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ABSTRACT Massive multiple-input multiple-output (MIMO) technology is expected to achieve significant
gains in both signal-to-noise-plus-interference ratio (SINR) and throughput for 5G cellular wireless net-
works. Efficient and highly accurate channel state information (CSI) acquisition at the base stations (BS)
is essential to achieve the potential benefits of massive MIMO systems. However, the inadequate number
of orthogonal pilot sequences used for CSI estimation leads to erroneous channel estimation as it causes
interference between pilot sequences. This phenomenon is coined pilot contamination and severely limits
the system performance. Therefore, we address in this paper the pilot contamination problem in massive
MIMO Cloud-Radio Access Networks systems. Leveraging on a real telecom operator data delivered by
Call Detail Records (CDR), our objective is to maximize the average uplink achievable rate by reducing the
effect of pilot contamination in massiveMIMOCloud-Radio Access Networks (C-RAN). As such a problem
is a non-linear integer problem that has no solution in polynomial time, we develop a two-stage solution to
solve it. First, a coalition game is proposed where Remote Radio Heads (RRHs) gather into clusters with
random user-pilot allocation. Then, two greedy heuristics are applied to match each user in the cluster with
a given pilot. The goal is to further improve the average uplink rate achieved in the first stage. Simulation
results show that our heuristic solutions for pilot contamination mitigation outperform the traditional pilot
allocation solution and a state-of-the-art pilot allocation scheme based on large-scale fading in terms of
average uplink achievable rate and SINR.

INDEX TERMS Call detail records, coalition game, cloud-radio access networks, ε-greedy algorithm,
greedy algorithm, massive MIMO, pilot contamination.

I. INTRODUCTION
The fifth generation (5G) wireless communication networks
are expected to fulfill the demand for higher data rates.
Therefore, many technologies have been proposed to improve
the communication rates of 5G [1]: among them, mas-
sive multiple-input multiple-output (MIMO) is considered
as a promising solution [2]. Massive MIMO technologies
is an extension of MIMO which essentially groups together
antennas at the transmitter and receiver to provide better
throughput and spectrum efficiency. Through the use of
spatial multiplexing, massive MIMO technologies allow the
transmission of multiple parallel data streams over the same
time-frequency resources. This leads to increase the capacity
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and data rate without the need for more spectrum or more
base stations (BS). In this architecture, the conventional BS
is equipped with hundreds of antennas, which are processed
coherently to increase both the signal quality and the data rate
on the uplink and downlink [3]. As the number of antenna
increases in amassiveMIMO system, radiated beams become
narrower and spatially focused toward the user. These beam
antennas help focus energy into a smaller region of space,
leading to increase in the desired user throughput while
reducing the interference to their neighboring.

For signal detection and precoding, massive MIMO relies
on channel state information (CSI). CSI is the information
of the state of the communication link from the transmitter
to the receiver. It represents the combined effect of fading,
scattering, and power decay with distance. With perfect CSI,
the performance of massive MIMO can grow linearly with
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the number of transmitting or receiving antennas [4]. For con-
ventional channel estimation in time division duplex (TDD)
massive MIMO systems, the base station can estimate the
downlink channel with the help of channel reciprocity-based
operation. During uplink, users in every cell send their pilot
sequences to their serving base station. Based on these pilot
signals, the base station is able to estimate the uplink channels
by using the received pilot data [5]. This estimated CSI is
then used in signal detection on uplink and in precoding on
downlink.

Thus, the accuracy of channel estimation is one of the key
factors that significantly influences the performance of mas-
sive MIMO systems. In pilot-based channel estimation, due
to the limitation of pilot resources, the same pilot sequences
are reused by various users in different cells. This causes
higher inter-cell interference that seriously affects the channel
estimation accuracy at the BS and consequently hinders the
performance of massive MIMO. This effect is called pilot
contamination (PC) and cannot be eliminated even when the
number of BS antennas goes to infinity [6]. Many studies
have been proposed to mitigate the impact of pilot con-
tamination. However, most of these research are based on
pilot allocation algorithms, where the purpose is to find the
best user pilot allocation (UPA) that minimizes the nocive
effect of pilot contamination. Thus, such solutions suffer from
high complexity, especially when the number of users in the
network is high. Another approach is to have recourse to
clustering methods. In this situation, the base stations (BSs)
are grouped into clusters and managed by a central unit.
This solution reduces the impact of PC in any cluster of
cells as their serviced users are allocated orthogonal pilots.
Hence, PC is totally eliminated within the same cluster. The
concept of BS clustering can be achieved in the Cloud-Radio
Access Networks (C-RAN), where the conventional base
station is broken down into a Remote Radio Head (RRH)
and a Base Band Unit (BBU). While the BBUs are pooled
in a cloud data center, the RRHs are distributed across mul-
tiple sites. Moreover, the RRHs are connected to the BBUs
via high-performance optical fronthaul links. This separation
allows the RRHs to be grouped together and form clusters.
In this paper, we investigate the problem of pilot contamina-
tion for massive MIMO systems for C-RAN. Our proposed
scheme aims to maximize the average uplink achievable rate
by reducing the effect of pilot contamination. As such a
problem is an integer non-linear programming problemwhich
has no solution in polynomial time, we develop a two-stage
solution to solve it. The first stage is casted as a coalition
game, where the RRHs organize themselves into clusters.
Since the RRHs belong to the same cluster shared the same
pool of orthogonal pilots, this minimizes the impact of PC
by reducing the number of disjoint RRHs. Note that, at this
stage, pilots that are available for the cluster are randomly
allocated to users. Then, two greedy heuristics are applied to
match each user in the cluster with a given pilot. The goal is
to further improve the total average uplink rate achieved in
the first stage.

II. RELATED WORK
Since pilot contamination (PC) problem has a serious impact
on the performance of massive MIMO systems, many solu-
tions have been proposed to curtail its effect. Theworks in [7],
[8] proposed a time-shifted pilot method to reduce the effect
of PC. The idea is to divide cells into several clusters, where
the cells in each cluster transmit pilots in different time slots.
The proposed scheme ensures that there is not PC among
users from different clusters. However, these studies only
considers PC between clusters (inter-cell interference) while
intra-cell interference is totally ignored. The authors in [9],
[10], and [11] used the Fractional Pilot Reuse method (FPR)
to reduce PC. Generally, this method can be classified into
two categories. The first divides the cells into two groups.
The cells in the same group are assigned with the same pilot
sequences, while those in different cells are assigned with
the orthogonal pilot sequences to mitigate PC [9], [10]. The
second category divides the users into two groups according
to PC levels, namely center users who suffer from modest
PC and edge users who suffer from severe PC. A cell-center
pilot group is reused for all cell-center users, while a cell-edge
pilot group is applied for edge users in adjacent cells [11].
This method improves the quality of service (QoS) of edge
users at the cost of a slight rate loss of center users. Note that,
all mentioned works assign the pilot sequences randomly to
users.

Power control is also a promising method to reduce PC.
The authors in [12] proposed a power control that consists
in splitting coherent time into two parts and sends pilots
in different time slots. In [13], the transmit power is con-
trolled where user groups with significant cross gains choose
different transmission time slots, or the transmit power of
users assigned with identical pilot sequences is reduced.
However, this scheme needs a control mechanism to ensure
the pilot sequences are synchronous in adjacent cells. In [14],
the authors developed techniques based on existing long-
term evolution (LTE) measurements - open loop power con-
trol (OLPC) and pilot sequence reuse schemes that avoid
PC within a group of cells. Furthermore, the authors in [15]
mitigated pilot contamination by optimizing the pilot power
of each user, while both pilot power and data power are jointly
optimized in [16]. However, when the number of BS antennas
increases the power control method becomes inefficient.

Various pilot allocation schemes have been developed to
reduce the effect of PC. A Smart Pilot Assignment (SPA)
scheme is proposed in [17] to improve the performance of
users with severe PC. Using the large-scale characteristics
of fading channels, the BS firstly measures the inter-cell
interference of each pilot sequence caused by the users
with the same pilot sequence in other adjacent cells. Then,
the proposed SPA method assigns the pilot sequence with
the smallest inter-cell interference to the user having the
worst channel quality in a sequential way to improve its
performance. The authors in [18] proposed an Adaptive Pilot
Allocation (APA) scheme to mitigate the effect of PC. The
objective is to improve the total achievable throughput in the
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network. As the users with the smallest large-scale fading
achieve the lowest user throughput, the proposed algorithm
tries to improve their throughput by assigning them unique
orthogonal pilot sequences. The proposed scheme start by
sorting the users in ascending order according to their large-
scale fading. Then, it computes the number of unique orthog-
onal pilots, denoted by P, that can be assigned to the first
P users with the lowest large-scale fading. After that, these
P users are assigned orthogonal pilot sequences that are not
re-used by any other user in the system, which significantly
reduces the inter-cell interference and improves the total
achievable throughput in the network. To reduce the effect
of PC, the authors in [19] and [20] develop an algorithm
for pilot sequences allocation. A heuristic solution for pilot
allocation was formulated in [19]. The aim is to maximize
the target cells achievable sum rate. To solve the latter, the
users in the network are divided into two groups: edge and
center users. The orthogonal pilots are allocated to edge users
in the different cells, whereas center users share the avail-
able pilots. In [20], the authors present two game-theoretic
approaches to reduce PC, where the players are the BSs.
The first game is a non-selfish game as the payoff function
of the player takes into account both suffered interference
and caused interference. In the second one, the players are
selfish and their payoff function only considers the suffered
interference.

The negative impact of the imperfect channel state infor-
mation (ICSI) on the performance of massive MIMO sys-
tems has been addressed in [21], [22]. The authors in [21]
modeled and analyzed the impact of random radio-frequency
(RF) mismatches on the performance of linear precoding
in a TDD multi-user massive MIMO system. By consid-
ering the channel estimation error, they used the truncated
gaussian distribution to model the RF mismatch. They also
derived closed-form expressions of the output signal-to-
interference-plus-noise ratio for maximum ratio transmission
and zero-forcing precoders. Simulation results showed the
critical impact of erroneous channel estimation on the per-
formance of massive MIMO systems. In [22], the authors
developed a novel closed-form uplink and downlink spec-
tral efficiency (SE) expressions that take imperfect channel
estimation into account. This study used statistical chan-
nel cooperation power control (SCCPC) to mitigate inter-
user interference. A novel channel prediction framework that
integrates the imperfect channel estimation of the massive
MIMO-OFDM into the deep neural network scheme is pro-
posed in [23]. Numerical results proved that a deep neural
network is an efficient method for the imperfect channel esti-
mation in massive MIMO-OFDM systems. It outperformed
the conventional least square method based on interpolation
and achieved higher channel estimation accuracy.

Game theory has been more widely used to mitigate PC.
In [24], a distributed algorithm based on a coalition game
was proposed for pilot allocation between cells. Instead of
modeling the user pilot allocation (UPA) problem, the authors
propose to divide equally the orthogonal pilots between dif-

ferent cells. The goal is to maximize the average spectral
efficiency of each cell. Thus, each cell, that has its own pool
of orthogonal pilots, searches to form clusters with other cells
to gain access to more pilots and serve more users. In [25],
users are considered as players where the purpose is to find
the best partition to cluster the players to maximize network
performance. The idea is that users in the same coalition share
the same pilot. The algorithm starts from random clustering.
Then, each user will move to the coalition that improved
its performance. At the end, the game will reach a stable
partition, which means no user can not find a better coalition
to switch to. However, this study focused on user cluster-
ing, which increases the complexity of finding the best user
partition, especially that the number of players in massive
MIMO systems is expected to be enormous. Unlike all the
aforementioned works, our study benefits from the physical
separation between the BBUs and the RRHs to mitigate the
effect of pilot contamination on the performance of massive
MIMO systems. The originality of our work is the integration
of massiveMIMO technologies in the C-RAN context, where
the RRHs are grouped into clusters that shared the same
pool of orthogonal pilots. This leads to fully eliminating
intra-cell interference and reducing the effect of inter-cell
interference through dynamic clustering formation. In addi-
tion, our approach takes into account the variation of traffic
load conditions delivered by the Calls Detail Records (CDR)
of a real telecom operator. Themain contributions of our work
can be summarized as follows:

• We investigate the pilot contamination (PC) problem for
time division duplex (TDD) massive MIMO systems
in the C-RAN architecture. Our objective is to maxi-
mize the average uplink achievable rate by reducing the
impact of pilot contamination.

• We prove that the optimal user-pilot allocation problem
that reduces the effect of PC while maximizing the
average uplink achievable rate is a NP-hard problem.

• To reduce the high computational complexity of such
a problem, we develop a two-stage solution to mitigate
the effect of PC. First, a coalition game is proposed to
reduce PC. Thus, the RRHs organize themselves into
clusters where the users within the same cluster share
orthogonal pilot sequences. At this stage, the RRHs are
considered as players which reduces the complexity of
finding the best partition in comparison with [25] (i.e.,
the number of RRHs to be clustered is smaller than
the number of users). Further, the pilots are randomly
allocated to the users in each cluster. According to the
output of the first stage, two heuristic solutions, namely
Greedy and ε-Greedy algorithms, are applied in each
cluster to improve the total average achievable uplink
rate by choosing to which user a given pilot should be
allocated.

• Our solution fully eliminates the intra-cell interference,
where the users within the same cluster are allocated
orthogonal pilot sequences, and reduces the effect of
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inter-cell interference by finding the best user pilot allo-
cation (UPA).

• To reduce the signaling overhead, our approach can be
executed in two different times-scales: the large time
scale, which corresponds to each hour of the day, and
the small time scale that represents the user arrivals.
More precisely, our two heuristic solutions, Greedy and
ε-Greedy algorithms, are applied at each user arrival
to immediately assign it the best free pilot, while the
clustering stage can be executed sequentially at each
hour of the day to enhance the total network performance
expressed in term of the uplink achievable rate.

• For a realistic scenario, we evaluate our proposed solu-
tion based on a real Calls Detail Records (CDR) dataset
and study its complexity.

The rest of this paper is organized as follows. Section III
describes the system model. In Section IV, we formulate the
problem of user pilot allocation (UPA) and study its complex-
ity. In Section V, the devised pilot mitigation algorithm based
on a coalition game is presented. Our heuristic solutions for
UPA are introduced in Section VI. Section VII describes the
implementation of our solution for pilot contamination (PC)
mitigation. Simulation results are presented in Section VIII.
Finally, concluding remarks are provided in Section IX.

III. SYSTEM MODEL
Consider the uplink of time division duplex (TDD) massive
MIMO systems in the Cloud-Radio Access Networks (C-
RAN) as shown in Fig. 1. We deem byR = {r1, r2, · · · , rR},
and B = {b1, b2, · · · , bB} the sets of R RRHs and B BBUs
respectively. In this work, we assume that RRH r is equipped
with M antennas and can be associated with at most one
BBU. Each RRH can cover an area with radius rc. Since the
BBUs are physically separated from the RRHs in the C-RAN
architecture, many RRHs can be grouped into one BBU and
form a single cluster. Users that belong to a single cluster
(i.e., are served by the same BBU) equally share the total
bandwidth allocated to the BBU, deemed by Wb. We denote
by U = {u1, u2, · · · , uU } the set of U active users that are
uniformly distributed in the network. User u is equipped with
a single antenna and is associated to its RRH r according
to the Call Detail Records (CDR) presented in [26]. This
is a data structure that contains spatial and temporal data
information about users association. More precisely, for each
user, we know the user identity, as well as the user-RRH asso-
ciation as a function of date and time of the day. LetUr denote
the set of users served by RRH r , where Ur << M [3], [27].

We denote by βurr ′ the large-scale fading between user u
attached to RRH r and interfering RRH r ′. It depends on both
the path loss and shadow fading and can be expressed as [28]:

βurr ′ =
γ urr ′

(durr ′/rc)
α
, (1)

where γ urr ′ is the shadow fading, durr ′ is the distance between
user u attached to RRH r and RRH r ′, and α is the path
loss exponent. As the distance between user u and RRH r is

FIGURE 1. Uplink interference in massive MIMO systems in C-RAN
context.

much larger than the distance between the antenna elements,
we assume that βurr ′ is independent of the antenna index. Fur-
thermore, we denote by gurr ′ the small-scale fading between
user u attached to RRH r and RRH r ′. The small-scale fading
is assumed to be statistically independent for all users and
exponentially distributed with unit mean.

Let hurr ′ ∈ C
M×1 represent the channel gain between RRH

r ′ and user u attached to RRH r . It depends on large-scale
fading and small-scale fading and can be expressed as [29]:

hurr ′ =
√
βurr ′g

u
rr ′ (2)

In time division duplex (TDD) mode, data transmission is
divided into coherence frames, as shown in Fig. 2. Coher-
ence frames depend on both the coherence time Tc and the
coherence bandwidthWc. In each frame, the channel between
user u and its serving RRH r has a constant channel response.
Consequently, each frame contains S = Tc ·Wc transmission
symbols [30], [31]. Therefore, the channel coherence frame
limits the length of the TDD frames. Based on the concept
of reciprocity between the uplink and downlink channels,
a TDDmassive MIMO C-RAN system works in three phases
during each coherence frame. In the first phase, all users
in all cells transmit their pilot sequences synchronously to
their corresponding RRHs. Based on the pilot sequences, the
RRHs estimate their uplink channel matrices. Then, the users
transmit their uplink data symbols, which are processed at
the RRHs by utilizing the channel estimations. In the last
phase, based on channel reciprocity in TDD massive MIMO
mode, each RRH precodes the downlink data according to the
estimations obtained in the first phase and then transmits the
precoded data symbols to its users.

A. CHANNEL ESTIMATION PHASE
In this phase, all users simultaneously send pilot sequences
to their corresponding RRHs to estimate the propagation
channels between users and RRHs, and subsequently detect
the transmitted user data. In time division duplex (TDD)
mode, the length of pilot training sequences is proportional to
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FIGURE 2. TDD frame.

the number of active users rather than that of RRH antennas.
Assuming that τp symbols out of S are allocated for pilot
signaling, then the remaining S−τp symbols are used for data
transmission. The τp symbols allow only τp orthogonal pilot
sequences. More precisely, only τp users in the entire system
can transmit pilots without interfering with other users. Thus,
in massive MIMO C-RAN systems, where the number of
users is expected to be large, only users belonging to the
same cluster, managed by the same BBU, are guaranteed to
have orthogonal pilot sequences. Hence, the same set of pilot
sequences are reused for users in other clusters, making the
estimations of one RRH contaminated with channel compo-
nents of users serviced by other RRHs [27] in different clus-
ters. This effect, known as pilot contamination (PC), curbs the
performance of massive MIMO systems for both uplink and
downlink.

We denote by 9r = [91
r , · · · , 9

Ur
r ]T of dimension Ur ×

τp, the pilot matrix that holds orthogonal pilot sequences
assigned to the Ur users served by RRH r and satisfying
9r × 9

H
r = IUr τp. Accordingly, we deem by Yr ∈ CM×τp

the received signal at RRH r . It can be expressed as:

Yr =
√
pp
∑
r ′∈R

∑
u∈Ur ′

hurr ′ (9
u
r ′ )

T
+ Zr , (3)

where pp denotes the pilot transmit power, and Zr ∈ CM×τp

is the additive white Gaussian noise (AWGN) defined as
CN(0, δ2z ).

To avoid the intra-cell interference among users in the same
cluster, we assume that the number of users in one cluster is
less than or equal to the number of pilot sequences in one
time frame (i.e., only τp users in one cluster can be served
simultaneously without interfering with each other).

We define the binary variable apr,u as follows:

apr,u =

1 if pilot p is allocated to user u attached
to RRH r ,

0 otherwise.
(4)

Each RRH correlates its received pilot signals with its
own orthogonal pilot signals while all users in other clusters
contribute to PC. Thus, the channel estimation of user u
attached to RRH r can be obtained by correlating Yr with
(9u

r )
∗ as [28]:

h̃ur = hurr (9
u
r )
T (9u

r )
∗

+

∑
r ′ 6=r
r ′∈R

∑
u′∈Ur ′

hu
′

rr ′ (9
u′
r ′ )

T (9u
r )
∗
+

1
√pp

Zr (9u
r )
∗

= hurr +
∑
r ′ 6=r
r ′∈R

∑
u′∈Ur ′

τp∑
p=1

apr,ua
p
r ′,u′h

u′
rr ′ + w

u
r , (5)

where (.)∗ denotes the complex conjugate, and wur is the
equivalent noise.

B. DATA PHASE
During the data phase, the received signal at RRH r can be
expressed as:

yr =
√
pt
∑
r ′∈R

∑
u∈Ur ′

hurr ′x
u
r ′ + nr , (6)

where pt denotes the uplink data transmit power, xur ′ is the
normalized symbol transmitted by user u associated to RRH
r ′ with E

{∣∣xur ′ ∣∣2} = 1, and nr ∈ CM×1 denotes the AWGN

noise vector with E
{
nrnHr

}
= IM .

Using the channel estimate of user u in (5), the maximum
ratio (MR) detector is employed by RRH r to separate the
data transmitted by user u as [32]:

x̃ur = (h̃ur )
Hyr

=
√
pt (hurr )

Hhurrx
u
r︸ ︷︷ ︸

Desired signal

+
√
pt
∑
u′ 6=u
u′∈Ur

(hurr )
Hhu

′

rrx
u′
r

︸ ︷︷ ︸
intra−cell interference

+
√
pt
∑
r ′ 6=r
r ′∈R

∑
u′∈Ur ′

∑
m∈R

∑
n∈Um

τp∑
p=1

apr,ua
p
r ′,u′ (h

u
rr )

Hhnrmx
n
m

︸ ︷︷ ︸
pilot contamination

+
√
pt
∑
m6=r
m∈R

∑
n∈Um

(hurr )
Hhnrmx

n
m

︸ ︷︷ ︸
inter−cell interference

+ wur︸︷︷︸
uncorrelated noise

(7)

where

wur = (hurr )
Hnr

+

∑
r ′ 6=r
r ′∈R

∑
u′∈Ur ′

τp∑
p=1

apr,ua
p
r ′,u′ (h

u
rr ′ )

Hnr + (wur )
Hnr . (8)

In (7), the first term denotes the desired signal component, the
second term represents the intra-cell interference, the third
term is PC, the fourth term denotes the inter-cell interfer-
ence, and the last term presents the uncorrelated interference
and noise which decreases substantially by adding more BS
antennas and goes to zero when the number of BS antennas
is infinite [33], [34].

According to (7), the uplink SINR of user u in RRH r can
be expressed as in (9). However, when the number of BS
antennasM goes to infinity, the uplink SINR achieved by user
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TABLE 1. Notation for the system model.

u attached to RRH r is proportional to its large-scale fading
coefficients [27]. Therefore, (9), as shown at the bottom of
the next page, amounts to the following:

SINRur =
(βurr )

2∑
r ′ 6=r
r ′∈R

∑
u′∈Ur ′

∑τp
p=1 a

p
r,ua

p
r ′,u′ (β

u′
rr ′ )

2
. (10)

Consequently, the corresponding average uplink achiev-
able rate of user attached to RRH r can be presented as:

Cu
r = (1− µ0)Wu log2(1+ SINR

u
r ), (11)

where µ0 =
τp
Tc

represents the loss of spectral efficiency
caused by transmitting uplink pilot to estimate the channel,
which actually is the proportion of the pilot length τp and
the channel coherence time Tc. Wu represents the channel
bandwidth allocated to user u.

It is clear that the channel estimation h̃ur of user u attached
to RRH r is a linear combination of the channels hu

′

rr ′ of
users in all cells having the same pilot sequence, which is
the cause of the PC problem. It is also clear that the AWGN
noise and the small-scale fading coefficients approach zero
as the number of BS antennas M goes to infinity. However,
the average uplink achievable rate is still limited by PC and
cannot increase even if we increase the transmit power pt
or pp. In the following, we address the problem of UPA.
Our goal is to improve the average uplink achievable rate
by reducing the effect of PC. Thus, we develop a two-stage
solution to achieve the latter target. In Table 1, we summarize
the notation for the system model.

IV. USER PILOT ALLOCATION (UPA) PROBLEM
As shown in (10), the average uplink achievable rate of user
u attached to RRH r can be improved by reducing the effect
of pilot contamination (PC) expressed in the denominator of
SINR in (10). This is done by suitably assigning the available

pilots to the users. Thus, our optimization problem (P) con-
sists in finding the optimal user pilot allocation (UPA) that
maximizes the total average uplink achievable rate. Accord-
ingly, problem (P) can be written as follows:

maximize
∑
r∈R

∑
u∈Ur

Cur (12)

subject to apr,u 6= apr,u′ , ∀(u, u
′) ∈ Ur , u 6= u′ (13)

Constraints (13) guarantee that users in the same cluster are
allocated orthogonal pilot sequences.

A. COMPLEXITY ANALYSIS
The optimization problem presented in (12) can be classified
as anNP-Hard problem.We can do this by applying theGraph
Coloring problem (whose optimization is a well-known NP-
Hard problem) to our UPA problem. Graph Coloring [35] is
the problem of assigning colors to the elements of a graph
(edges and vertices) subject to certain constraints. In its sim-
plest form, it is a way of coloring the vertices of a graph
such that no two adjacent vertices are of the same color; this
is called a vertex coloring. Let the vertices of the graph be
the pilots, and the edges be the users. Using Graph Coloring
approach, the problem of UPA consists in coloring the con-
flict graph according to this constraint: vertices that are joined
by an edge are given different colors (i.e., once two users
are adjacent, we should avoid assigning the same pilot to
these users). The Graph Coloring problem is known to be NP-
complete [36], which means that the optimization problem of
UPA (12) must be NP-hard, and it cannot be solved optimally
in polynomial time.

Although the optimal solution can be obtained through
exhaustive search. However, this requires exploring all pos-
sible user pilot associations (UPA) to find an optimal com-
bination of users and pilots that maximize the total aver-
age uplink achievable rate, while satisfying all constraints.
Consequently, the computational complexity for obtaining
the optimal solution using exhaustive search is in O(Uψ )
which becomes intractable when the number of users is large.
To apply the UPA algorithm to practical networks and feasi-
bly solve the problem, we develop a two-stage solution tomit-
igate the effect of PC. First, a coalition game (CG) is proposed
to reduce the effect of PC through RRHs clustering. Second,
two greedy heuristics are applied in each cluster to improve
the total average uplink achievable rate by associating each
user properly to a given pilot sequence.

V. PILOT CONTAMINATION MITIGATION AS A
COALITION GAME
To reduce the required complexity for finding the optimal
solution of (P), we present in this section an approach based
on a coalition game theory (CG) to mitigate the effect of
PC. Due to the limitation in the number of orthogonal pilot
sequences, the same pilot sequences are reused in the differ-
ent clusters, which amplifies the effect of PC. The idea is that
the RRHs organize themselves into clusters in order to reduce
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the number of disjoint RRHs, where the users within the
same cluster share orthogonal pilot sequences. Thus, instead
of proposing an algorithm for pilot allocation to decrease the
effect of PC, we propose to find the best set of RRHs that
can be clustered together such as the number of users in each
cluster is less than or equal to the number of orthogonal pilot
sequences. Note that, at this stage, the pilots in each cluster
are randomly assigned to the serviced users.
Theorem 1 (Coalition Partition): Acoalitional structureS

is a partition of R. It is a set of disjoint clusters {S1, . . . , Si}
where Si represents an agreement between the RRHs to be
associated with a single BBU such that:

Si ⊆ S, i = 1 . . .R
Si ∩ Sj = ∅, i 6= j⋃R

i=1 Si = R
(14)

Theorem 2 (Coalition Value): A coalition value υ(Si), is a
real number that quantifies the total utility that the players
(i.e., RRHs) can get from coalition Si. In our study, υ(Si)
represents the total average uplink achievable rate that can
be achieved in cluster Si. It can be written as:∑

r∈Si

∑
u∈Ur

Cur (15)

Theorem 3 (Deviation): Given two coalitional structures
S = {S1, . . . , SL} and T = {T1, . . . ,TK }, RRHs prefer to
gather up into T instead of S, if the global network utility
achieved in T is strictly greater than in S:

K∑
i=1

υ(Ti) >
L∑
i=1

υ(Si). (16)

The coalition formation algorithm which produces the best
coalition structure is described in Algorithm 1. Starting from
a random initial coalitional structure, such an algorithm
explores all possible partitions, given by the Bell number Br ,
and selects the best one, which maximizes the total average
uplink achievable rate presented in (10).

As mentioned earlier, in the first stage, we ignore the UPA.
Thus, in the second stage, two heuristic solutions, namely
Greedy and ε-Greedy algorithms, are applied in each coali-
tion (i.e., cluster) resulting from our first stage to improve the
total average uplink achievable rate.

VI. HEURISTIC SOLUTIONS FOR USER PILOT
ALLOCATION (UPA) PROBLEM
At this stage, the best coalitional structure S is obtained
according to the first stage (i.e., RRH coalitions are known).

Algorithm 1 Coalition Formation Algorithm
1: Initialize: S1,S∗ = S1
2: Output: S∗
3: For i = 1, . . . ,Br
4: Calculate the utility achieved by partition Si;
5: If Si is preferred over S∗ according to (16)
6: S∗ = Si;
7: End
8: End

For each coalition Si ⊂ S (i.e., cluster), we know the
number of users in each cluster as well as the set of free

pilots denoted by P∗Si =
{
p∗1, .., p

∗

|P∗Si |

}
(i.e., pilots are not

assigned to users in cluster Si). The two algorithms for user
pilot associations (UPA) start by comparing the number of
users in each cluster with the number of free pilots devoted
to this cluster. If card(P∗Si ) is equal to zero (i.e., there is
no free pilots in cluster Si ), then the algorithm stops and
the pilots remain randomly allocated to users according to
the first stage. However, when card(P∗Si ) is greater than zero
(i.e.,, the total number of pilot sequences allocated to cluster
Si is greater than the total number of users belonging to
this cluster), one of the two heuristic solutions for UPA can
be applied to the clusters formed by our devised coalition
game (CG).

A. GREEDY UPA
The purpose of this approach is to maximize the total average
uplink achievable rate of the target cluster by reducing the
effect of deleterious pilot contamination (i.e., caused by users
that are assigned to the same pilot sequence in other clusters).
This can be done by finding the best user pilot association
(UPA). Given a cluster Si, we deem by USi the set containing

all users belonging to Si, and by P∗Si =
{
p∗1, .., p

∗

|P∗Si |

}
the set

of free pilots in Si. Each user u ∈ USi chooses randomly a
pilot p∗i ∈ P∗Si and computes its new uplink achievable rate
according to (10). If this allocation enhances user u uplink
achievable rate, then the value of the binary variable a

p∗i
Si,u

is set to 1 (i.e., pilot p∗i in cluster Si is allocated to user u).
Moreover, the previous pilot p used by user u in the first stage
will be free to be allocated to other users within the same
cluster (i.e., apSi,u = 0). Otherwise, user u keeps its previous
pilot. These steps will be repeated for each user in USi . Note
that, at the end of the round, each user u assumes that it got

SINRur = E


∣∣(hurr )H hurr ∣∣2∑

u′ 6=u
u′∈Ur

∣∣∣(hurr )H hu′rr ∣∣∣2+∑m6=r
m∈R

∑
n∈Um |(h

u
rr )H hnrm|

2
+
∑
r ′ 6=r
r ′∈R

∑
u′∈Ur ′

∑
m∈R

∑
n∈Um

∑τp
p=1 a

p
r,ua

p
r ′,u′ |(h

u
rr )H hnrm|

2
+
|wur |

2

pt


(9)
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a sub-optimal pilot allocation. We summarize the proposed
solution in Algorithm 2.

Algorithm 2 Greedy Algorithm
1: Initialize: S = {S1, . . . , SI }
2: Output: UPA
3: For i = 1, · · · , I
4: For all users u ∈ USi
5: Compute current uplink achievable rate, using

current pilot p assigned to user u ∈ USi from
the first stage, according to (10);

6: Choose a new pilot p∗i ∈ P∗Si ;
7: Compute the new uplink achievable rate

using the new UPA;
8: If new uplink achievable rate is greater than

current uplink achievable rate
9: a

p∗i
Si,u = 1, apSi,u = 0;

10: P∗Si=P
∗
Si\p
∗
i ;

11: P∗Si=P
∗
Si

⋃
{p};

12: End
13: End
14: End

B. ε-GREEDY UPA
The epsilon-Greedy solution, ε-Greedy, is another heuristic
method employed for UPA. Unlike the Greedy algorithm,
for each round, each user u ∈ USi has probability ε to
select a random pilot p∗i ∈ P∗Si from the free set of pilot
sequences P∗Si , and probability 1− ε to keep its current UPA.
At the initial step, each user u selects randomly a number q
between 0.0 and 1.0. If the selected q is greater than ε, then
u chooses a random pilot p∗i ∈ P∗Si and computes its new
uplink achievable rate according to the new allocation. If the
new uplink achievable rate is higher than the current uplink
achievable rate, then pilot p∗i is assigned to user u. Otherwise,
user u keeps its current pilot assignment. Contrarily, when
q is less than ε, the current user u keeps its current pilot
assignment. Note that this step is repeated n times for each
user u in cluster Si. Algorithm 3 summarizes the ε-Greedy
solution.

As illustrated in the simulation section, ε-Greedy algo-
rithm outperforms the Greedy algorithm even when the
number of free pilots increases in a cluster. In fact, when
the ε-Greedy approach is used for UPA, each user has the
opportunity to explore different UPA for n times, to find
a sub-optimal pilot allocation that improves users uplink
achievable rate. However, when the Greedy algorithm is
applied for UPA, each user gets only one attempt to explore
a new UPA to enhance its performance in term of uplink
achievable rate.

VII. USER PILOT ALLOCATION IMPLEMENTATION
For the implementation of our solutions (clustering through
a coalition game (CG), Greedy, and ε-Greedy solutions), the

Algorithm 3 ε-Greedy Algorithm
1: Initialize: S = {S1, . . . , SI }, n, ε
2: Output: UPA
3: For i = 1, · · · , I
4: While n > 0 do
5: For all users ∈ USi
6: Select q;
7: If q > ε

8: Compute current uplink achievable rate, using
pilot p assigned to user u ∈ USi from the first
stage, based on (10);

9: Choose a new pilot p∗i ∈ P∗Si ;
10: Compute the new uplink achievable rate using

the new UPA;
11: If new uplink achievable rate is greater than

current uplink achievable rate
12: a

p∗i
Si,u = 1, apSi,u = 0;

13: P∗Si=P
∗
Si\p
∗
i ;

14: P∗Si=P
∗
Si

⋃
{p};

15: End
16: End
17: End
18: n = n− 1;
19: End
20: End

BBUs require the large-scale fading coefficient as well as the
pilot contamination (PC) term to calculate the users’ average
uplink achievable rate. During the uplink transmission in the
massive MIMO C-RAN systems, each RRH transmits the
pilot signals of their served users to its serving BBU via
the fronthaul links. Based on the received pilot signals, the
BBU estimates the channel state information (CSI) and can
assume large-scale fading between the user and its serving
RRH. Moreover, the BBUs are all connected via the X2 inter-
face, which allows them to share and exchange information
concerning PC in the network. Thus, the centralized BBUs
are able to compute the achievable users average uplink rate
according to (10), and efficiently implement our proposed
algorithms in a practical scenario.

Furthermore, to reduce the signaling overhead, our algo-
rithms can be executed in two-time scales: the long-time
scale, which corresponds to each hour of the day, and the
short-time scale which corresponds to the user arrivals.
We assume that the users are uniformly distributed in the net-
work. Given a random RRH clustering, each user is assigned
with the sub-optimal pilot allocation to Greedy, and ε-Greedy
heuristic solutions described in (VI), during the short-time
scale. As each arrival user will be assigned with the pilot that
can reduce the effect of PC, its uplink achievable rate can be
enhanced with high probability. In the worst case scenario,
where average uplink achievable rate is still limited by PC,
the clustering stage solution will be executed during the
long-time scale which improves the average uplink achiev-
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TABLE 2. Simulation parameters.

able rate given by (11). These two time-scales allocations
guarantee maximizing the average uplink achievable rate by
reducing the effect of PC.

VIII. SIMULATION RESULTS
To show the effectiveness of our solutions to mitigate the
effect of PC, we compare them with the traditional approach,
where the pilots are randomly allocated to users, and to the
Adaptive Pilot Allocation (APA) scheme [18] where unique
pilots are assigned to the users with the smallest large-scale
fading so that they will not interfere with other users in the
system.

The simulation results were obtained using Matlab soft-
ware on a machine with Intel Core i5, 2.5 GHz Processor
and 8 GB RAM. For illustration, a hexagonal cellular topol-
ogy with 7 cells is considered, where each cell has one RRH
equippedwithM antennas as presented in Fig. 1 and servedU
users which are randomly and uniformly distributed inside the
cell. The center RRH is surrounded by a ring of 6 immediately
adjacent RRHs. All the results are obtained for an average of
1000 simulations and shown with 95

Fig. 3 and 4 respectively depict the number of active users
as well as the number of active BBUs during day time.
Regardless of the number of users in the network, the tra-
ditional solution based on random pilot allocation and the
Adaptive Pilot Allocation (APA) solution both activate more
BBUs in comparison with our heuristic coalition game (CG)
solution. In fact, the number of activated BBUs given by both
solutions (Random allocation and APA) depend exclusively
on the number of active RRHs.More specifically, this number
is equivalent to the number of serving RRHs. However, for the
same number of users, our heuristic CG solution reduces the
number of active BBUs, mainly at low traffic load (at 4:00),
in comparison with the two other solutions. By reducing the
number of clusters (number of active BBUs), the reuse of
non-orthogonal pilots between different clusters decreases.
This improves both the average achievable SINR and uplink
rate (cf. Fig. 5 and 7) by decreasing the impact of pilot
contamination (PC).

Fig. 5 illustrates the average SINR during day time.
According to (10), the SINR achieved by a user depends
on the endured interference caused by PC. By applying the
APA solution for the pilot allocation, the achievable SINR

FIGURE 3. Users number during day time (hours).

FIGURE 4. Number of active BBUs.

outperforms that provided by the traditional solution based
on random allocation most of day time. By allocating orthog-
onal pilot sequences to users with the worst SINR, the APA
solution eliminates any PC that can affect these users, which
improves the total average uplink achievable rate in the net-
work. However, when the number of users increases (at 10:00,
17:00 and 19:00), the remainder orthogonal pilot sequences
given by the APA scheme and shared by the rest of users
magnifies the effect of PC. This leads to the lowest SINR in
comparison with the random allocation.

Besides, when our heuristic CG solution is used for the
user pilot allocation (UPA), it outperforms the random pilot
allocation solution at each occurrence. In fact, this solution
effectively reduces the number of clusters (i.e., number of
active BBUs cf. Fig. 4) in comparison with the random pilot
allocation solution. This significantly enhances the achiev-
able SINR by reducing PC between clusters. Moreover, when
the Greedy and the ε-Greedy algorithms are applied to our
CG solution, a significant gain can be achieved in term of
SINR if the number of available pilot sequences is greater
than the number of users in the cluster. Note that, at 4:00 all
users are located in one cluster (i.e., one BBUs is activated),
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FIGURE 5. Average users SINR.

FIGURE 6. Distribution of users into clusters at 5:00.

and their number (30 users) is exactly equal to the number
of orthogonal pilots τp that can be allocated to one cluster.
Thus, the Greedy and the ε-Greedy algorithm cannot provide
any enhancement to our heuristic CG solution. This is due to
the lack of free pilots, which prevents users from exploring
a new UPA to improve the achievable SINR. In contrast,
at 5:00, there are almost 40 users located in 3 clusters (i.e.,
3 BBUs are activated cf. Fig. 4) with an average of 13 users
per cluster as shown in Fig. 6. This means that the number of
available pilots in each cluster (30 pilots) is much higher than
the number of active users in each cluster. Therefore, each
user has the opportunity to explore different UPA to improve
its SINR. As a result, the Greedy and the ε-Greedy algorithms
can bring a significant enhancement in term of SINR to our
CG solution. Also, whenever there is a large number of free
pilots (i.e., pilots not assigned to any users in a cluster) for
a small number of users in a cluster (at 5:00), the ε-Greedy
provides better performance than the Greedy algorithm.

We conclude that our heuristic coalition game (CG) solu-
tions for user pilot allocation (UPA) realize a significant
improvement in SINR in comparison with the random and
Adaptive Pilot Allocation (APA) solutions. This is due to
the efficient mitigation of pilot contamination (PC). Besides,
when the number of free pilots is greater than the number of
users in a cluster, the Greedy and the ε-Greedy algorithms

FIGURE 7. Average users uplink achievable rate.

can improve the performance of our CG solution. Further-
more, as the number of free pilots increases in a cluster,
the ε-Greedy algorithm performs better than the Greedy
algorithm.

Fig. 7 illustrates the average users uplink achievable rate
during day time. When the APA is adopted for the UPA solu-
tion, it achieves a higher uplink rate than when the random
pilot allocation solution is used, mainly at low load (i.e.,
number of users is below 50). In fact, when the APA is applied
for UPA solution, PC on the users with the lowest large-scale
fading can be avoided (i.e., they are assigned with unique
pilot sequences). As a result, the uplink rate of these users
is enhanced, which raises the average users uplink achievable
rate in the network. However, when the number of users in the
network is high (at 10:00, 17:00, and 19:00), APA solution
for UPA can no longer curtail the impact of PC. This is
due to the limited number of free pilot sequences shared by
users, which leads to lower average uplink rate in comparison
with the random pilot allocation solution. Moreover, when
our CG approach is adopted, it achieves the highest SINR
(cf. Fig. 5) in comparison with the random pilot allocation
solution. As a consequence, the average users uplink rate
given by our approach surpasses that of the random pilot
allocation solution. Furthermore, when the Greedy and ε-
Greedy algorithm are applied to our CG solution, they reduce
the effect of PC, especially when the number of available
pilots is much higher than the number of users in a cluster.
As a result, they can further enhance the average uplink rate
achieved by our CG solution.

To illustrate the significant gain that can be achieved by
our approaches for the UPA solution, we present in Fig. 8
and 9 the cumulative SINR and the cumulative uplink rate,
respectively. We can see that when our CG solution is used
for UPA, the SINR can increase by up to 15% and 24%
in comparison with the APA solution and the random pilot
allocation solution, respectively at the end of the day. As a
matter of fact, our CG solution adapts the number of cluster
formation to network load conditions which decreases the
reuse of non-orthogonal pilots between different clusters.
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FIGURE 8. Cumulative SINR.

FIGURE 9. Cumulative average users uplink achievable rate.

Consequently, this reduces the impact of PC providing higher
achievable SINR compared to the two other solutions (APA
solution and the random pilot allocation solution). More-
over, by adopting Greedy or ε-Greedy algorithm, the SINR
achieved by our heuristic CG solution can be improved by
40% and 54% respectively. As explained in Section VI, the
two algorithms assigned the user to the best free pilot in each
cluster. This reduces the pilot contamination effect between
clusters, enhancing the total achievable SINR at the end of
the day.

Furthermore, by increasing the achievable SINR, our CG
solution can achieve up to 10% and 18% high uplink rate in
comparison with the APA solution and the random allocation
solution, respectively. In addition, when the Greedy or the
ε-Greedy algorithms are applied to our CG solution, the
achievable uplink rate can be enhanced by 15% and 23%,
respectively at the end of the day.

In Fig. 10, we show themean execution time for the Greedy
solution, ε-Greedy solution, and our heuristic coalition game
solution for UPA (CG-Greedy UPA). We can see that when
CG-Greedy solution is used for UPA, it takes an average
of 6.5ms. Note that, this sequential approach is executed
once at each hour of the day (i.e., at long-term scale period).

FIGURE 10. Time of executions.

Meanwhile, our two heuristic solutions for UPA (Greedy and
ε-Greedy solutions), that are employed at each users arrival,
take on average 0.4ms and 0.6ms respectively to be achieved.
The results show that our approach has the potential to be
applied in real-time traffic that requires low latency in two
different time-scale: long-time and short-time scales.

IX. CONCLUSION
In this paper, we have investigated the pilot contamina-
tion (PC) problem for time division duplex massive MIMO
systems in Cloud-Radio Access Networks (C-RAN) archi-
tecture. The aim is to maximize the average uplink achiev-
able rate by reducing the effect of pilot contamination in
massive MIMO C-RAN. For a realistic simulation scenario,
we utilized the Call Detail Records (CDR) provided by
a real network operator. As such a problem is an integer
non-linear programming problem which has no solution in
polynomial time, we develop a two-stage solution to solve it.
First, a coalition game (CG) solution is proposed aiming to
reduce the effect of PC by finding the best clustering among
clusters. In this phase, the pilots are randomly allocated to
users in each cluster. Then, two greedy heuristics, namely
Greedy and ε-Greedy algorithms, are applied to match each
user in the cluster with a given pilot. The goal is to further
improve the total average uplink rate achieved in the first
stage. To show the effectiveness of our heuristic solutions for
pilot contamination reduction, we compared them with the
traditional solution where the pilots are randomly allocated to
users, as well as to a state-of-the-art pilot allocation scheme
based on large-scale fading.
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