hence sending/receiving a control signal. The applied
communication platform is based on the internet of things
(IoT). The IoT platform comprises two layers; the physical
layer representing the FREEDM system and the cyber layer
that composes the data analysis, processing, and storage.
The communication between the physical and cyber layers
is based on Wi-Fi.

The system voltages and currents at all system busses are
monitored using phasor measurement units (PMUs), and the
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data are sent to the cyber layer via the communication system.
Then the data is processed, and in the presence of a system
fault, a signal is sent to the FIDs connected to the faulty line
to isolate it using the proposed AP scheme. The FREEDM
system parameters are represented in Table 1. As illustrated
in Table 1, the voltage and current sampling time are 50 µs,
and the FID’s switching time is 0.1 ms.

III. DATASETS DESCRIPTION
Electrical distribution networks suffer from unpredictable
faults on feeders for various random reasons. These faults
could obstruct the stability of the MG operation and damage
the components.Many uncertainties elements affect theMG’s
response to faults, such as the types and locations of faults.
So, it is essential to study and detect these uncertain elements
before designing the protection system. In this paper, the
uncertain data are represented as follows:

- Different fault types; (single phase to ground, double
phase to ground, phase to phase, and three-phase faults,
so ten types of faults are recorded).

- Different fault locations on one feeder; (from 0 to 100%
of the feeder length with a step of 10%, so ten cases are
recorded).

- Different fault resistances: (from 0 to 21 � with a step
of 3 �, so eight cases are recorded).

- Microgrid operation modes; (on-grid and off-grid mode,
performed by connecting/disconnecting the utility grid
breaker, so two cases are recorded).

- Different system topologies: (meshed and radial, per-
formed by connecting/disconnecting the FIDs on feeder
BB1-BB2, so two cases are recorded).

- Different DGs penetrations; (change from 0 to 30% of
the rated load with a variation of 5%, so six cases are
recorded).

- Load variation events: (change from 0 to 100% of the
full load value with a step of 25%, so five cases are
recorded).

The dataset of the above uncertainty parameters is sim-
ulated using the MATLAB/Simulink program. The corre-
sponding fault voltages and currents at each busbar of the
studied FREEDM system in Fig. 1 are simulated/measured
and arranged separately in matrices. So, this dataset contains
about 224288 patterns to be used in training and testing the
proposed CNN for adaptive protection of the studied MG
(FREEDM system). For each pattern, the short circuit or load
flow is performed. The simulated buses’ currents and voltages
time series are initially in vector form. So, one cycle only of
the stored data is split as:

Ii =
[
I1i , I

2
i , . . . ., I

L
i

]
(1)

Vi =
[
V 1
i ,V

2
i , . . . .,V

L
i

]
(2)

where Ii and Vi are the current and voltage at the ith sample,
respectively. L is the total number of samples. The currents
and voltages time series are converted to images to extract

FIGURE 2. GADF and GASF images of current and voltages signals for AG
fault.

the required feature. The proposed AP scheme feds with the
input encoded three-phase voltages and currents. The time
series of voltages and currents are represented as the Gramian
Angular Field (GAF), where the time series is converted from
cartesian coordinate to polar coordinate. In the GAF matrix,
each element is the cosine of the summation of angles. After
converting the rescaled time series vectors of currents and
voltages into a polar coordinate, the angular perspective can
be exploited by taking into consideration the trigonometric
difference/sum between each point to define the temporal
correlation over various periods and determine the Gramian
Difference Angular Field (GADF) and Gramian Summation
Angular Field (GASF) [42]. For example, GASF and GADF
representations of current and voltage waveform measures
at BB2 (of Fig.1) in the case of single-phase a to ground
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FIGURE 3. CNN basic construction.

faults at 10 % and 70 % of the line are presented in Fig. 2.
The figure shows that the currents and voltages images are
changed according to the faults’ conditions.

The dataset is divided into three parts to train, validate, and
test the proposed CNN. The training dataset is introduced to
the training algorithm to determine the optimal architecture
and hyperparameters of the CNN using the characteristics
of each classification. Then the validation dataset is used
simultaneously as training to evaluate the training quality
with a new dataset. In this stage, the accuracy of the CNN is
improved by adjusting its parameters. Finally, the proposed
CNN simulates the test dataset to measure its generalization
ability. In this paper, the dataset is randomly divided into; the
training stage of 60% of the dataset, 20% for validation, and
20% for testing.

IV. CONVOLUTION NEURAL NETWORK (CNN)
The CNNs have significant advantages in processing a large
amount of data with low computational cost. Thus, they
are widely applied in solving various classification prob-
lems [28], [43]–[45]. In this study, CNN has been established
to build an effective and reliable protection system for the
FREEDM system. As previously mentioned, the protection
problem of the FREEDM systems has many operating condi-
tions and fault scenarios that could be happened.

A. OVERVIEW OF CNN ARCHITECTURE
One of the essential advantages of CNN is that it does not
require a large number of parameters compared to other
traditional neural networks. Thus, this reduces the compu-
tation complexity and required memory and improves the
performance. The CNN comprises three types of layers:
Convolution layers, Max-pooling layers, and fully-connected
layers [53]. An example of CNN architecture is illustrated in
Fig. 3. Moreover, the following sections explore in detail the
function and the Description of each layer used in designing
the proposed CNN in this paper.

1) INPUT LAYER
In this layer, the input data, such as the raw time series
(images) of voltages and currents at each bus, is received and
stored, then utilized by the input layer function. The input
images size can be determined by the raw input data [46].

2) CONVOLUTIONAL LAYERS
2D- filters (convolution kernel) are used in the convolution
layers to carry out the image sampling; then, the images are

converted to new images with two-dimensional arrays. The
selected number of convolutional kernels filters is dependent
on the neurons in the same input array region. The filters’
sizes are defined according to the entire array’s window
sliding (width and height) [47]. The number of neurons in the
future map and the convolutional layer should be the same.
The layers’ numbers can be determined according to the
proposed network design. The operation of the convolution
layer is mathematically represented by;

R (x, y) =
k∑
i=1

p∑
j=1

M (i, j) ∗A(x+1,y+ j) (3)

where i and j are the mask line and column, respectively, and
y and x are the column and row of the characteristic’s matrix.
p and k are the column and row of the filter size, respectively.
A represents the characteristics matrix, and M represents the
mask.

3) NON-LINEARITY LAYER
After the convolution layer, a rectified linear unit (ReLU)
layer function is used to apply a thresholding operation for
the received inputs, as illustrated in (4). The ReLU function
is commonly used with CNN because this network trains
faster [47].

F (x) =

{
x, x ≥ 0
0, x < 0

(4)

4) MAX-POOLING LAYER
The maximum pooling layers are used to scale down the
data to decrease dimensions and remove the redundant infor-
mation to avoid overfitting and improve robustness [53].
It is implemented after the operation of the ReLU and
convolution. So, it helps in increasing the filters’ number in
convolutional layers without complicating the computations.
It can be represented by [48];

ykij = max(xk
′

i′j′ :i ≤ i
′ < (i+ h) , j ≤ j′ < (j+ q) (5)

where, ykij and x
kk
ij are the (i, j) elements of k th output and input

of feature maps, respectively. q and h are the pooling window
width and length, respectively.

5) FULLY-CONNECTED LAYER
Fully-connected layers are used after the convolutions to
perform pattern recognition. In this layer, the neurons are
connected individually to the prior layer’s neurons. It inte-
grates all the earned features by the previous layers. So, it is
very successful in classifying large patterns. The number of
output neurons equals the classes’ number for a classification
problem.

B. CNN HYPERPARAMETERS TO BE OPTIMIZED
CNN is a powerful tool in classification problems; however,
it has many hyperparameters that need to be optimized to be
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TABLE 2. Hyperparameters of the CNN and their limits.

classified to network configurations and learning hyperpa-
rameters. For the CNN optimization, the three main layers
(convolution, pooling, and fully connected) have hyperpa-
rameters that help the network to obtain a better recogni-
tion percentage. Choosing the CNN hyperparameters leads
to enhancing their performances. Firstly, the convolutional
operation has six main hyperparameters to be optimized;
the number of convolution layers, the number of feature
maps, the number of convolution filters, filters size, and the
stride size padding of the convolutional layer. The number of
convolution filters is used to obtain the characteristics map;
moreover, the size of the filter controls the data extraction to
build the characteristics map.

In the pooling layer, the hyperparameters such as the num-
ber of pooling layers, size of stride, filter size, and the method
of pooling are selected to reduce the feature maps. The stride
hyperparameter is common to the pooling and convolution
layer; it is used to obtain the number of steps taken by the filter
as it moves through the input. The pooling method produces
the average or maximum value in the corresponding field of
the filter is produced for the pooling method. Also, filters
in the pooling layer do not have weights to learn.

The last hyperparameters associated with the fully con-
nected layers are the number of layers and neurons. It is
worth noting that the selected number of convolution layers is
always greater than or equal to the number of fully-connected
and pooling layers.

Table 2 summarizes the CNN hyperparameters and their
ranges that control the number of variables in the search
space in the optimization technique. The illustrated values
of the CNN hyperparameters are used for all datasets in the
three proposed CNNs for fault detection, identification, and
location analysis.

This paper uses the GTO algorithm to optimize
15 hyperparameters of the proposed CNNs. The common
hyper-parameters for the three layers, such as dropout rate,
learning rate, and weight initializer, are listed in separate raw
in Table 2. The learning rate parameter controls the amount
the model changes in response to the error value each time

the model weights are updated. Selecting the learning rate is
a challenge, whereas selecting a large value led to a set of
suboptimal layer weights learned too quickly. The process of
training becomes unstable while selecting a small value, lead
to a long training process and can be crashed. In this study,
the selected learning rate is between 0.001and 0.05 to ensure
a balance in the learning process. Furthermore, the maximum
value of the dropout rate is chosen to be 0.5, whereas it leads
to maximum regularization [41].

V. GORILLA TROOPS OPTIMIZATION ALGORITHM (GTO)
Most of the engineering optimization problems were
recently solved by the natural-based metaheuristics methods.
It enjoyed numerous advantages such as the simplicity and
ease of layouts and implementations, the wide scope of usage
in engineering applications, performing better than local
search algorithms, and not needing information for derivation
functions [49], [50]. These algorithms mimic the natural
physical or biological phenomena such as the behavior of
humans, animals, swarms, and plants. In this research, a novel
natural inspired metaheuristics algorithm that simulates the
group behavior of the gorilla troops is called ‘‘Gorilla Troops
Optimizer (GTO)’’ [50].

GTO is based on five operators to perform the exploitation
and exploration operations. Three operators are simulated
for the exploration phase: migration to an unexplored site,
moving to other gorillas, andmigration to a known site. These
three operators improve the searchability of the GTO for sev-
eral optimization areas and achieve more balance between the
exploitation and exploration phases. The other two operators
used for the exploitations are competition for adult females
and following the silverback.

A. EXPLORATION STAGE
According to the lifestyle of the gorillas’ group, the three
mechanisms used for the exploration phase: migration to
an unexplored site, moving to other gorillas, and migration
to a known site. Thus, all gorillas are considered candidate
solutions, and at each optimization step, the silverback is
the best solution. The selected mechanism for the migration
to an unexplored site is represented by S parameter. So,
three conditions are checked to implement one of the three
mechanisms depending on the variable’s value, rand. The
first mechanism, ‘‘migration to an unexplored site’’ is chosen
when the rand is smaller than P.Whereas, if the rand is greater
than or equal to 0.5, the second mechanism, ‘‘moving to other
gorillas,’’ is chosen. If rand is smaller than 0.5, the third
mechanism, ‘‘migration to a known site,’’ is chosen. The three
mechanisms can be modeled as follow;

GX (t+1)

=


(UB−LB)×r1+LB rand<P

(r2−C)×Xr (t)+L×H rand≥0.5
X (i)−L×(L×(X (t)−GXr (t))
+r3×(X (t)−GXr (t))), rand<0.5

(6)
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where GX (t) and GX (t + 1) are the candidate vector solu-
tions for the gorilla positions in iteration t and t + 1, respec-
tively. Xr is one gorilla selected randomly from the group. r1,
r2, r3, and rand are random values between 0 and 1 varied
each iteration. LB and UB are the minima and maximum
limits of the variables. C , H , and L are parameters that can
be determined by using the following equations,

C = (cos (2× r4)+ 1)×
(
1−

t
T

)
(7)

L = C × l (8)

H = Z × X (t) (9)

where t and T are the current and maximum iteration num-
bers, respectively. r4, l and Z are random values in range [0,
1], [−1, 1] and [−C, C] respectively. The simulation of the
silverback leadership is represented by (9). The fitness value
for all GX solutions is evaluated at the exploration stage end
and the X (t) is replaced with GX (t) if the fitness value of
GX (t) is smaller than X (t). So, the best-selected solution in
this stage can be denoted as a silverback.

B. EXPLOITATION STAGE
In the exploitation stage, two mechanisms are applied for
optimization: following the silverback and rivalry for adult
females. The parameter C can be used in the exploitation
stage to select the mechanism. Following the silverback
mechanism is chosen in case of the value of the C parameter
is greater than or equal to a preset parameter W. However,
if C is smaller than the parameter W, rivalry for adult females
is selected.

In groups created recently, the silverback is young and
strong, and all gorillas in the group follow their orders. This
mechanism is chosen in the case of C ≥ W and can be
represented mathematically by;

GX (t + 1) = L ×M × (X (t)− Xsb)+ X (t) (10)

M =

∣∣∣∣∣ 1N
N∑
i=1

GX i(t)

∣∣∣∣∣
g 1

g

(11)

g = 2L (12)

where Xsb is the best position of the silverback, N is the
number of gorillas.

When young gorillas reach adulthood, they compete with
other male gorillas to expand their range in selecting adult
females. In this case, C < W and this mechanism can be
modeled by;

GX (i) = Xsb−(2× r5−1)×(Xsb−X (t))×β × E (13)

E =

{
N1 rand ≥ 0.5
N2 rand < 0.5

(14)

where r5 is random values in the range [0, 1], and E is a
value that represents the impact of violence on the solutions’
dimensions. The fitness value for alGX solutions is evaluated
at the exploitation stage end, and the X(t) is replaced with

FIGURE 4. Basic block diagram of the proposed hybrid GTO-CN.

GX (t) if the fitness value of GX (t) is smaller than X (t). So,
the best-selected solution in this stage can be denoted as a
silverback.

VI. OPTIMIZATION OF THE PROPOSED CNN BY GTO
The GTO is applied to optimize the CNN hyperparameters.
In the present section, the details of the proposed GTO
algorithm for CNN are provided; algorithm, detailed archi-
tecture of the proposed GTO-CNN, and flow diagram. The
encoding strategy is described as that involves initializa-
tion, evaluation of the fitness function, and position updating
mechanism [37]. As illustrated in Fig. 4, GTO develops the
CNN architecture and its hyperparameters. Each gorilla acts
as a possible configuration of CNN with its hyperparame-
ters. In the proposed CNN, the last layer is a classification
layer (SoftMax) to predict the class of each sample data. The
delivered accuracy acts as the fitness value of each gorilla.

In the designed architecture, the initial learning rate of
the training process is set to be 0.001. The simulation has
been carried out using MATLAB R2018, a laptop computer
running Windows 10, 64-bit with an Intel Core i7 - 4510U
2.6 GHz processor and 16.00 GB RAM, and all tests accom-
plished to check the performance of the GTOwere carried out
using 30 populations in a maximum of 200 iterations. All the
results are stored based on the average of 25 independent run
results. Then they are compared using the obtained results.
Moreover, the dataset consisted of 224288 data sets taken
from simulating the test system as previously described.
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FIGURE 5. Flowchart diagram of the proposed hybrid GTO-CNN.

The flow of the proposed GTO algorithm is described in
Algorithm 1. Moreover, the flowchart diagram of GTO-CNN
is explained in Fig. 5. The population Xi is randomly initial-
ized and generated in the first stage to calculate the optimal
set of hyperparameters of a CNN. The constraints of the
search space are limited to the available resources, as listed
in Table 2. Also, the proposed GTO parameters are set as
W = 0.8, P = 0.03, and β = 3 to control the Gorilla Troops
movements in the pre-described search space, as identified in
Table 2. This search space can be extended for exploring the
deeper construction of the CNN based on the source and time
of computation. The proposed GTO has 15 gorillas, and each
gorilla is a vector of size 5. Thus, the dimension of the Gorilla
Troops is 15 5. The GTO iterates to calculate the optimum
configuration of the proposed CNN and their parameters in

FIGURE 6. Architecture of the proposed CNN-GTO-based AP scheme.

the search space, as listed in Table 2. In the proposed hybrid
CNN- GTO, the set of hyperparameters that ensures better
accuracy than another is the best solution (gorilla) compared
to the other lower accuracy solutions (gorilla). The fitness
value is calculated for the set of parameters (gorilla) by
using (15).

Fitness = CNN (Xi(t)) (15)

The positions of the gorilla are updated by (6), (10), and (13)
based on the values of L,C parameters.

VII. CNN-GTO BASED ADAPTIVE PROTECTION SCHEME
FOR FREEDM SYSTEM
As previously mentioned, this paper aims to develop
the CNN-GTO-based AP scheme to protect the proposed
FREEDM system. The proposed CNN-GTO is designed and
implemented to detect the fault and then classify and estimate
the fault location in lines for enhancing the FREEDM system
resiliency during the various operating conditions. The pro-
posed CNN-GTOmodel structure is illustrated in Fig. 6. First,
the three-phase currents and voltages signals are generated
from simulating the FREEDM system (under various normal
operating and fault conditions). These signals are encoded
into the GAF image as described in section 3. After that,
the images are resized as 9696 pixels. The resized images
of the three voltages and currents are fed to three proposed
CNN-GTO models, namely, CNN-GTO-I to detect the fault
in the lines, CNN-GTO-II to classify the fault type, and
CNN-GTO-III to locate the fault point. One cycle of the three-
phase currents and voltages are feeding using one sample
moving window at any arbitrary time. If the CNN-GTO-I
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Algorithm 1 GTO Pseudocode
Input the maximum iterations number, T, population size, N,
and parametersW , p and β
Randomly initialize the population Xi (i = 1, 2, . . .N )
Determine the Gorilla fitness values
While (the condition for stopping (Accuracy & Number of
iteration) has not been met),
The values of C and L are updated by (7) and (8)
For (each Gorilla (Xi)),

The position of the gorilla is updated by (6)
End
Determine the Gorilla fitness values
If (the new solutions (GX) are better than the previous

solutions (X), replace them)
Set best solution (X) as location for the silverback

End
For (each Gorilla (Xi))

If C ≥ 1 then
The position of gorilla is updated by (10)

Else
The position of gorilla is updated by (13)

End
End
Determine the Gorilla fitness values
If (the new solutions (GX) are better than the previous

solutions (X), replace them)
Set best solution (X) as location for the silverback

End
End while
Return X best Fitness, Best Gorilla

detects a fault event, the CNN-GTO-II and CNN-GTO-III are
triggered to classify the fault type and locate it.

The proposed protection method can be implemented for
practical verification using Raspberry Pi, oscilloscopes, volt-
age and current sensors, loads, photovoltaic simulator, wind
simulator, battery energy storage, AC-DC converter, DC-DC
converter, DC-AC inverter, and fault isolator devices (FIDs).
The voltage and current sensors are used for data collection
at all system buses and then send these data to the DGI
that can be implemented using Raspberry Pi. The proposed
protection scheme can be performed in the DGI, and hence,
at the fault occurrence, the DGI sends a trip signal to the FIDs
of the faulty line to isolate it. The communication between the
voltage and current sensors and the DGI and between the DGI
and line’s FIDs is implemented using the IoT platform with
Wi-Fi protocol.

VIII. SIMULATION RESULTS AND DISCUSSIONS
This section aims to evaluate the performance of the proposed
CNN-GTO-based fault detection, classification, and location
for FREEDM systems under a wide variety of operating
conditions and fault parameters. It reports results’ overall
accuracy, dependability, and security analysis to better eval-
uate the CNN-GTO models’ performance.

TABLE 3. Optimal structure and hyperparameters of the proposed
CNN-GTO models.

A. FAULT DETECTION MODEL PERFORMANCE
The optimum architecture of the proposed CNN-GTO-I gen-
erated by the proposed GTO algorithm, trained for 40 iter-
ations (epochs) using the fault detection dataset, consists of
three convolutional layers, three Maxpool layers, and three
fully-connected layers. The first convolutional layer contains
110 filters of 64 × 64 size. While the second and third
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FIGURE 7. Average CNN-GTO-I detection accuracy for each iteration.

TABLE 4. Average testing accuracy of CNN-GTO-II model and time taken.

convolutional layers contain 98 filters of size 32 × 32, and
56 filters of size 32×32, respectively. The first pooling layer
has a size of 3232, stride [2 2], and padding [0 0 0 0]. The
other two pooling layers’ sizes are 88 and 1616. The first
fully-connected layer consists of 956 neurons with a ReLU
activation function. Moreover, the number of neurons in the
second fully connected layer is 732 neurons with the TReLU
activation. Furthermore, the last fully connected layer has one
neuron for detecting the fault condition with the SoftMax
activation function. Table 3 illustrates in detail the optimum
structure of the proposed CNN-GTO-I. All weights and bases
of the layers are recorded and saved.

The plot of average classification accuracy achieved in
each iteration is illustrated in Fig. 7. The average detec-
tion accuracy is determined from the datasets of faults for
25 independent runs. It shows that the performance of the
best CNN-GTO-I architecture generated by the proposed
GTO algorithm has become stable. As depicted in Fig. 7,
the CNN-GTO-I performance is enhanced by increasing the
iterations by the GTO algorithm. Moreover, the GTO algo-
rithm has converged during the prescribed maximum number
of iterations. In contrast, the accuracy of the CNN-GTO-I has
converged at about iteration 30. The test dataset of the fault
detection is classified using the trained CNN-GTO-I with an
accuracy of 99.369%.

Figure 8 illustrates the confusion matrix for the results of
the fault detection dataset by the CNN-GTO-I obtained from
simulating the trained and tested data. The y-axis of the con-
fusion matrix represents the estimated state, while the x-axis
is the true state. The values of the main diagonal indicate the
correctly classified states, and the off-diagonal values refer to
the miss-classified states. The green highlighted boxes refer
to correctly classified states, while the red-colored boxes refer
to the miss-classified states.

As the trained and tested datasets simulated the pro-
posed CNN-GTO-I model, the confusion matrix indicates

FIGURE 8. Confused matrix for fault detection model (CNN-GTO-I).

FIGURE 9. Average CNN-GTO-II classification accuracy for each iteration.

FIGURE 10. Confused matrix for fault classification model (CNN-GTO-II).

the model’s results for different fault datasets. In this case,
224288 patterns of normal operation and faulty voltages and
currents are used to test the CNN-GTO-I. As illustrated in
Fig. 8, most fault and normal operation datasets are correctly
detected. The miss-detected states are observed for faults that
occurred at locations near the ends of the line, whereas the
heavily loaded conditions conflicted with these fault states.

B. FAULT CLASSIFICATION MODEL PERFORMANCE
The performance of the proposed fault classifier
(CNN-GTO-II) model for the FREEDM system is dis-
cussed in this section. There are ten different types of faults
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FIGURE 11. CNN-GTO-III fault location error for each iteration.

TABLE 5. Average testing Error of CNN-GTO-III model and time taken.

(AG, BG, CG, ABG, BCG, CAG, AB, BC, CA, and ABC
faults) used to evaluate the performance of the proposed
CNN-GTO-II model. This model of fault type classification
is triggered when the fault detection (CNN-GTO-I) model
detects a fault in the FREEDM lines, as illustrated in Fig. 6.
In this case, 22400 patterns of each fault type (3 phase
voltages and currents images) are used to train and test the
CNN-GTO-II. As in the CNN-GTO-I, the GTO algorithm
is applied to obtain the best architecture of the proposed
CNN-GTO-II. It trained for 40 epochs using the fault clas-
sification dataset, whereas the required iterations number for
convergence is dependent on the datasets. The optimum fit of
CNN-GTO-II parameters is illustrated in Table 2. It consists
of four convolutional layers, four Max-pool layers, and three
fully-connected layers. The convolutional layers contain 465
filters of size 64 × 64 in the first layer, 183 filters of size
6464 in the second layer, 93 filters of size 3232 in the third
layer, and finally, 87 filters of size 32×32 in the fourth layer.
The first pooling layer has a size of 2828, stride [2 2], and
padding [0 0 0 0]. The sizes of the other three pooling layers
are 88, 2828, and 1616. The first fully connected layer con-
sists of 826 neurons with a ReLU activation function. More-
over, the number of neurons in the second fully connected
layer is 493 neurons with the TReLU activation. Finally, the
last fully connected layer has ten neurons for classifying the
fault type with the SoftMax activation function. Furthermore,
the weights and biases of the CNN-GTO-II are updated using
the GTO algorithm and then saved.

The average classification accuracy achieved for the four-
fault classes (line to ground (LG), line to line (LL), double
line to ground (DLG), and three lines (3L)) in each iteration
is depicted in Fig. 9. The average classification accuracy is
determined from the faults’ datasets for 25 independent runs.
As illustrated in Fig. 9, the solution is converged after some

FIGURE 12. Buses current and voltage for scenario#.

iterations to the fitting solution. It shows that the performance
of the best-fitted CNN-GTO-II architecture generated by
the proposed GTO algorithm has become stable at the 31st
iteration.

The average accuracy of the proposed CNN-GTO-II fault
classification result is shown in Table 4. It can be observed
that the accuracy of the CNN-GTO-II is varied between 100%
and 98.62% for LL and DLG faults, respectively; never-
theless, the average accuracy of the CNN-GTO-II model is
high for the overall performance. The scheme achieved an
overall 99.14% prediction accuracy for unbalanced faults in
the FREEDM system, and only 2303 out of 22400 test cases
had incorrect phase identification.

The confusion matrix delivers important information on
the classification performance results for each fault class,
as illustrated in Fig. 10. The overall classification accuracy
of the network is then calculated through the confusion chart
output to visualize the percentage of the accuracy of the
testing data predictions.

C. FAULT LOCATION MODEL PERFORMANCE
As previously described in the fault classification model
(CNN-GTO-II), The fault location (CNN-GTO-III) model is
activated when the fault detection (CNN-GTO-III) model
detects a fault state in the lines of the FREEDM system. The
GTO algorithm is applied to train the proposedCNN-GTO-III
model for 40 iterations to obtain the best architecture and
hyperparameters. The mean square error function between
predicted and actual locations is used to obtain the optimum
results. The best fit CNN-GTO-III model parameters are
listed in Table 3. This CNN uses 22400 patterns of each fault
type to train and test the CNN-GTO-III architecture. The
weights and biases of the CNN-GTO-III structure are also
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FIGURE 13. Lines currents and voltages for scenario#.

FIGURE 14. Tripping signal for scenario#.

updated using the GTO algorithm. It consists of four convolu-
tional layers, four Maxpool layers, and three fully-connected
layers. The last fully connected layer has one neuron for esti-
mating the fault location in line with the SoftMax activation
function.

The error of the proposed CNN-GTO-III model during
the training and testing process is illustrated in Fig. 11. The
average fault location error is determined from the faults’
datasets for 25 independent runs. It is shown from the figure
that the training process is converged within 29 iterations.
The average error of the fault location result of the proposed
CNN-GTO-III for the different types of faults is shown in
Table 5. It can be observed that the percentage of mean square
error of the CNN-GTO-III is varied between 1.2% and 3.5%
for LL andDLG faults, respectively, which can deliver a com-
pletely accurate prediction for locating all types of faults. The
maximum error is less than or equal to 3.5% of the line, and it
is acceptable in short lines with lengths smaller than 20 km as
in the FREEDM systems. Moreover, the computational time
for the proposed CNN-GTO-III model is recorded in Table 5.
In conclusion, the scheme and understudy can be executed in
real-time. This refers to the short time (0.35 ms) during which
the scheme. Even in the sequential calculations scenario,

FIGURE 15. Buses current and voltage for scenario#.

FIGURE 16. Lines currents and voltages for scenario#.

FIGURE 17. Tripping signal for scenario#.

which is considered the worst case, the fault detection time
is around 1.3 ms (fault cases).
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FIGURE 18. Buses current and voltage for scenario#.

FIGURE 19. Lines currents and voltages for scenario#.

D. APPLYING THE PROPOSED PROTECTION SCHEME
TO THE FREEDM SYSTEM UNDER DIFFERENT
FAULT CONDITIONS
The proposed AP scheme has been applied and tested consid-
ering different fault conditions in the FREEDM system. The
used FREEDMarchitecture is shown in Fig. 1, and the system
parameters are represented in Table 1. Three scenarios have
been applied based on the type of the system faults as follows;

FIGURE 20. Tripping signal for scenario#.

FIGURE 21. Buses current and voltage for scenario#.

1. Three-phase fault
2. Single line to ground fault
3. Line to line fault
1. Double line to ground fault

1) SCENARIO#1 THREE-PHASE FAULT
In this scenario, a three-phase fault has been applied in line
24 between bus BB2 and bus BB4 at 1.00 sec in the FREEDM
system shown in Fig. 1. After the fault occurrence, the system
voltages and currents are violated from their nominal values.
By monitoring all the system voltage and currents, the DGI
can identify the faulty line and the type of fault. Hence, the
adaptive protection scheme sends a trip signal to open the two
FIDs that are equipped 0.001008 sec with the faulty line to
isolate it from the system and return the steady-state operation
of the FREEDM system. The tripping signal is sent from the
DGI to the FIDs through communication media via Wi-Fi,
and then the data and information are saved in the memory of
the cyber layer of the IoT platform.

Fig. 12 demonstrates the RMS current and voltage at all
FREEDM system busbars. As shown in Fig. 12, the currents
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FIGURE 22. Lines currents and voltages for scenario#.

FIGURE 23. Tripping signal for scenario#.

and voltages at all Busbars are violated and affected at the
instant of the fault occurrence. After the fault is cleared by
isolating the faulty line using the two FIDs, the system is
returned to its steady-state operation. The current and voltage
at the system lines are shown in Fig. 13. From Fig. 13(a), the
current in line 24 has become zero after the line is isolated
using the two FIDs at the line terminals, and all system lines
are in service. Fig. 14 shows the tripping signal that has been
sent to the FIDs. After the fault occurrence in 1.00 sec, the
tripping signal is sent to the FIDs of the faulty line after
0.001008 sec with, considering the sampling time, switching
time, and the communication channel delay time.

2) SCENARIO#2 SINGLE LINE TO GROUND FAULT
In this scenario, a single line to a ground fault has been
applied in the middle of line 24 at 1.00 sec. Fig.15 shows the
current and voltage profile at all system buses. After the fault
occurrence, the current and voltage at each bus are affected
until the tripping signal is sent to the FIDs of the faulty line
to isolate it and hence, retain the steady-state operation. The

TABLE 6. Performance of the proposed protection schemes with noise.

TABLE 7. Performance of the proposed protection schemes with different
DGs penetration levels.

current and voltage at all system lines are shown in Fig. 16.
It can be seen that, with a single line to ground fault at
line 24, the current is increased, and the voltage is decreased
till isolating the faulty line after sending the tripping signal to
the FIDs connected at its terminals. The relay tripping signal
is illustrated in Fig. 17, where it can be sent to the FIDs of the
faulty line after 0.00102 sec to clear the fault.

3) SCENARIO#3 LINE TO LINE FAULT
A line-to-line fault at the middle of line 24 is applied at
1.00 sec for the FREEDMsystem shown in Fig. 1. The current
and voltage at the four system buses are demonstrated in
Fig. 18, which shows the deviation of the current and voltage
signals from their nominal values after the fault occurrence.
Hence, the steady-state operation is retained by applying the
proposed adaptive protection method. The lines’ current and
voltage are investigated in Fig. 19. It can be noted that the
faulty line is isolated, and the fault is cleared by applying
the proposed adaptive protection method. The fault is cleared
after 0.001015 sec, as shown from the relay tripping signals
in Fig. 20.

4) SCENARIO#4 DOUBLE LINE TO GROUND FAULT
In this scenario, a double line to a ground fault has occurred
in the middle of the line connected between bus BB2 and bus
BB4. Fig. 21 illustrates the currents and voltages waveforms
at all system busses. The currents and voltages waveforms at
all the FREEDM system lines have been reported in Fig. 22.
Also, the relay tripping signals are represented in Fig. 23.
These results show that the proposed adaptive protection
scheme can clear the system fault by sending a tripping signal
to its FIDs connected with its terminals. Hence, after the fault
occurs at 1.00 sec, the currents and voltages at all system
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FIGURE 24. Results obtained under the presence of multi-fault.

busses are influenced till the fault is cleared after 0.00103 sec,
as shown in Fig. 23.

FIGURE 25. Results obtained under the presence of N-1 contingency.

In general, the proposed adaptive protection scheme can
clear the system fault and retain the steady-state operation
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of the system after the fault occurrence. The proposed AP
scheme based on the CNN-GTO can isolate the faulty line by
tripping the FIDs on its terminals. The DGI can monitor the
system voltage and current data, process it, indicate the faulty
line, and clear the fault. A Wi-Fi communication channel
performs the sending/receiving signals between the DGI and
the FIDs. The IoT platform has been applied to enhance the
proposed adaptive protection method. The proposed method
can clear the fault after 0.001 sec from its occurrence. Hence,
the proposed method is more sensitive and reliable in pro-
tecting the FREEDM system in the presence of different fault
conditions.

E. PERFORMANCE EVALUATION OF THE PROPOSED
PROTECTION METHOD UNDER DIFFERENT
SYSTEM UNCERTAINTIES
1) EFFECT OF NOISES ON PROPOSED PROTECTION SYSTEM
In this section, the effect of noise on the proposed detection,
classification, and location of faults modules is investigated.
The noise in the voltages and currents waveforms puts for-
ward higher requirements for the proposed CNN-GTO pro-
tection schemes. So, the proposed protection scheme needs
to have robustness and anti-noise interference ability. To test
the robustness of the proposed CNN-GTO protection scheme,
the voltage and current and voltage signals are distorted with
white Gaussian noise. The test signals have various values of
the signal-to-noise ratios (SNRs) from 20dB to 45dB, similar
to values used in protection research [33] while the training
data is un distorted as in previous cases. The performances of
the proposed CNN-GTO protection schemes are summarized
in Table 6. As illustrated in Table 6, the noise of voltages
and currents signals do not affect the performance of the
proposed protection schemes even with low SNR. In the
worst case at 20dB, the accuracy of the detection model
(CNN-GTO-I) is decreased by 0.787%, the classification
model (CNN-GTO-II) is decreased by 1.09%, and the per-
centage error for the fault location model (CNN-GTO-III) is
increased by 0.91%.

2) PERFORMANCE OF THE PROPOSED
PROTECTION SYSTEM IN THE PRESENCE OF
SIMULTANEOUS MULTI-FAULTS
The proposed protection method has been verified and tested
in the presence of multi-faults. Fig. 24 shows the results
obtained for the line-to-ground fault in line 24 between bus
BB2 and bus BB4 and line 13 between bus BB1 and bus BB3
at 1.00 sec. The currents and voltages at all system buses
and lines and the relay signals are shown in Fig. 24. The
relay tripping signals are sent to the FIDs of the faulty line
13 and line 24 after 0.00115 sec and 0.00155 sec, respectively,
to clear the faults, as shown in Fig. 24(e).

3) PERFORMANCE OF THE PROPOSED PROTECTION
SYSTEM IN THE LINE N-1 CONTINGENCIES
The proposed protection method has been tested under
the presence of the N-1 contingency. Fig. 25 shows the

TABLE 8. Comparison with other protection schemes.

obtained results of the busbars and lines currents and volt-
ages and the relay tripping signal considering the outage of
line 13 between bus BB1 and bus BB. A fault line-to-ground
occurred in line 24 between bus BB2 and bus BB4 at 1.00 sec.
The proposed protection scheme clears the system fault, and
the relay tripping signal is sent to the FIDs of the faults line
after 0.001128 sec.

4) PERFORMANCE OF THE PROPOSED PROTECTION
SYSTEM IN DIFFERENT DGS PENETRATION LEVELS
The proposed protection scheme is investigated by consider-
ing the change in the DGs penetration levels in the FREEDM
system. The uncertainty of DERs is regarded by different DGs
penetrations; (change from 0 to 30% of the rated load with a
variation of 5%, so six cases are recorded). Table 7 shows
the performance of the proposed protection method with
different DGs penetration levels. The accuracy of the fault
detection and classification models is also reported, and
the fault location model error is obtained. The proposed
method can operate under the different DGs penetration
levels.

F. COMPARATIVE ANALYSIS
The proposed AP scheme-based CNN-GTO performance is
compared with the existing schemes using the same simula-
tion conditions for MGs’ fault detection, classification, and
location. Therefore, SVM [51], CNN [48], fuzzy logic [52],
and Wavelet-based CNN [33] are selected for this purpose.
Table 8 summarizes the performances and accuracy of these
methods. It can be observed from the comparison that the pro-
posed AP scheme-based CNN-GTO is surpassed the existing
AP schemes for MGs protection.

IX. CONCLUSION
This paper introduced an AP scheme for the FREEDM sys-
tem based on the improved CNN by GTO algorithm. The
GTO is proposed to obtain an optimal hyperparameter of the
convolution, pooling, fully connected layers of the proposed
CNN. Three models of the AP are proposed; CNN-GTO-I
for fault detection, CNN-GTO-II for fault classification, and
CNN-GTO-III for fault localization. The proposed method
has been applied and tested on the FREEDM microgrid sys-
tem using a MATLAB/Simulink environment. The overall
accuracy, dependability, and security analysis of results to
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better evaluate the performance of the CNN-GTO models
is reported. Different types of faults, such as three-phase
fault, line-to-ground fault, line-to-line fault, and double line
to ground fault, are applied to prove the effectiveness of
the proposed protection scheme. The performance of the
proposed CNN is evaluated against the variation of the MG
parameters such as operation modes, DG penetration lev-
els, load variations, and MG topologies. For the sake of
comparison, a comparative analysis of the existing schemes
is performed. The proposed CNN-GTO-based AP scheme
improves accuracy over the SVM, CNN, fuzzy logic, and
WT-based CNN.
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