
Received April 17, 2022, accepted May 19, 2022, date of publication May 23, 2022, date of current version June 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3177659

Integration of Software Architecture in
Requirements Elicitation for Rapid
Software Development
MARYAM GILLANI 1, HAFIZ ADNAN NIAZ 1, AND ATA ULLAH 2
1School of Computer Science, University College Dublin (UCD), Dublin 4, D04 V1W8 Ireland
2Department of Computer Science, National University of Modern Languages (NUML), Islamabad 44000, Pakistan

Corresponding author: Hafiz Adnan Niaz (hafiz.niaz@ucdconnect.ie)

This work was supported by University College Dublin, Ireland.

ABSTRACT Software Architecture describes system components and their connections. Requirement
elicitation catering the perspective of software architecture is quite challenging and relatively less explored
research area for the rapid software development. It has gain growing interest due to reusability of existing
modules with less cost and quick developmental time. Software architecture in the context of requirement
engineering is an abstraction of software system performing a particular task with the help of group of
executable architectural components. In this paper, systematic literature review is adapted as a methodology
to explore software architectural elements that provides better performance and simplicity in requirement
engineering. We analyzed, reviewed and listed the strategies, tools & techniques along with state-of-the-art
mechanisms, pros and cons and application areas. Architectural components that are already implemented in
the requirement elicitation process for effective software architectural design are briefly analyzed. Purpose
of the paper is to explore and discuss the elements that make software architecture more integral and
flexible for traceability of requirements. Another purpose is to identify relation between the software
requirements and architecture along with exploring the components to bridge gap between requirements and
architecture by critically evaluating industrially and academically proposed methods, tools and frameworks.
We also highlighted the open research challenges of Software architecture in requirement elicitation for
better software development. In the later section, a resource bank is created acting as a valuable model
that encompasses targeted relevant groups, sub-groups with latest software architecture tools & techniques,
methods and framework sources to facilitate effective requirement engineering.

INDEX TERMS Software requirement engineering, software architecture, software development, software
engineering, requirements elicitation.

I. INTRODUCTION
Software requirements outline the purpose of the develop-
ment and design. It serves as the foundation of software
intended to develop [1]. Requirements are defined in the
beginning and act as a developmental milestones to accom-
plish successful executable software components [2]. Soft-
ware requirement engineering is a systematic approach that
is significantly developed in the course of the most recent
decade [3]–[5]. Software architecture can be viewed as an
organization of a system that comprehensively includes com-
ponents interactions, operational environments, design prin-
ciples, software functionalities, and often covers future evo-
lutionary software perspective [6]–[9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

Software architecture differs from software design.
Software architecture specifically targets structure of a sys-
tem while software design merely deals with implementation
details of the system (e.g. code level design) [10]. On the other
hand, software architecture and design are different from
software system architecture as it deals with the placements
of software components [11]. Contrary to these three terms,
‘‘Architecture Centric Requirement Elicitation’’ (ACRE)
covers architectural perspective of software-intensive compo-
nents based on requirement engineering processes, practices,
modelling, and designing in order to automate the require-
ment elicitation process [12].

We have considered ‘‘Architecture Centric Requirement
Elicitation’’ (ACRE) as a central point of discussion in order
to categorically analyse and critically investigate its impres-
sion on requirements engineering process for rapid software

56158 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5741-4122
https://orcid.org/0000-0002-2020-417X
https://orcid.org/0000-0003-3603-1709
https://orcid.org/0000-0002-7194-3159

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

development. ACRE can be considered as a broader term
that establishes the convenient path to bridge architectural
constraints with requirement engineering or requirement elic-
itationmore precisely [13]. In simpler context, ACRE ensures
and maintains the balance between software architecture and
requirement elicitation operations and functionalities to facil-
itate rapid software development [14]. It additionally reviews
the connections among different software components estab-
lished during requirement elicitation processes.

Difference among software design, software architecture,
software requirements engineering and ACRE is illustrated
with detailed process flow in Figure 1. Requirements are sub-
jected to prompt the architecture and facilitate the process of
elicitation within scope, structure and context [15]. Accom-
plishing requirement specification from architectural models
can give the requirements engineers a head start even before
utilizing customary methods like workshops and situation
based elicitation [16]. ACRE can be time and cost effective
with better and quick software developmental cycles. It can
precisely provide smooth and progressive flow of events with
better accountability and traceability factors [17], [18].

In the light of the existing state of requirement engi-
neering technicalities, the goal of this Systematic Literature
Review (SLR) is to distinguish the most recent researches
where ACRE approach has been utilized for the advance-
ment of software development. The distinguished researches
are grouped according to our research questions defined
below;
RQ1: How software architecture and requirements

elicitation are connected to each other? What are their state-
of-the-art tools & techniques, pros and cons, operational
applicability, current challenges and domain analysis?
RQ2: Is it possible to accommodate requirements in soft-

ware architecture based on recent and latest software archi-
tecture frameworks, tools and techniques?
RQ3: What are research, industrial and academic gaps

between software architecture and requirements based on
current architectural trends and adopted measures for rapid
software development?
RQ4: How to bridge the research gaps using Architecture

Centric Requirement Elicitation approach for critically ana-
lyzing the balance between software architecture and require-
ment elicitation operations and functionalities?
RQ5: Interpreting the requirement elicitation processes

in the context of their tools, techniques and relativity with
architecture centric approaches.

The above mentioned Research Questions (RQs) are
discussed in detail in the later sections of the paper
where primary research contributions of this SLR are as
follows;

1) A Systematic Literature Review (SLR) is performed
for thorough and in-depth examination of the recent
schemes, tools and platforms application on software
requirement, software architecture and architecture
centric requirement elicitation. We have identify var-
ious gaps for further research in this area.

2) We highlighted 60+ useful tools, schemes and pat-
terns to justify proposed research questions. Relevant
categorical analysis, preferable application environ-
ment, constraints, strengths and weaknesses to better
guide researchers about industry practices, academic
lapses and loopholes among components/modules of
rapid software developments are highlighted.

3) A comprehensive Dendrogram is designed to underline
research gaps and challenges for architecture centric
requirements elicitation with appropriate discussion in
order to grasp attention of researchers for real-time
hindrances. Therefore, this opens the way of further
investigations to resolve the identified problems.

4) Above mentioned RQs served as a motivation for
this research in investigating the architectural concerns
of requirement engineering for rapid value-oriented
software development. A considerable gap between
requirement engineering, software design and architec-
ture is reduced keeping in view of the architecture of the
system.

5) Above all, a Taxonomical Resource Bank is featured
to group together recent and peer-reviewed valuable
sources under proposed RQs with the classification
of Groups, Sub-Groups and Functionalities to delve
deeper. This resource bank is an efficient yet quick
model to reach targeted category of concern under
scope of study while saving time and eradicating the
need of extensive resource engines surfing.

6) To the best of our knowledge, this is the first pre-
liminary study that collectively investigate software
design, software architecture, software requirement
engineering and software requirement elicitation
and architecturally centric requirement elicitation all
together. Secondly, this is first perspective cohort
study presenting association and interconnections
among above mentioned fields through relevant tools,
techniques and frameworks summative evaluation
contemporaneously.

Rest of the paper is organized as: Section II discusses the
research methodology for SLR where each sub task is also
explored. Section III gives answer to RQ1, Section IV and V
to RQ2 and RQ3 with detailed Dendrogram, Section VI cov-
ers RQ4 and Section VII analytically discusses RQ5 with
detailed categorical Table of relevant tools and techniques
followed by a resource bank model. Each section is supported
through various sub-headings and tables. Section VIII con-
cludes the paper and Section IX discovers the possible future
work.

II. RESEARCH METHODOLOGY
We adopted the research method proposed by Petersen et al.
[19] and used the suggested template for describing SLR
approach. SLR is defined as a type of reviewing technique
that facilitates repeatable analytical methods in order to crit-
ically appraise research in order to answer set of clearly
formulated questions [20].

VOLUME 10, 2022 56159

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

FIGURE 1. Search process based on inclusion-exclusion criteria.

A. REVIEW PROTOCOL DEVELOPMENT
We have developed a review research protocol by following
the standards of SLR proposed in [19]. As per the standards
of the review protocol, the search process is comprised of
the following stages: 1) Development of Review Protocol,
2) Criteria for Selection and Rejection 3) Search Strategy,
and 4) Data Extraction and Synthesis. The base questions
have already been defined in the Introduction section. The
remaining content is defined in the sub-sequent sections.

B. SELECTION AND REJECTION CRITERIA
A specific selection and rejection criterion is defined for
the research process. This criteria in different categories is
described as follows;

1) SUBJECT RELEVANCE
The research papers that are relevant to the subject are
selected for the proposed study of interest.

2) LATEST SCHEMES
The research papers carrying the tools and techniques from
2009 till today are only included to satisfy recent area of
study.

3) PUBLISHERS
The publishers of the referenced/ used papers are IEEE,
ELSEVIER, SPRINGER, ACM and Taylor & Francis (peer-
reviewed journals). No other papers from different engines
are considered for highlighting Tools, schemes and patterns.

4) CRUCIAL EFFECTS
The selected papers must have the positive effect on the area
of research and study. The papers selected for the topic ACRE
must be affecting it productively. Papers that are not affecting
the study are excluded.

5) RESULT ORIENTED
The selected papers should have properly concluded results
via case studies so that those results would help in concluding
better results.

6) REPETITION
All the papers having the similar content, is not included in
order to avoid time wastage and knowledge replication.

7) INCLUSION AND EXCLUSION CRITERIA
are applied in order to find relevance among selected arti-
cles and ACRE. This process is completed by consid-
ering the title relevance filter and abstract study of the
selected papers. We have considered various query strings,
i.e. ‘‘Architecture centric requirements’’, ‘‘tools for architec-
tural requirements’’, ‘‘requirements impact on architecture’’,
‘‘requirement gathering tools’’, ‘‘requirements related to
architecture’’, ‘‘architecture and requirement specs’’, archi-
tecture and requirement relatedness’’, ‘‘architecture Sig-
nificant requirements’’. All other papers that were found
mismatched as a result of the query words are excluded.
AND/OR operations are applied to keywords. AND/J is for

56160 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

AND/Journal. Detailed summary is given in Table 1 that
describes the total count in response to query words.

FIGURE 2. Data collection evidence about studies and Conclusions of
research methodology.

In Figure 2, data collection evidence about selected stud-
ies and the conclusions of research methodology is high-
lighted. It shows, experimental, analytical and observational
parameters based on 7 categories with suitable explanation to
justify the methodological phases. Each of these mentioned
categories assisted in selecting the quality oriented studies
to answer proposed research question through systematic
pattern. It starts from systematic literature review and Meta
analysis and proceed towards narrower category i.e. func-
tionality and category based classification. Key indicates that
conclusions are drawn from bottom up approach andMethod-
ology is refined and strengthen via Top to bottom approach.

C. SEARCH PROCESS
After the selection and rejection process, total of 61 Tools,
Techniques, Schemes, and Patterns are selected. Figure 3
illustrates the search process with the number of articles that
are rejected on the basis of title, abstract, general study and

detailed study. It also presents the number of selected scheme
after performing inclusion/exclusion criteria as per specifica-
tions of SLR. As shown in Figure 3, IEEE, Elsevier, ACM
and Taylor & Francis provided plenty of research material in
reference to our query words.

FIGURE 3. Search process based on inclusion-exclusion criteria.

Since all research articles could not have reviewed man-
ually, so short-listing is based on title and abstracts. After a
short-listing, a detailed study of the paper is done in order to
get a detailed analysis for each research question. Summary
of each paper was made as per relevance to the questions
that helped in compiling the final results. A selected number
of papers, i.e. 61 indicate those specific papers that are pre-
senting Tools/Techniques with reference to our research title.
However, many other research articles are utilised and used
to make our proposed research valuable.

D. DATA EXTRACTION, SYNTHESIS AND QUALITY
EVALUATION
As per Table 2, Title, year, concept, publisher, research
Problem, proposed solution, contribution, and future works
for extracting related schemes with detailed analysis are
considered in data extraction, synthesis, and quality evalua-
tion. During data synthesis and quality evaluation following
conditions are met: i) identification for architecture-centric
techniques, ii) identification of tools for requirements and
architecture mapping, iii) identifying research gaps, iv) iden-
tifying research trends related to requirement gathering.

E. EVALUATION CRITERION OF THE QUALITY OF
SELECTED STUDIES
Evaluation criterion of the quality of selected studies is given
in Figure 4. Selected studies are identified, interpreted and
than evaluated based on degree of relevance to draw suitable
data. Outer loops complete performance analysis. Another
inner loop evaluates research questions being answered in a
selected studies based on adapted methodology’s strengths
and data contribution to desired context in order to ensure
quality of selected studies.

VOLUME 10, 2022 56161

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

TABLE 1. Summary of total count.

FIGURE 4. Evaluation criterion of the quality of selected studies.

III. RELEVANCE OF ARCHITECTURE AND
REQUIREMENTS (RQ1)
This section covers relevance of software architecture and
requirements elicitation on the basis of various state-of-the-
art tools & techniques, their pros and cons, operational appli-
cability, future setbacks and domain challenges as follows.

A. ARCHITECTURE TYPES & SIGNIFICANCE
Service-Oriented Architecture (SOA) is defined as a model
with organized capabilities that can be used for providing
solutions for defined domain of interest [21]. It is partially
related to information system architecture [22]. Through
SOA, knowledge sharing and information reusing, the rela-
tionship among requirements and architecture can be visu-
alised conveniently [23]. SOA is achieved through consistent
R&D (Research and development). R&D provides a better
model-based platform for defining a relationship between
architecture and requirements. WSDL (Web Description Ser-
vices Language) is used for web-based requirements [24].

Knowledge-Sharing Architecture (KSA) complements
relationship among strategies, results and theoretical and

TABLE 2. Parameters for data extraction and synthesis.

empirical contributions to deduce the better working collab-
oration of knowledge and design architecture [25]. KSA digs
down deeper to provide better affiliation between require-
ments, design and architectural connections.([26]. KSA’s
strategic efforts helps to attain underlying objectives driven
by qualitative and quantitative measures. Requirements elic-
itation on the basis of both theoretical and empirical facili-
tates inter-components/modules relationship formation with
testable and uncovered association. KSA help in learning
about alliance environment. On the other hand, SOA applica-
tion is better operational at abstract level. It helps in shedding
light on practical aspects requirements, specification, require-
ment validation and requirement management [27].

B. IMPACT OF REQUIREMENTS DESIGN ON SOFTWARE
ARCHITECTURE
Diversity poses great challenge to software requirement engi-
neers in identifying actual interaction of each segments,

56162 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

suitable elicitation techniques and RE process capable of
handling complexities of software architecture [28]. Require-
ments design influences directly in terms of meeting neces-
sary conditions of project success [29]. The high interrelation
between requirements design and software architecture for
software artefacts reduces complexity in system design and
leads to subjective decisions judgment. Controlled architec-
ture intervention not only facilitates better adaptability, but
also guides in smooth requirements elicitation phases.

Tools and technological software modules that are prod-
uct of requirements designed from systematic software
architecture demonstrates feasibility, better lifecycle and
less developmental time [30]. Methods and approaches of
architecture-centric design are targeted through New Product
Development (NPD). It emphasises client-services centred
architecture through component and testing based repetitive
interpretative cycles [31].

High-level knowledge gained through architecture cen-
tered system designs establishes testable software compo-
nents comprised of plug and play principle. Moreover, this
factor also encourages reusability element for related state of
software events and components. These are mostly repetitive
cycles that holds traceable bonding among architecture and
requirements [32]. Less repetition and iterative approaches
are best suited for defining architecture and requirements
where complexity of system is declared average overall [33].

C. ARCHITECTURAL MODELLING WITH BUSINESS GOALS
& TOGA
Architecture modelling stands for reusable generic frame-
work for generating executable software platforms in the con-
text of background, specification, and classification demands
for accomplishing specified business goal [34]. A very
desirable factor in business goals especially in software
market place is the ability of designed components to be
applicable (good fit) for future business projects (clients).
This factor is well-achievable through software architec-
tural integration [28]. In the context of software architecture
modelling, a series of models can be established based on cat-
egories of enterprise domain that may come handy for future
developments thus reducing time, complexity, and resource
allocation [35].

Explicit modelling of abstract requirements makes bridg-
ing of requirements components positioned rightly [22].
These requirements elaborate on association with architec-
ture. Enterprise architecture rebuilds the modelling technique
on the basis of business, application and technology
layers [36]. The Open Group Architecture Framework
(TOGAF’s) is a proactive best practicing framework in devel-
oping enterprise architecture for any organization [37]. Archi-
tecture Development Method (ADM) is requirements centric
management applied to enterprise architecture for multi-stage
cycles [31]. ADM defines architecture and requirements rel-
ativity during architecture construction and modelling while
giving practical benefits [38], [39].

D. SIMILARITY COMPUTATIONS AND ARCHITECTURAL
INTEGRATION
Content Based Requirements (CBR) are based on similar
requirements that can be used as proxies to retrieve similar
software [40]. However, when a new contextual requirement
is proposed by a stakeholder, CBR gets exploited in terms
of previous affiliations [41]. This factor can be fixed through
integrating requirements similarity, software similarity, and
software architectural components. These three components
are collectively called as similarity computation [42]. This
similarity computation not only triggers three-tier application
process verification to apply CBR but also integrates tracing
and categorization.

Universal and Inclusive design (UID) uses a design
approach for including and excluding requirements in locat-
ing appropriate/inappropriate designs for the user-centred
process [43]. Good requirement design enables better help in
communication design for the requirement elicitation process
in design management [32]. During UID, two clusters of
requirements are generated, i.e. user-centred requirements
and process-centred requirements. These requirements are
then utilised for establishing requirements and architecture
connections together.

E. MULTI-MODEL SOFTWARE ARCHITECTURE APPROACH
Multi-model is an ability of architecture to accommodate
multi-perspective (platforms) to assure expected results.
However, multi-model catering multi-dimensions are tedious
to deign, maintain, and incorporate. Their complex nature
holds great potential in assisting gross level software devel-
opment. Physical, virtual prototyping, targeted requirement
models, design models, visual flow models, specifications,
integration of architecture, multi-model requirements and
architecture bridging all are the factors that are considered to
design it [44], [32]. Designing process seems to be complex,
but once generated can do wonders in term if it’s greater
flexibility and multi-information fusion [45]. This concept
is newer in rapid software development and holds great
potential for further advancement to join architecture and
requirements relativity [46]–[49].

CAD tool allows the incorporation ofmulti-exchangemod-
els for architecturally defined requirements. Static translation
and dynamic integration requires domain analysis for require-
ment elicitation and optimisation [33]. Different levels of
details and integration illustrate the multi-exchange method
by the degree of concurrence [23]. The degree of concur-
rence further defines specialised tasks to effectively elaborate
requirement construction along with analysis and designing
of requirement specifying process [22].

CAD tools are efficient in creating 3D visualisation of
requirements and architecture relatedness. Simulation tools
unlock various deadlocks for user-centred simulation [47].
Capability loss simulation and simulation tool kit are specific
in re-defining and improvising conceptual approach that is
given as empathic model [22]. Stimulation is the user-centred

VOLUME 10, 2022 56163

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

design tool for architecturally significant requirements to
make end-user requirements involvement possible to bridge
and design requirements. The simulation tools enable require-
ments based on capability-centred product interaction to
illustrate aarchitecture and requirements relatedness [50].

IV. ACCOMMODATING REQUIREMENTS INTO SOFTWARE
ARCHITECTURE (RQ2)
This Section verifies the possibility of accommodating
requirements in architecture with discussion on application
and operational extent, traceability elements and characteris-
tics of rapid software development integrating architectural
perspective. This sections also discusses the limitations of
ACRs and factors to overcome it to avoid future obstacles.

A. CHARACTERIZATION OF ARCHITECTURALLY
SIGNIFICANT REQUIREMENTS
Characterisation of architecturally significant requirements
has a great impact on the rapid software development life-
cycle. Integration of architecture requirements is accom-
plished through identifying requirements based on their
impact and critical factor [51]. Architecturally significant
requirements are also identified on the basis of quality
attributes, constraints, or application environment. Mapping
of requirements in software design is attained through main-
taining consistency between architecture and requirements.
Architecture based requirements are written systematically
in a document illustrating the requirements in the form of
different architectural views to make it worth considering for
future references.

The requirements and concerns of different stakeholders
are captured in the 4+1 view model of architecture [52].
The stakeholders whose requirements are captured in the
views could be architects, project managers, system engi-
neers, developers etc. Tools and techniques available identify
requirements that have an impact on the architecture auto-
matically. They also classify requirements and recommend
alternative solutions to adjust requirements in the architecture
in the best possible way. The proposed architecture evaluation
and application check is based on the Architecture Trade-off
Analysis Method (ATAM). ATAM is scenario based tech-
nique that covers in-depth quality attributes analysis while
prioritizing operational and functional workflows [53], [54].

B. APPLICATION AND OPERATIONAL COMPETENCIES
Accommodating requirements into software architecture
raisesmany concerns in terms of applicability and operational
competencies [55]. Secondly, how far these tow distinguished
fields can manage simultaneously is another potential con-
cern. To address these possibilities, Architecturally Signif-
icant Requirements (ASR) came into existence. ASRs are
bidirectional operational i.e. requirements to design the archi-
tecture and architectural framework with a set of executable
skills for practical re-usage.

ASRs are documented using architectural views [56].
Architectural views act as a tool that helps in knowing the

decisions and the rationale behind the system’s architecture
based on the quality of requirements [57]. Initially archi-
tectural views are documented throughout the lifecycle of
the project, to draw architecturally significant requirements.
Different stakeholders have different quality requirements
that are scattered in architectural views and covers reusability
levels [58].

Requirements that are done through architectural views
enhance the quality of software architecture documents with
a keen focus on system architects [59]. It also provides two
products i.e. operational software and a framework for further
use that ultimately saves time, resources energy, and getting
into the development loop unnecessarily.

C. TRACEABLE ARCHITECTURAL CONCERNS
Architecture centric requirement models are subjected to
train on group of parameters such as performance check,
experimental verification, quality validation, explainability
and extent of robustness. These all parameters are specifi-
cally designed for making traceable factors controlled and
recognizable at any stage of rapid software development [60].
However, every software traceability varies as per the stake-
holder demands, but the architecture design choices gives the
liberty to cater majority of them with various architectural
tactics and authentication ratios (also known as end-product
correct recognition rate) [61].

Secondly, traceability between design and architectural
centric requirements of different stakeholders can be possi-
ble through Decision Centric Traceability (DCT) [62]. DCT
covers all the important software engineering activities and
planned steps while including validation of requirements
through architecture as well. Whether functional or non-
functional, a particular requirement can be addressed through
DCT specific layered approach that helps in simplifying the
whole process of the software lifecycle [63]. Incorporation of
traceable architectural concerns with requirements elicitation
adds extra layer of scrutiny to reflect better complexity of
typical software artefact traceability.

D. LIMITATIONS OF ARCHITECTURALLY SIGNIFICANT
REQUIREMENT
Despite being into solving many requirement elicitation
concerns and setback, architecture centric requirements
posses various limitations that sometimes leads to blind
end for rapid software development [64]. The factor that
are non-accommodating are discussed in detailed under
research gaps and challenges section. However, notifying
and analysing requirements that impact the architecture early
in the software development life cycle can save a lot of
resources [65].

Skills are required by the designer to capture functional
requirements for architectural decisions before-hand. Iden-
tification and accommodation of functional requirements in
the architecture from the requirement document can be auto-
mated throughmany tools and techniques to avoid blind ends.
Thus making this issue easily sorted out through technical

56164 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

expertise. For example, to eradicate these factor, one such
tool is ArcheR [66]. This tool predicts non-suitability and
inapplicability of various models to save potential setbacks
and unexpected results. These kind of tools demands high
level expertise with better precision to command better
checks [67]–[70].

V. GAPS BETWEEN SOFTWARE ARCHITECTURE AND
REQUIREMENTS (RQ3)
Requirement engineering, software architecture, and soft-
ware design are three different processes of the Software
Development Life Cycle (SDLC). Conventionally, require-
ments are gathered in the early phase, while software archi-
tecture is considered in the later phases of development.
Although these processes are connected to each other, still
certain gaps and lapses exist between them.

This Section explores an abstract view of research, indus-
trial and academic gaps between software architecture, design
and requirements based on current architectural trends and
adopted measures for software development gaps that exist
between software architecture and requirements.

A. IDENTIFICATION OF RESEARCH GAP
Identification of research gaps are tedious and intricate step
when it comes to software requirements elicitation and soft-
ware architecture. Whenever a problem arises, it is catered
and fixed through possible solution to meet deadlines and
develop software timely [71]. However, to mark an unusual
activity as research entity/research gap is rarely done that
leaves the situation same and problematic for future han-
dling [72], [73]. Lack of research and open ended statements
databases in a given software production houses makes things
out of sight for prolonged period and sometimes not even
considered as research gap.

Figure 5, illustrates in-depth view of research gaps and
challenges. Ability to solve a problem and ability to locate
a problem that needs out of the box context to resolve are
two different things. Requirement engineering and software
architecture are fundamental to each other for the success of
a software artefact. Identification of research gaps is vital in
identifying and establishing traceability between functional
and architectural requirements [74].

Research gaps mainly exist between functional and
architectural requirements linkages [75]. Secondly, the vague
connections between problem and solution domain are crit-
ical because software architecture is a fundamental part of
a software solution. To overcome research gaps, a better
strategy is to treat both requirements and architecture at the
simultaneously.

Conventionally and in legacy systems, Software require-
ment, software design and software architecture are supposed
to be treated differently. Separating these domains proves
to be problematic because of unanimously bringing hurdles
that other domain overtakes. Working on these domains
side by side facilitates a smoother process for research gaps
identification [65], [76].

B. ADDRESSING QUALITY REQUIREMENT
Quality of a software product is an intransigence factor.
For executable software components, quality comes first and
foremost. Addressing quality requirements has always been
a challenge for the requirement engineering process and
software designing phase [77]. To focus functional require-
ments of the system, a better designing approach integrating
architectural perspective is required alongwith suitable skills,
tools, and techniques.

Quality attributes are the backbone for the success of the
software artefacts. Traditionally, quality attributes like usabil-
ity, reliability and other quality requirements are considered
later stages of development that itself leads to late identifi-
cation of flaws [78]. Therefore, software architecture is con-
sidered as favourable choice as it focuses on non-functional
quality attributes along with functional requirements to make
things smoother [78].

C. IDENTIFYING ARCHITECTURALLY SIGNIFICANT
REQUIREMENTS
Architecturally Significant Requirements (ASRs) are
requirements that determine the shape of the software archi-
tecture and help in taking important decisions [79]. ASRs
are bidirectional operational (software architecture software
design) requirements to design the software architecture and
documented using architectural views [80]. The identification
of these requirements is a major challenge for software
requirement engineers.

During the elicitation, stakeholders and requirement engi-
neers lack the ability of identifying these requirements at
first place. Lack of ability covers factors like poor domain
knowledge, lack of skill expertise and sometimes software
automation tools ignorance [81]. Furthermore, lack of proper
evidence (non-traceability) for identifying and characterising
these requirements results in improper design and poorly
designed architecture of the system [79].

D. FRAMING BUSINESS REQUIREMENTS TO BUSINESS
MODELLING
Modelling a business-oriented system is already a challeng-
ing task in reference to software architecture [82]. Few
business processes cannot be modelled by using traditional
software architecture frameworks and semantics [3], [83].
Advanced studies and methodologies are required for fram-
ing business-oriented requirements combined with process
modelling [84].

Business requirements are difficult due to different global
priorities, varying cultural norms, changed business strategies
(region, sector, and domain) and profit expectations [85].
Business factors are never globally alike that makes them
difficult to synchronize at single platform to avail stan-
dard services [86], [87]. Framing business requirements
to business modelling gives promising research platforms
to researchers to explore and contribute in the area of
study.

VOLUME 10, 2022 56165

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

FIGURE 5. Dendrogram for research gaps and challenges.

E. TRADE-OFFS CONSIDERATION
According to IIIE (Industrial Information Integration Engi-
neering) [88], certain trade-offs are required at the design
level for mapping requirements to architecture, but most
people lack knowledge of trade-offs that are essential for this
purpose [89], [90]. Trade-offs can be defined as an compro-
mise occurred between two desirable, but incompatible fea-
tures. In requirement elicitation and software design, objected
and relevant tradeoffs are required to avoid unforeseeable
situation [91].

In software design, correctness of system behavior while
keeping appropriate balance among various quality fea-
tures is challenging task to accomplish [92], [93]. Software
systems with higher uncertainty levels and environment is
even more complex feature. Design principles and existing
tools and techniques are still limited because they don not

comply and link with design decision for quality require-
ments satisfaction.

Moreover, amount of information utilized by a human-
designer is also limited and thus difficult to differentiate
actual and right needed solution out of human knowledge
pool. A computational tool or scheme to assist in trade-
offs management can bring ease to the process. Secondly,
enabling the discussion platforms to design, select, and
deselect tradeoffs among specified software development
teams can temporary contribute to facilitate comprehension
of tradeoffs [90], [94].

The requirement engineering process has two key
sub-processes: i) Requirement elicitation and develop-
ment ii) Requirement management [89]. Trade-offs that
requires traceability poses difficult situation [95], [89].
Since new requirements are continuously introduced,

56166 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

trade-offs traceability is difficult, along with mapping of
requirements to architecture produces a major challenge [95].

VI. BRIDGING THE RESEARCH GAP USING ACRE (RQ4)
In this Section, different approaches regarding architecture-
centric requirements are written and explained that is help-
ful in answering how we can bridge the architecture and
requirements gap. Proposed frameworks for improving the
requirement and architecture in software engineering are also
discussed. Mapping requirements to architecture pros and
cons along with state-of-the-art suggestions are part of this
section.

A. BRIDGING REQUIREMENT ELICITATION AND
SOFTWARE ARCHITECTURE
Complex and software intensive systems with high opera-
tional demands for environment and continuous availability
are critical concern to bridge for requirement elicitation along
with software architecture simultaneously. It is not always
possible to link perfectly both areas for research and prac-
tice [96]. Bridging requirements into software architecture
demands perfect alignment of steps and application proce-
dures. Both process can be expected executable simulta-
neously to address sustainability and traceability for better
framework and pattern. Bridging both approaches and prin-
cipal aim to provide foundation and roadmap of intermediate
themes and embedded conceptual construct with reusable
properties [97].

Bridging requirement elicitation and software architecture
emerging, clear and systematic design approaches that gives
rise to high-quality, sustainable, maintained and estimated
framework for better and rapid software development [98].
In developing software systems, understand-ability and
acknowledgement of requirements and architecture is a
prominent factor. To attain this factor, traceability between
requirements artefacts and software artefacts needs to be
monitored through well-designed techniques. There are vari-
ous techniques available that are working on the classification
of requirements into functional problems and architectural
problems with the help of knowledge assisted approaches.
One such technique is the Twin Peaks model [99]–[101].
Twin Peaks model is based on the classification of architec-
ture into sub-contexts in order to bridge requirements and
architecture more precisely [102].

B. BRIDGING PROS AND CONS
In bridging requirements elicitation and architectural
research and industrial gaps, there are plenty of problems
encountered by application and operational techniques [103].
There are always some good factors and some drawback asso-
ciated with integrating requirements and architecture. In a
generic adaptability approach, good factors are considered
with prime importance and valued more then cons while
deciding right approach to use [104]. In requirement engi-
neering phases, there is nothing such as either a right choice
or a wrong choice. In integrating two different processes

together to have better results, approaches are decided based
on lesser odds factor associated with adapting any approach.

While bridging pros and cons, the factors of right
and wrong (but fixable) factors are mostly needed and
expected [105]. The controlled situation even if with odd
(but controllable) factors makes bridging suitable. To retain
few odds factor along with positive components are somehow
sign of a good choices. This is due to the reason unnecessary
connections among requirement and architecture viewpoints
may arises in the bridging process while looking for a perfect
fit. These unnecessary connections not only make the system
complex but also makes hidden sub-links [106].

Sub-links are difficult to eradicate due to high depen-
dency, hidden nature, and interchangeable information during
various steps. These sub-links can even cause failures in
high-level systems domains and still remain unrecognizable.
Bridging requirements and architecture requires high-level
expertise knowledge that is sometimes impossible to identify
in the early stages of software development [107]. This factor
makes these bridging techniques less applicable to apply for
software systems. In other words, less expertise makes easy
solution hard to implement [2]. A proper domain knowledge
is needed the most for robust, testable, and traceable bridging.

C. SYNCHRONIZATION OF EXPECTED SYSTEM
BEHAVIOUR
‘‘What may comes next’’ is challenging yet success deter-
mining factor to keep track of right moves [108]. Anything
that occurs unexpectedly raises many concerns i.e. failure in
desired performance, ripple effects, inconsistent operations
and sometimes whole project failure. Synchronization among
expected outcomes and actual results of system behaviour is
useful factor in bridging requirement elicitation and software
architecture [109]. It helps in keeping track and makes factors
traceable. Moreover, it also facilitates controlled environment
for bridging and guarantees recognition and performance
estimation.

D. BRIDGING AND QUALITY PERSPECTIVE
A system architect and requirement engineer uses quality
requirements to design the architecture of a system. Sys-
tem’s final design is also an essential perspective achieved
through expected quality requirements [110]. Architectural
frameworks requires expert skill set for practical usage.
However, software quality requirements incorporated into
software architectural block enables better accuracy, time
performance, robustness, and explain-ability for all the exe-
cutable components under consideration [111]. Consider-
ing quality perspective takes less identification and training
time that gives rise to better alternate option if software
product turns out differently. Due to supreme importance
of quality attributes, it is alternatively named as reusable
architectural building blocks. Thus, bridging requirements
into architecture is seems nearly impossible without quality
perspective [112].

VOLUME 10, 2022 56167

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

VII. ACRE BASED REQUIREMENT ELICITATION
PROCESSES AND TOOLS (RQ5)
In this Section, Architecture centric requirement is identi-
fied through state-of-the-art tools, techniques, and schemes.
There are many tools and techniques for requirements and
architecture mapping. During literature evaluation, various
tools, methods, processes, and frameworks, along with few
languages and techniques are identified.

A. TOOLS AND TECHNIQUES ANALYSIS
In ACRE based tools and techniques, the most effective is
ADL along with a set of a defined rule set from PL-Aspectual
ACME and PL-AOV graph [113]. Architecture Trade-off
Analysis Model (ATAM) was developed to identify Archi-
tecturally Significant Work Items (ASWI) and different con-
straints on the current system, and its requirements that are
architecturally significant [114]. Integration of LISA in the
Eclipse IDE architecture-related activities along with Archi-
tecturally Significant Requirements (ASRs) and Architecture
Design Decisions (ADDs) are described as part of the archi-
tecture model. In other words, the architecture description
contains solution structures as well as architectural knowl-
edge that serve as the basis for solution structures.

Strategy for Transition between requirements models
and Architectural Models based on Architectural Patterns
(STREAM-AP) also has a great impact as it considers
the non-functional requirements [115]. To make sure that
all requirements are completely described by the architec-
ture AADL (Architecture Analysis and Design Language)
software architecture shows the collection of schemes that
is answered in RQ 4. In Table 3, there are four major
approaches, including PL-Aspectual ACME and PL-AOV
graph [113], use case and feature modelling [116], data min-
ing [66] and Backlog modification, respectively.

Figure 6 illustrates detailed a quickModel for Taxonomical
resources bank starting from the main heading i.e. ACRE
followed by relevant groups and sub-groups with suitable
resources that provides a relevant bulk of sources under a
specified category. Moreover, six frameworks include meth-
ods tools and techniques for bridging requirements and archi-
tecture cited as [84], [95], [116]–[119].

We have identified the four sub-categories as follows;
1) heuristics; 2) exact searching techniques; 3) hybrid meth-
ods with the combination of both heuristics and exact search-
ing techniques; 4) new strategy to deal with the problem.
After observing the selected studies, heuristics is considered
the most frequently used method in response to the selected
problems. Due to the complex relationships among require-
ments, it is costly enough to find the solution that is optimal
for requirements as well as for architecture that completely
covers those requirements. Therefore, the heuristics is con-
sidered suitable for uncertainty and difficulty at the same time
to find the best solution. The detailed percentages and their
factors are discussed in Figure 8.

Certain studies use the hybrid methods, for instance,
Durdik et al. [120] used a combination of quality attributes.

According to the authors, not every decision about archi-
tecture deduced from architectural solutions are available
and not every requirement is architecture relevant. Therefore,
the semi-automated proposal and integration of solutions
can improve overall system quality targeting sustainabil-
ity, design speed, and assures that the design decisions are
validated before implementation. These methods depicted
a capability to resolve real selection of requirements and
architecture mapping problems.

As per our opinion, the combination of new techniques is
recommended to improve the performance and to find the best
solution. The studies that adopt the exact method has main
focus in programming oriented solution, and as far as the
category of new methods are concerned for problem solving,
like STREAM method by Silva, Lucena et al. [115] and its
new variations shows the results about the problem type
formulation that can be considered in the selection of software
requirements, mentioning three types of objectives: studies
with solo objective, multi-objectives and hybrid studies. The
detailed study shows that the solo-objective design is fre-
quently used to address the problem in software requirement
selection till its conversion to architecture.

However, the paper Goknil et al. [121], was published,
with the aim of generating and validating the architectural
traces by the use of relations of requirements or architec-
ture verification. Authors proposed that architecture is nearer
to software engineering in real world as compared to the
solo-objective engineering process. It gives opportunity to
unite multiple, conflicting objectives, for instance meeting
approximately all customers requirements but with mini-
mal total effort in the whole process. Other applications of
multi-objective approaches pay attention on several qual-
ity attributes, such as reliability, performance and scala-
bility, besides less costs and risks via initial evaluation of
decision [120].

Watching and dissecting the selected papers during system-
atic review, the first plan utilized mostly is the solo-objective
and, after a few experimentation, the use of multiple objec-
tive definitions is utilized, going for more exact subsequent
results. In the current state, different software engineering
issues arises. For example, the study [122] had to describe the
role of requirement change in which they introduced a model
using Twin Peaks and instead of verifying the results for their
model they used the expert opinion to justify their model
which is not sufficient. Figure 7 is categorizing Tools based
on hybrid (light blue), supervised (green) and un-supervised
(blue) methods. Ratio of supervised methods are in majority,
un-supervised in the middle while hybrid are in less.

Targeted approach for analyzing architecturally equipped
design with respect to software process is crucial factor to
determine. Various tools and methods are used for bridging
requirements and architecture. Advancements are made for
the implications and practical concern regarding the method-
ologies. Although, theoretical concerns are located, but no
quantitative analysis is made to have statistical view of pur-
posed and deduced results. The measurable analysis is not

56168 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

FIGURE 6. Taxonomical resource bank for integrating software architecture in requirements elicitation.

VOLUME 10, 2022 56169

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

FIGURE 7. Tools, techniques, models, and frameworks categorization.

only contributory enough to step forward for correctness of
methodologies, but it is also suitable enough for clear accep-
tance and rejection in opting/selecting best techniques and
tools for establishment the architecture centric requirement
elicitation.

Critical and lacking aspect of requirement analysis is its
inability to produce future targeted tools. There are many
case where conducted studies are not sufficient to produce
relevant and most accurate methodologies for the architecture
centric requirement elicitation. Secondly, requirements are
subjected to have huge variance that sometime results in dif-
ficulty to attain desired certainty and output results. In some
cases, processes are replicated, duplicated, and missed in
such a way that is difficult to eradicate out. Targeted tools
and techniques for future work is possible when required
concerning conditions are declared suitable for the further
research applications.

Most of the techniques that are related to architecture
centric requirement engineering are methodology centred.
These techniques focus on derivation of output rather than
functionalities, traceability and adopted approaches. Focus
in requirement analysis is subjected for diversity to seek
better results and excellence to have accurately specified
methodology.

The problem formulation from software requirements is
a critical task. Solo-objective design is beneficial in prob-
lem formulation and addresses software requirement selec-
tion iteratively until its conversion to architecture. However,

Goknil et al. [121] targeted the aim of generating and val-
idating traces by the use of relations of requirements and
architecture verification through a multi-objective approach.
The multi-objective approach is better in operational
software engineering in the real world as compared to the
solo-objective. Moreover, a solution taken from a multi-
objective approach gives various possibilities for quality
attributes such as reliability, performance and scalability
along with reduced cost and risks [120].

A targeted approach for analysing architecturally equipped
design with respect to the requirement process is a crucial
factor to determine. Various tools and methods are used for
bridging requirements and architecture. Advancements are
made for the implications and practical concerns regarding
methodologies. Although theoretical concerns are located,
but no quantitative analysis is made to have a statistical view
of purposed and deduced results. The measurable analysis
is not only contributory enough to step forward to keep a
check on the correctness of methodologies, but it is also
suitable enough for clear acceptance and rejection in opting
best techniques and tools for the establishment of ACRE.

The critical and lacking aspect of requirement analysis
is its inability to produce future targeted tools. It is some-
how replicated, duplicated and missed in such a way that
is difficult to eradicate out. Targeted tools and techniques
for future work is possible when the current concerned
conditions are declared suitable for further research
applications.

56170 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

TABLE 3. Comparative analysis of tools and techniques.

VOLUME 10, 2022 56171

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

TABLE 3. (Continued.) Comparative analysis of tools and techniques.

56172 VOLUME 10, 2022

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

TABLE 3. (Continued.) Comparative analysis of tools and techniques.

FIGURE 8. Percentage distribution of solutions availability to support
ACRE gaps and challenges.

In the light of Figure 8 and Table 3, there are only 5%
hybrid tools and techniques that can support architecture
centric requirements elicitation. However, tools with sin-
gle objective holds major percentage ration i.e. 42%. This
factor indicates that multi-objectives specification are only
13% catered while covering 5% hybrid approaches. Only
4% recent and modern tools are encountered that are cop-
ing up with recent lapses. The overall solution availability
percentages are not yet fulfilling and demands researcher
interest to meet current needs as referred in Figure 8. More-
over, Single stands for those techniques that are based on
one algorithm/method and Multi stands for multiple algo-
rithmic applications in requirement elicitation. The solution
deduced from multi-objective approach not a single solution,
but a solution set with multiple possibilities and states to be
decided by the person who makes the decision. Hybrid stands
for complex tools and techniques that are single at a certain
point and gets multi-objective when required. Hybrid tools
are dire need of the current scenarios and market needs in
order to facilitate better. The great benefit of this is the oppor-
tunity to unite multiple, conflicting objectives, for instance

VOLUME 10, 2022 56173

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

meet approximately all customers’ and requirements engi-
neer needs with minimal total effort in the whole process.

Table 3, holds detailed yet targeted aspects of tools and
techniques with pros and cons, short meaningful description
and computation complexity, user-friendliness along with
expertise level. User-friendliness determines that whether a
tool and technique is easy to adopt by a requirement engineer
while interacting with layman clients. Expertise level covers
the level of skill set required by a requirement engineer
to adapt a method for a specified purpose. Description is
given for reasonable short purpose supported by pros and
cons. Pros and cons present a clear picture of the advan-
tages of adapting a method and a possible drawback in
order to guide requirements engineer better and ahead of
time.

VIII. CONCLUSION
Concluding all, we have studied about requirements and
architecture integration. How they are relevant to each
other, and whether is it possible to accommodate require-
ments within architecture. We covered research gaps between
requirements and architecture along with potential chal-
lenges. In this article, considerable amount of tools and
techniques are mentioned and thoroughly discussed that can
bridge gaps effectively. Moreover, a detailed comparison
and analysis of these tools and framework is also provided.
We have covered very extensive taxonomical resource bank
that encapsulates relevant group of areas with recent and
relevant resources for better reader experience.

This paper is a clear proof that the foundation of a software
development process is the identification of the relation-
ship between the software architecture and the requirements
since the software architecture’s quality is dependent on how
well the system design has accommodated the requirements.
Modelling of requirements through frameworks can be done
among various architectures in order to trace requirements in
software design.Moreover, tools and techniques (Table 3) can
help in determining the evolving requirements by considering
the software architecture only. Architecture centric require-
ment engineering approaches are vital in mentioning the
importance of requirements traceability in software design.
It helps in balancing the requirements in architecture during
any phase for software life cycle.

The method that has been used to conduct this research
is based on the fundamentals of systematic literature review
(SLR). In this paper, we grouped recently proposed different
tools, techniques, frameworks, guidelines and languages to
accommodate requirements in architecture. A software engi-
neer can choose anyone of mentioned tools and framework
based on the requirements and domain. By analysing all the
papers in this SLR, we have observed that requirements that
are gathered keeping in view of the architecture of the system
helps in reducing the gaps between the field of requirement
engineering, software design and architecture. The study con-
ducted has concluded the usefulness and applicability of all

the latest tools and techniques through an extensive analysis
that can be viewed in the papers referred.

FUTURE WORK
The effort required in this research has demonstrated that
there could be many dimensions in which our work can
be taken forward. In future, proposed analysis, tools, and
techniques can be extended by addingmore tools/frameworks
and giving valuable insights about the importance of the con-
nection between the requirements and architecture. Another
future perspective is to work on reducing the paradigm shift
between software architecture and requirement engineering.
Moreover, it would be worth comparing the architecture with
the rest of the software development processes by considering
software architecture i.e. pillar of the software system.

REFERENCES
[1] S. Lim, A. Henriksson, and J. Zdravkovic, ‘‘Data-driven requirements

elicitation: A systematic literature review,’’ Social Netw. Comput. Sci.,
vol. 2, no. 1, pp. 1–35, Feb. 2021.

[2] J. A. Crowder and C.W. Hoff, ‘‘Introduction to multidisciplinary require-
ment engineering (MDRE),’’ in Requirements Engineering: Laying a
Firm Foundation. Cham, Switzerland: Springer, 2022, pp. 1–9, doi:
10.1007/978-3-030-91077-8.

[3] A. Belfadel, J. Laval, C. Bonner Cherifi, and N. Moalla, ‘‘Requirements
engineering and enterprise architecture-based software discovery and
reuse,’’ Innov. Syst. Softw. Eng., vol. 18, pp. 39–60, Jan. 2022.

[4] X. Franch, A. Henriksson, J. Ralyte, and J. Zdravkovic, ‘‘Data-driven
agile requirements elicitation through the lenses of situational method
engineering,’’ in Proc. IEEE 29th Int. Requirements Eng. Conf. (RE),
Sep. 2021, pp. 402–407.

[5] A. Redouane, ‘‘Towards goal-oriented software requirements elicita-
tion,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2021,
pp. 596–599.

[6] M. Sahlabadi, R. C. Muniyandi, Z. Shukur, and F. Qamar, ‘‘Lightweight
software architecture evaluation for industry: A comprehensive review,’’
Sensors, vol. 22, no. 3, p. 1252, Feb. 2022.

[7] T. Yang, Z. Jiang, Y. Shang, andM. Norouzi, ‘‘Systematic review on next-
generation web-based software architecture clustering models,’’ Comput.
Commun., vol. 167, pp. 63–74, Feb. 2021.

[8] C. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch,
E. Y. Nakagawa, C. Becker, and C. Carrillo, ‘‘Software sustainability:
Research and practice from a software architecture viewpoint,’’ J. Syst.
Softw., vol. 138, pp. 174–188, Apr. 2018.

[9] W. Hasselbring, ‘‘Software architecture: Past, present, future,’’ in The
Essence of Software Engineering. Cham, Switzerland: Springer, 2018,
pp. 169–184.

[10] J. Cruz-Benito, F. J. García-Peñalvo, and R. Therón, ‘‘Analyzing the
software architectures supporting HCI/HMI processes through a system-
atic review of the literature,’’ Telematics Informat., vol. 38, pp. 118–132,
May 2019.

[11] X. Li, S. Moreschini, Z. Zhang, and D. Taibi, ‘‘Exploring factors
and metrics to select open source software components for inte-
gration: An empirical study,’’ J. Syst. Softw., vol. 188, Jun. 2022,
Art. no. 111255.

[12] S. A. Busari, ‘‘Modelling and analysing software requirements and archi-
tecture decisions under uncertainty,’’ Univ. College London, London,
U.K., Tech. Rep., 2019. [Online]. Available: https://discovery.ucl.ac.
uk/id/eprint/10067421

[13] J. Melegati, A. Goldman, F. Kon, and X. Wang, ‘‘A model of require-
ments engineering in software startups,’’ Inf. Softw. Technol., vol. 109,
pp. 92–107, May 2019.

[14] T. Wagemann, R. Tavakoli Kolagari, and K. Schmid, ‘‘Exploring auto-
motive stakeholder requirements for architecture optimization support,’’
in Proc. IEEE Int. Conf. Softw. Archit. Companion (ICSA-C), Mar. 2019,
pp. 37–44.

[15] K. Curcio, T. Navarro, A.Malucelli, and S. Reinehr, ‘‘Requirements engi-
neering: A systematic mapping study in agile software development,’’
J. Syst. Softw., vol. 139, pp. 32–50, May 2018.

56174 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-030-91077-8

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

[16] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Salnitri,
L. Piras, J. Mylopoulos, and P. Giorgini, ‘‘Goal-oriented requirements
engineering: An extended systematic mapping study,’’ Requirements
Eng., vol. 24, no. 2, pp. 133–160, Jun. 2019.

[17] J. Nicolás, J. M. C. De Gea, B. Nicolás, J. L. Fernández-Alemán, and
A. Toval, ‘‘On the risks and safeguards for requirements engineering in
global software development: Systematic literature review and quantita-
tive assessment,’’ IEEE Access, vol. 6, pp. 59628–59656, 2018.

[18] V. Gupta, J. M. Fernandez-Crehuet, T. Hanne, and R. Telesko, ‘‘Require-
ments engineering in software startups: A systematic mapping study,’’
Appl. Sci., vol. 10, no. 17, p. 6125, Sep. 2020.

[19] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[20] M. Borrego, M. J. Foster, and J. E. Froyd, ‘‘Systematic literature reviews
in engineering education and other developing interdisciplinary fields,’’
J. Eng. Educ., vol. 103, no. 1, pp. 45–76, Jan. 2014.

[21] K. B. Laskey and K. Laskey, ‘‘Service oriented architecture,’’ Wiley
Interdiscipl. Rev., Comput. Statist., vol. 1, no. 1, pp. 101–105, 2009.

[22] W. Engelsman, D. Quartel, H. Jonkers, and M. van Sinderen, ‘‘Extend-
ing enterprise architecture modelling with business goals and require-
ments,’’ Enterprise Inf. Syst., vol. 5, no. 1, pp. 9–36, Feb. 2011, doi:
10.1080/17517575.2010.491871.

[23] C. Cardoso and P. J. Clarkson, ‘‘Simulation in user-centred design: Help-
ing designers to empathise with atypical users,’’ J. Eng. Des., vol. 23,
no. 1, pp. 1–22, Jan. 2012.

[24] S. Yoon, J. Um, S.-H. Suh, I. Stroud, and J.-S. Yoon, ‘‘Smart factory
information service bus (SIBUS) for manufacturing application: Require-
ment, architecture and implementation,’’ J. Intell. Manuf., vol. 30, no. 1,
pp. 363–382, Jan. 2019.

[25] C. Seepana, A. Paulraj, and F. A. Huq, ‘‘The architecture of coope-
tition: Strategic intent, ambidextrous managers, and knowledge shar-
ing,’’ Ind. Marketing Manage., vol. 91, pp. 100–113, Nov. 2020, doi:
10.1016/j.indmarman.2020.08.012.

[26] M. Purba, E. Ermatita, A. Abdiansah, V. Ayumi, H. Noprisson, and
A. Ratnasari, ‘‘A systematic literature review of knowledge sharing prac-
tices in academic institutions,’’ in Proc. Int. Conf. Informat., Multimedia,
Cyber Inf. Syst. (ICIMCIS, Oct. 2021, pp. 337–342.

[27] A. Bamhdi, ‘‘Requirements capture and comparative analysis of open
source versus proprietary service oriented architecture,’’ Comput. Stan-
dards Interfaces, vol. 74, Feb. 2021, Art. no. 103468.

[28] Z. Ming, A. B. Nellippallil, R. Wang, and J. K. Allen, ‘‘Requirements and
architecture of the decision support platform for design engineering 4.0,’’
in Architecting a Knowledge-Based Platform for Design Engineering 4.0.
Cham, Switzerland: Springer, 2022, pp. 1–22, doi: 10.1007/978-3-030-
90521-7.

[29] H. Nordal and I. El-Thalji, ‘‘Modeling a predictive maintenance manage-
ment architecture to meet industry 4.0 requirements: A case study,’’ Syst.
Eng., vol. 24, no. 1, pp. 34–50, Jan. 2021.

[30] A. Parant, F. Gellot, P. Alexandre, and V. Carré-Ménétrier, ‘‘Model-based
engineering for designing cyber-physical systems control architecture and
improving adaptability from requirements,’’ in Proc. 11th Workshop Ser-
vice Oriented, Holonic Multi-Agent Manuf. Syst. Ind. Future (SOHOMA),
2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03427348

[31] M. Holopainen, ‘‘Exploring service design in the context of architec-
ture,’’ Service Industries J., vol. 30, no. 4, pp. 597–608, Apr. 2010, doi:
10.1080/02642060903067563.

[32] J. Goodman-Deane, P. Langdon, and J. Clarkson, ‘‘Key influences on the
user-centred design process,’’ J. Eng. Des., vol. 21, nos. 2–3, pp. 345–373,
Jun. 2010.

[33] D. A. Koonce, ‘‘Manufacturing systems engineering and design:
An intelligent, multi-model, integration architecture,’’ Int. J. Com-
put. Integr. Manuf., vol. 9, no. 6, pp. 443–453, Jan. 1996, doi:
10.1080/095119296131418.

[34] Y. Zhu, Q. Guo, H. Yin, K. Liang, and S. S. Yau, ‘‘Blockchain-
based software architecture development for service requirements with
smart contracts,’’ Computer, vol. 54, no. 12, pp. 72–80, Dec. 2021, doi:
10.1109/MC.2021.3091379.

[35] M. L. Castro Pena, A. Carballal, N. Rodríguez-Fernández, I. Santos, and
J. Romero, ‘‘Artificial intelligence applied to conceptual design. A review
of its use in architecture,’’ Autom. Construction, vol. 124, Apr. 2021,
Art. no. 103550.

[36] R. Hoda, N. Salleh, and J. Grundy, ‘‘The rise and evolution of agile
software development,’’ IEEE Softw., vol. 35, no. 5, pp. 58–63, Sep. 2018.

[37] M. L. Pasiak and A. W. Rahardjo Emanuel, ‘‘Enterprise architecture
planning (EAP) using TOGAF-ADM at fuel supplier,’’ in Proc. 13th Int.
Conf. Inf. Commun. Technol. Syst. (ICTS), Oct. 2021, pp. 73–77.

[38] J. Qi, X. Ma, L. Li, and F. Wang, ‘‘Multi-stage TOGAF architecture
development method adaption in small-and-medium enterprises—A case
study in a start-up logistics service company,’’ inProc. 33rd Chin. Control
Decis. Conf. (CCDC), May 2021, pp. 4106–4112.

[39] T. Rujira, P. Nilsook, and P. Wannapiroon, ‘‘Vocational education digital
enterprise architecture framework (VEDEAF),’’ in Proc. 9th Int. Conf.
Inf. Educ. Technol. (ICIET), Mar. 2021, pp. 63–67.

[40] E. Lind, ‘‘The impact that the quality of requirements can have on
the work and well-being of practitioners in software development.: An
interview study,’’ Dept. Softw. Eng., Blekinge Inst. Technol., Karlskrona,
Sweden, Tech. Rep., 2022. [Online]. Available: http://bth.diva-portal.
org/smash/record.jsf?pid=diva2%3A1637596&dswid=9800

[41] J. Marques, S. Yelisetty, and L. Barros, ‘‘Requirements engineer-
ing in aircraft systems, hardware, software, and database develop-
ment,’’ in Requirements Engineering for Safety-Critical Systems. Gistrup,
Denmark: River Publishers Series in Software Engineering, 2021, p. 85.

[42] M. Abbas, A. Ferrari, A. Shatnawi, E. P. Enoiu, and M. Saadatmand, ‘‘Is
requirements similarity a good proxy for software similarity? An empir-
ical investigation in industry,’’ in Proc. Int. Work. Conf. Requirements
Eng., Found. Softw. Quality. Essen, Germany: Springer, 2021, pp. 3–18,
doi: 10.1007/978-3-030-73128-1.

[43] R. R. Althar and D. Samanta, ‘‘The realist approach for evaluation of
computational intelligence in software engineering,’’ Innov. Syst. Softw.
Eng., vol. 17, no. 1, pp. 17–27, Mar. 2021.

[44] J. Tummers, A. Kassahun, and B. Tekinerdogan, ‘‘Reference architecture
design for farm management information systems: A multi-case study
approach,’’ Precis. Agricult., vol. 22, no. 1, pp. 22–50, Feb. 2021.

[45] Q. Li, R. Gravina, C.Ma,W. Zang, Y. Li, and G. Fortino, ‘‘A collaborative
BSN-enabled architecture for multi-user activity recognition,’’ in Data
Science and Internet of Things. Cham, Switzerland: Springer, 2021,
pp. 103–119, doi: 10.1007/978-3-030-67197-6.

[46] S. T. Arzo, R. Bassoli, F. Granelli, and F. H. P. Fitzek, ‘‘Multi-agent
based autonomic network management architecture,’’ IEEE Trans. Netw.
Service Manage., vol. 18, no. 3, pp. 3595–3618, Sep. 2021.

[47] H. M. Noman and M. N. Jasim, ‘‘A proposed linear multi-controller
architecture to improve the performance of software defined networks,’’
in Proc. J. Phys., Conf., vol. 1773, 2021, no. 1, Art. no. 012008.

[48] H. Honar Pajooh, M. Rashid, F. Alam, and S. Demidenko, ‘‘Multi-layer
blockchain-based security architecture for Internet of Things,’’ Sensors,
vol. 21, no. 3, p. 772, Jan. 2021.

[49] Y. Wang, G. Zhu, J. Shi, Y. Huang, and X. Guo, ‘‘OSAI: A component-
based open software architecture for modern industrial control systems,’’
Arabian J. Sci. Eng., vol. 47, pp. 3805–3819, Sep. 2021.

[50] Y.-Y. Cheng and H.-H. Lai, ‘‘Constructing an interoperable, design-
centric, service-oriented and knowledge-sharing architecture,’’ Int.
J. Comput. Integr. Manuf., vol. 24, no. 12, pp. 1075–1094, Dec. 2011.

[51] M. Gillani, A. Ullah, and H. A. Niaz, ‘‘Survey of requirement manage-
ment techniques for safety critical systems,’’ in Proc. 12th Int. Conf.
Math., Actuarial Sci., Comput. Sci. Statist. (MACS), Nov. 2018, pp. 1–5.

[52] J. Savolain and T. Mannisto, ‘‘Conflict-centric software architectural
views: Exposing trade-offs in quality requirements,’’ IEEE Softw., vol. 27,
no. 6, pp. 33–37, Nov. 2010.

[53] F. Davami, S. Adabi, A. Rezaee, and A. M. Rahmani, ‘‘Fog-based
architecture for scheduling multiple workflows with high availability
requirement,’’ Computing, vol. 104, no. 1, pp. 169–208, Jan. 2022.

[54] M. Hajvali, S. Adabi, A. Rezaee, and M. Hosseinzadeh, ‘‘Software archi-
tecture for IoT-based health-care systems with cloud/fog service model,’’
Cluster Comput., vol. 25, no. 1, pp. 91–118, Feb. 2022.

[55] Z. Wang, C.-H. Chen, P. Zheng, X. Li, and L. P. Khoo, ‘‘A graph-based
context-aware requirement elicitation approach in smart product-service
systems,’’ Int. J. Prod. Res., vol. 59, no. 2, pp. 635–651, 2021.

[56] D. Gobov and I. Huchenko, ‘‘Software requirements elicitation tech-
niques selection method for the project scope management,’’ in Proc.
ITPM, 2021, pp. 1–10.

[57] B. Aysolmaz, H. Leopold, H. A. Reijers, and O. Demirörs, ‘‘A semi-
automated approach for generating natural language requirements doc-
uments based on business process models,’’ Inf. Softw. Technol., vol. 93,
pp. 14–29, Jan. 2018.

[58] H. Femmer and A. Vogelsang, ‘‘Requirements quality is quality in use,’’
IEEE Softw., vol. 36, no. 3, pp. 83–91, Mar. 2018.

[59] G. Brataas, A.Martini, G. K. Hanssen, and G. Ræder, ‘‘Agile elicitation of
scalability requirements for open systems: A case study,’’ J. Syst. Softw.,
vol. 182, Dec. 2021, Art. no. 111064.

VOLUME 10, 2022 56175

http://dx.doi.org/10.1080/17517575.2010.491871
http://dx.doi.org/10.1016/j.indmarman.2020.08.012
http://dx.doi.org/10.1007/978-3-030-90521-7
http://dx.doi.org/10.1007/978-3-030-90521-7
http://dx.doi.org/10.1080/02642060903067563
http://dx.doi.org/10.1080/095119296131418
http://dx.doi.org/10.1109/MC.2021.3091379
http://dx.doi.org/10.1007/978-3-030-73128-1
http://dx.doi.org/10.1007/978-3-030-67197-6

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

[60] V. Adithya and G. Deepak, ‘‘OntoReq: An ontology focused collective
knowledge approach for requirement traceability modelling,’’ in Proc.
Eur., Asian, Middle Eastern, North Afr. Conf. Manage. Inf. Syst. Istanbul,
Turkey: Springer, 2021, pp. 358–370, doi: 10.1007/978-3-030-77246-8.

[61] A. A.Madaki andW.M. N.W. Zainon, ‘‘A review on tools and techniques
for visualizing software requirement traceability,’’ in Proc. 11th Int. Conf.
Robot., Vis., Signal Process. Power Appl. Singapore: Springer, 2022,
pp. 39–44, doi: 10.1007/978-981-16-8129-5.

[62] M.-J. Escalona, N. Koch, and L. Garcia-Borgoñon, ‘‘Lean requirements
traceability automation enabled by model-driven engineering,’’ PeerJ
Comput. Sci., vol. 8, p. e817, Jan. 2022.

[63] E. Sülün, E. Tüzün, and U. Doğrusöz, ‘‘RSTrace+: Reviewer suggestion
using software artifact traceability graphs,’’ Inf. Softw. Technol., vol. 130,
Feb. 2021, Art. no. 106455.

[64] S. Kit Lo, Q. Lu, L. Zhu, H.-Y. Paik, X. Xu, and C. Wang, ‘‘Archi-
tectural patterns for the design of federated learning systems,’’ 2021,
arXiv:2101.02373.

[65] D.M. B. Paiva, A. P. Freire, and R. P. deMattos Fortes, ‘‘Accessibility and
software engineering processes: A systematic literature review,’’ J. Syst.
Softw., vol. 171, Jan. 2021, Art. no. 110819.

[66] P. R. Anish, B. Balasubramaniam, J. Cleland-Huang, R. Wieringa,
M. Daneva, and S. Ghaisas, ‘‘Identifying architecturally significant func-
tional requirements,’’ in Proc. IEEE/ACM 5th Int. Workshop Twin Peaks
Requirements Archit., May 2015, pp. 3–8.

[67] Y. Wang, C. Zhang, and F. Wang, ‘‘What do we know about the tools
of detecting design patterns?’’ in Proc. IEEE Int. Conf. Prog. Informat.
Comput. (PIC), Dec. 2018, pp. 379–387.

[68] R. X. Schwartz, A. Monge Roffarello, L. De Russis, and P. Apostolellis,
‘‘Reducing risk in digital self-control tools: Design patterns and proto-
type,’’ in Proc. Extended Abstr. CHI Conf. Hum. Factors Comput. Syst.,
May 2021, pp. 1–7.

[69] E. Dickhaut, M. Li, A. Janson, and J. M. Leimeister, ‘‘Developing lawful
technologies–A revelatory case study on design patterns,’’ Dept. IT Man-
age., Shidler College Bus. HICSS, Tech. Rep., 2021. [Online]. Available:
https://hicss.hawaii.edu/

[70] V. Lenarduzzi, F. Lomio, S. Moreschini, D. Taibi, and D. A. Tamburri,
‘‘Software quality for AI: Where we are now?’’ in Proc. Int. Conf. Softw.
Quality. Vienna, Austria: Springer, 2021, pp. 43–53, doi: 10.1007/978-3-
030-65854-0.

[71] K. Großer, V. Riediger, and J. Jürjens, ‘‘Requirements document rela-
tions,’’ Softw. Syst. Model., pp. 1–37, Jan. 2022.

[72] C. Werner, Z. S. Li, N. Ernst, and D. Damian, ‘‘The lack of shared
understanding of non-functional requirements in continuous software
engineering: Accidental or essential?’’ in Proc. IEEE 28th Int. Require-
ments Eng. Conf. (RE), Aug. 2020, pp. 90–101.

[73] M. Glinz and S. A. Fricker, ‘‘On shared understanding in software
engineering: An essay,’’ Comput. Sci.-Res. Develop., vol. 30, nos. 3–4,
pp. 363–376, Aug. 2015.

[74] R. Kasauli, E. Knauss, J. Horkoff, G. Liebel, and F. G. de Oliveira
Neto, ‘‘Requirements engineering challenges and practices in large-
scale agile system development,’’ J. Syst. Softw., vol. 172, Feb. 2021,
Art. no. 110851.

[75] O. Cico, L. Jaccheri, A. Nguyen-Duc, andH. Zhang, ‘‘Exploring the inter-
section between software industry and software engineering education—
A systematic mapping of software engineering trends,’’ J. Syst. Softw.,
vol. 172, Feb. 2021, Art. no. 110736.

[76] S. Von Solms and L. A. Futcher, ‘‘Adaption of a secure software develop-
ment methodology for secure engineering design,’’ IEEE Access, vol. 8,
pp. 125630–125637, 2020.

[77] M. Gillani, H. A. Niaz, and A. Ullah, ‘‘Multi-cyclic requirement engi-
neering for educational and industrial models in software development,’’
in Proc. IEEE 23rd Int. Multitopic Conf. (INMIC), Nov. 2020, pp. 1–6.

[78] F. Montero and E. Navarro, ‘‘ATRIUM: Software architecture driven by
requirements,’’ inProc. 14th IEEE Int. Conf. Eng. Complex Comput. Syst.,
Jun. 2009, pp. 230–239.

[79] L. Chen, M. A. Babar, and B. Nuseibeh, ‘‘Characterizing architecturally
significant requirements,’’ IEEE Softw., vol. 30, no. 2, pp. 38–45, 2012.

[80] A. Hidayati and B. Purwandari, ‘‘Software engineer competencies in
global software development: An Indonesian perspective,’’ Tehnički Vjes-
nik, vol. 29, no. 2, pp. 683–691, 2022.

[81] A. Jan, A. Abbas, and N. Ahmad, ‘‘Monitoring and controlling software
project scope using agile EVM,’’ in Evolving Software Processes: Trends
and Future Directions. Hoboken, NJ, USA: Wiley, 2022, pp. 89–121.

[82] D. Vavpotič, D. Kalibatiene, O. Vasilecas, and T. Hovelja, ‘‘Identifying
key characteristics of business rules that affect software project success,’’
Appl. Sci., vol. 12, no. 2, p. 762, Jan. 2022.

[83] C. Gellweiler, ‘‘IT architects and IT-business alignment: A theoretical
review,’’ Proc. Comput. Sci., vol. 196, pp. 13–20, Jan. 2022.

[84] H. Hiisila and M. Kujala, ‘‘Combining process modeling and require-
ments engineering: An experience report,’’ in Proc. IEEE 17th Conf. Bus.
Informat., Jul. 2015, pp. 242–249.

[85] M. N. A. Khan, A. M. Mirza, S. U. Rehman, R. A. Wagan, and I. Saleem,
‘‘Addressing communication, coordination and cultural issues in global
software development projects,’’ EMITTER Int. J. Eng. Technol., vol. 9,
no. 1, pp. 13–30, 2021.

[86] C. Gupta and P. Chandani, ‘‘SERIES: A software risk estimator tool
support for requirement risk assessment,’’ in Research Anthology on
Agile Software, Software Development, and Testing. Hershey, PA, USA:
IGI Global, 2022, pp. 1139–1153.

[87] S. Goldbaum, A. Mihaly, T. Ellison, E. T. Barr, and M. Marron, ‘‘High
assurance software for financial regulation and business platforms,’’ in
Proc. Int. Conf. Verification, Model Checking, Abstract Interpretation.
Philadelphia, PA, USA: Springer, 2022, pp. 108–126, doi: 10.1007/978-
3-030-94583-1.

[88] N. Li, L. Zhao, C. Bao, G. Gong, X. Song, and C. Tian, ‘‘A real-
time information integration framework for multidisciplinary coupling of
complex aircrafts: An application of IIIE,’’ J. Ind. Inf. Integr., vol. 22,
Jun. 2021, Art. no. 100203.

[89] N. Niu, L. D. Xu, J.-R. C. Cheng, and Z. Niu, ‘‘Analysis of architecturally
significant requirements for enterprise systems,’’ IEEE Syst. J., vol. 8,
no. 3, pp. 850–857, Sep. 2014.

[90] S. Kolesnikov, N. Siegmund, C. Kästner, A. Grebhahn, and S. Apel,
‘‘Tradeoffs in modeling performance of highly configurable software
systems,’’ Softw. Syst. Model., vol. 18, no. 3, pp. 2265–2283, Jun. 2019.

[91] J. Cámara,M. Silva, D. Garlan, andB. Schmerl, ‘‘Explaining architectural
design tradeoff spaces: Amachine learning approach,’’ inProc. Eur. Conf.
Softw. Archit. Springer, 2021, pp. 49–65.

[92] D. Sobhy, R. Bahsoon, L. Minku, and R. Kazman, ‘‘Evaluation of soft-
ware architectures under uncertainty: A systematic literature review,’’
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 4, pp. 1–50, 2021.

[93] D. M. Phillips, T. A. Mazzuchi, and S. Sarkani, ‘‘An architecture, sys-
tem engineering, and acquisition approach for space system software
resiliency,’’ Inf. Softw. Technol., vol. 94, pp. 150–164, Feb. 2018, doi:
10.1016/j.infsof.2017.10.006.

[94] J. Suárez-Varela and P. Barlet-Ros, ‘‘Flowmonitoring in software-defined
networks: Finding the accuracy/performance tradeoffs,’’ Comput. Netw.,
vol. 135, pp. 289–301, Apr. 2018.

[95] J. Cleland-Huang, M. Mirakhorli, A. Czauderna, and M. Wieloch,
‘‘Decision-centric traceability of architectural concerns,’’ in Proc. 7th Int.
Workshop Traceability Emerg. Forms Softw. Eng. (TEFSE), May 2013,
pp. 5–11.

[96] T. Spijkman, S. Brinkkemper, F. Dalpiaz, A.-F. Hemmer, and
R. van de Bospoort, ‘‘Specification of requirements and software
architecture for the customisation of enterprise software: A multi-
case study based on the RE4SA model,’’ in Proc. IEEE 27th Int.
Requirements Eng. Conf. Workshops (REW), Sep. 2019, pp. 64–73, doi:
10.1109/REW.2019.00015.

[97] M. Ristin, D. F. Edvardsen, and H. W. van de Venn, ‘‘RASAECO:
Requirements analysis of software for the AECO industry,’’ inProc. IEEE
29th Int. Requirements Eng. Conf. (RE), Sep. 2021, pp. 280–290, doi:
10.1109/RE51729.2021.00032.

[98] D. Yong, ‘‘Design and practice of software architecture in agile devel-
opment,’’ in Proc. J. Phys., Conf., Jan. 2021, vol. 2074, no. 1,
Art. no. 012008, doi: 10.1088/1742-6596/2074/1/012008.

[99] T. Spijkman, S. Molenaar, F. Dalpiaz, and S. Brinkkemper, ‘‘Alignment
and granularity of requirements and architecture in agile development:
A functional perspective,’’ Inf. Softw. Technol., vol. 133, May 2021,
Art. no. 106535, doi: 10.1016/j.infsof.2021.106535.

[100] J. Cleland-Huang, R. S. Hanmer, S. Supakkul, and M. Mirakhorli, ‘‘The
twin peaks of requirements and architecture,’’ IEEE Softw., vol. 30, no. 2,
pp. 24–29, Mar. 2013, doi: 10.1109/MS.2013.39.

[101] M. Galster, M. Mirakhorli, J. Cleland-Huang, J. E. Burge, X. Franch,
R. Roshandel, and P. Avgeriou, ‘‘Views on software engineering
from the twin peaks of requirements and architecture,’’ ACM SIG-
SOFT Softw. Eng. Notes, vol. 38, no. 5, pp. 40–42, Aug. 2013, doi:
10.1145/2507288.2507323.

[102] S. Dasanayake, S. Aaramaa, J. Markkula, and M. Oivo, ‘‘Impact of
requirements volatility on software architecture: How do software teams
keep up with ever-changing requirements?’’ J. Softw., Evol. Process,
vol. 31, no. 6, p. e2160, 2019, doi: 10.1002/smr.2160.

56176 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-030-77246-8
http://dx.doi.org/10.1007/978-981-16-8129-5
http://dx.doi.org/10.1007/978-3-030-65854-0
http://dx.doi.org/10.1007/978-3-030-65854-0
http://dx.doi.org/10.1007/978-3-030-94583-1
http://dx.doi.org/10.1007/978-3-030-94583-1
http://dx.doi.org/10.1016/j.infsof.2017.10.006
http://dx.doi.org/10.1109/REW.2019.00015
http://dx.doi.org/10.1109/RE51729.2021.00032
http://dx.doi.org/10.1088/1742-6596/2074/1/012008
http://dx.doi.org/10.1016/j.infsof.2021.106535
http://dx.doi.org/10.1109/MS.2013.39
http://dx.doi.org/10.1145/2507288.2507323
http://dx.doi.org/10.1002/smr.2160

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

[103] P. Lenberg, R. Feldt, and L. G. Wallgren, ‘‘Human factors related
challenges in software engineering–An industrial perspective,’’ in Proc.
IEEE/ACM 8th Int. Workshop Cooperat. Hum. Aspects Softw. Eng.,
May 2015, pp. 43–49.

[104] V. Vyatkin, ‘‘Software engineering in industrial automation: State-of-the-
art review,’’ IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1234–1249,
Aug. 2013.

[105] C. Wohlin and A. Rainer, ‘‘Challenges and recommendations to pub-
lishing and using credible evidence in software engineering,’’ Inf. Softw.
Technol., vol. 134, Jun. 2021, Art. no. 106555.

[106] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and J. C. Carver,
‘‘Software engineering practices for scientific software development:
A systematic mapping study,’’ J. Syst. Softw., vol. 172, Feb. 2021,
Art. no. 110848.

[107] H.-M. Heyn, E. Knauss, A. P. Muhammad, O. Eriksson, J. Linder,
P. Subbiah, S. K. Pradhan, and S. Tungal, ‘‘Requirement engineering
challenges for AI-intense systems development,’’ in Proc. IEEE/ACM 1st
Workshop AI Eng.-Softw. Eng. AI (WAIN), May 2021, pp. 89–96.

[108] N. Ali and R. Lai, ‘‘Global software development: A review OF its
practices,’’Malaysian J. Comput. Sci., vol. 34, no. 1, pp. 82–129, 2021.

[109] S. Qureshi, S. U. R. Khan, and J. Iqbal, ‘‘A study on mitigating the
communication and coordination challenges during requirements change
management in global software development,’’ IEEE Access, vol. 9,
pp. 88217–88242, 2021.

[110] H. U. Khan, M. Niazi, M. El-Attar, N. Ikram, S. U. Khan, and A. Q. Gill,
‘‘Empirical investigation of critical requirements engineering practices
for global software development,’’ IEEEAccess, vol. 9, pp. 93593–93613,
2021.

[111] S. D. Hashmi, K. Shahzad, and M. Izhar, ‘‘Proposing total quality man-
agement as a buffer between global software development challenges and
project success,’’ TQM J., Sep. 2021, doi: 10.1108/TQM-08-2020-0192.

[112] I. Atoum,M.K. Baklizi, I. Alsmadi, A. A. Otoom, T. Alhersh, J. Ababneh,
J. Almalki, and S. M. Alshahrani, ‘‘Challenges of software requirements
quality assurance and validation: A systematic literature review,’’ IEEE
Access, vol. 9, pp. 137613–137634, 2021.

[113] K. Coelho and T. Batista, ‘‘From requirements to architecture for soft-
ware product lines,’’ in Proc. 9th Work. IEEE/IFIP Conf. Softw. Archit.,
Jun. 2011, pp. 282–289.

[114] N. A. Ernst, I. Ozkaya, R. L. Nord, J. Delange, S. Bellomo, and
I. Gorton, ‘‘Understanding the role of constraints on architecturally signif-
icant requirements,’’ in Proc. 3rd Int. Workshop Twin Peaks Requirements
Archit. (TwinPeaks), Jul. 2013, pp. 9–14.

[115] F. Silva, M. Lucena, and L. Lucena, ‘‘STREAM-AP: A process to
systematize architectural patterns choice based on NFR,’’ in Proc. 3rd
Int. Workshop Twin Peaks Requirements Archit. (TwinPeaks), Jul. 2013,
pp. 27–34.

[116] H. Gomaa, ‘‘Evolving software requirements and architectures using
software product line concepts,’’ in Proc. 2nd Int. Workshop Twin Peaks
Requirements Archit. (TwinPeaks), May 2013, pp. 24–28.

[117] P. R. Anish and B. Balasubramaniam, ‘‘A knowledge-assisted framework
to bridge functional and architecturally significant requirements,’’ in
Proc. 4th Int. Workshop Twin Peaks Requirements Archit. (TwinPeaks),
2014, pp. 14–17.

[118] N. Rungta, O. Tkachuk, S. Person, and J. Biatek, ‘‘Helping sys-
tem engineers bridge the peaks,’’ presented at the 4th Int. Work-
shop Twin Peaks Requirements Archit., Hyderabad, India, 2014, doi:
10.1145/2593861.2593863.

[119] M. D. P. Salas-Zárate, G. Alor-Hernández, R. Valencia-García,
L. Rodríguez-Mazahua, A. Rodríguez-González, and J. L. López
Cuadrado, ‘‘Analyzing best practices on web development frameworks:
The lift approach,’’ Sci. Comput. Program., vol. 102, pp. 1–19,
May 2015.

[120] Z. Durdik, ‘‘An architecture-centric approach for goal-driven require-
ments elicitation,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf.
Found. Softw. Eng. (SIGSOFT/FSE), 2011, pp. 384–387.

[121] A. Goknil, I. Kurtev, and K. V. D. Berg, ‘‘Tool support for generation and
validation of traces between requirements and architecture,’’ presented
at the 6th ECMFA Traceability Workshop, Paris, France, 2010, doi:
10.1145/1814392.1814398.

[122] F. Al-Hamed, S. Al-Doweesh, R. Al-Omar, W. Al-Doweesh, and
A. Najjar, ‘‘Service oriented software engineering (SOSE): A survey and
gap analysis,’’ in Proc. 21st Saudi Comput. Soc. Nat. Comput. Conf.
(NCC), Apr. 2018, pp. 1–6.

[123] M.Galster andA. Eberlein, ‘‘Facilitating software architecting by ranking
requirements based on their impact on the architecture process,’’ in Proc.
18th IEEE Int. Conf. Workshops Eng. Comput.-Based Syst., Apr. 2011,
pp. 232–240.

[124] M. Galster, A. Eberlein, and L. Jiang, ‘‘Structuring software require-
ments for architecture design,’’ in Proc. 20th IEEE Int. Conf. Work-
shops Eng. Comput. Based Syst. (ECBS), Apr. 2013, pp. 119–128, doi:
10.1109/ECBS.2013.14.

[125] B. Surakratanasakul and K. Hamamoto, ‘‘CommonKADS’s knowledge
model using UML architectural view and extension mechanism,’’ in
Proc. 7th Int. Conf. Adv. Inf. Manage. Service (ICIPM), Nov./Dec. 2011,
pp. 59–63.

[126] A. Alebrahim, D. Hatebur, and M. Heisel, ‘‘A method to derive software
architectures from quality requirements,’’ in Proc. 18th Asia–Pacific
Softw. Eng. Conf., Dec. 2011, pp. 322–330.

[127] L. Shen, X. Peng, andW. Zhao, ‘‘Quality-driven self-adaptation: Bridging
the gap between requirements and runtime architecture by design deci-
sion,’’ in Proc. IEEE 36th Annu. Comput. Softw. Appl. Conf., Jul. 2012,
pp. 185–194.

[128] Z. Yao-Wen and Z.Mao-Lin, ‘‘A approach about translating from require-
ment model to AADL software architecture,’’ in Proc. Int. Conf. Inf.,
Netw. Autom. (ICINA), Oct. 2010, p. 275.

[129] J. Cleland-Huang, ‘‘Thinking about quoins: Strategic traceability of
architecturally significant requirements,’’ IEEE Softw., vol. 30, no. 5,
pp. 16–18, Sep. 2013, doi: 10.1109/MS.2013.117.

[130] W. Hong, ‘‘Architecture-centric software process for pattern based soft-
ware reuse,’’ in Proc. WRI World Congr. Softw. Eng., vol. 4, May 2009,
pp. 95–99, doi: 10.1109/WCSE.2009.188.

[131] G. Buchgeher and R. Weinreich, ‘‘Tool demonstration: A toolkit for
architecture-centric software development,’’ in Proc. 8th Int. Conf. Princ.
Pract. Program. Java, vol. 2010, pp. 158–161.

[132] H. Ossher, R. Bellamy, I. Simmonds, and D. Amid, ‘‘Flexible mod-
eling tools for pre-requirements analysis: Conceptual architecture and
research challenges,’’ presented at the ACM Int. Conf. Object Ori-
ented Program. Syst. Lang. Appl., Reno/Tahoe, NV, USA, 2010, doi:
10.1145/1869459.1869529.

[133] M. Mirakhorli, ‘‘Tracing architecturally significant requirements: A
decision-centric approach,’’ in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 1126–1127.

[134] J. Davies, D. Milward, C.-W. Wang, and J. Welch, ‘‘Formal model-driven
engineering of critical information systems,’’ Sci. Comput. Program.,
vol. 103, pp. 88–113, Jun. 2015.

[135] G. Berry and G. Gonthier, ‘‘The esterel synchronous programming lan-
guage: Design, semantics, implementation,’’ Sci. Comput. Program.,
vol. 19, no. 2, pp. 87–152, Nov. 1992.

[136] M. Gogolla, F. Büttner, and M. Richters, ‘‘USE: A UML-based specifica-
tion environment for validating UML and OCL,’’ Sci. Comput. Program.,
vol. 69, nos. 1–3, pp. 27–34, Dec. 2007.

[137] C. Tibermacine, S. Sadou, M. T. Ton That, and C. Dony, ‘‘Software
architecture constraint reuse-by-composition,’’ Future Gener. Comput.
Syst., vol. 61, pp. 37–53, Aug. 2016.

[138] A. Cilardo, L. Gallo, and N. Mazzocca, ‘‘Design space exploration for
high-level synthesis of multi-threaded applications,’’ J. Syst. Archit.,
vol. 59, no. 10, pp. 1171–1183, Nov. 2013.

[139] M. Sojka, P. Píša, D. Faggioli, T. Cucinotta, F. Checconi, Z. Hanzálek,
and G. Lipari, ‘‘Modular software architecture for flexible reservation
mechanisms on heterogeneous resources,’’ J. Syst. Archit., vol. 57, no. 4,
pp. 366–382, Apr. 2011.

[140] C. Yang, P. Liang, and P. Avgeriou, ‘‘A systematic mapping study on
the combination of software architecture and agile development,’’ J. Syst.
Softw., vol. 111, pp. 157–184, Jan. 2016.

[141] W. Brace and V. Cheutet, ‘‘A framework to support requirements analysis
in engineering design,’’ J. Eng. Design, vol. 23, no. 12, pp. 876–904,
Dec. 2012.

[142] T. Kobayashi, K. Arai, T. Imai, S. Tanimoto, H. Sato, A. Kanai,
T. Miyazaki, and A. Tsujino, ‘‘Service-oriented software design model
for communication robot,’’ inProc. IEEE Int. Conf. Service Oriented Syst.
Eng. (SOSE), Aug. 2020, pp. 31–39.

[143] E. Berrio-Charry, J. Vergara-Vargas, and H. Umana-Acosta,
‘‘A component-based evolution model for service-based software
architectures,’’ in Proc. IEEE 11th Int. Conf. Softw. Eng. Service Sci.
(ICSESS), Oct. 2020, pp. 111–115.

VOLUME 10, 2022 56177

http://dx.doi.org/10.1108/TQM-08-2020-0192
http://dx.doi.org/10.1145/2593861.2593863
http://dx.doi.org/10.1145/1814392.1814398
http://dx.doi.org/10.1109/ECBS.2013.14
http://dx.doi.org/10.1109/MS.2013.117
http://dx.doi.org/10.1109/WCSE.2009.188
http://dx.doi.org/10.1145/1869459.1869529

M. Gillani et al.: Integration of Software Architecture in Requirements Elicitation for Rapid Software Development

[144] L. Ben Othmane and M. Lamm, ‘‘Mindset for software architecture
students,’’ in Proc. IEEE 43rd Annu. Comput. Softw. Appl. Conf. (COMP-
SAC), Jul. 2019, pp. 306–311.

[145] Y. Cai, L. Xiao, R. Kazman, R. Mo, and Q. Feng, ‘‘Design rule spaces: A
new model for representing and analyzing software architecture,’’ IEEE
Trans. Softw. Eng., vol. 45, no. 7, pp. 657–682, Jul. 2019.

[146] J. Y. Bang, Y. Brun, and N. Medvidovic, ‘‘Collaborative-design conflicts:
Costs and solutions,’’ IEEE Softw., vol. 35, no. 6, pp. 25–31, Nov. 2018.

[147] G. Srivastava, Y.More, and J. Sam, ‘‘Effort estimation model for an enter-
prise software upgrade,’’ in Proc. Int. Conf. Emerg. Technol. (INCET),
Jun. 2020, pp. 1–6.

[148] A. Aldea, M.-E. Iacob, A. Wombacher, M. Hiralal, and T. Franck,
‘‘Enterprise architecture 4.0–A vision, an approach and software tool
support,’’ in Proc. IEEE 22nd Int. Enterprise Distrib. Object Comput.
Conf. (EDOC), 2018, pp. 1–10.

[149] T. Farooqui, T. Rana, and F. Jafari, ‘‘Impact of human-centered design
process (HCDP) on software development process,’’ in Proc. 2nd
Int. Conf. Commun., Comput. Digit. Syst. (C-CODE), Mar. 2019,
pp. 110–114.

[150] I. Signoretti, S. Marczak, L. Salerno, A. D. Lara, and R. Bastos, ‘‘Boost-
ing agile by using user-centered design and lean startup: A case study
of the adoption of the combined approach in software development,’’
in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM),
Sep. 2019, pp. 1–6.

[151] M. D. Dzulfiqar, D. Khairani, and L. K. Wardhani, ‘‘The development
of university website using user centered design method with ISO 9126
standard,’’ in Proc. 6th Int. Conf. Cyber IT Service Manage. (CITSM),
Aug. 2018, pp. 1–4.

[152] E. Wulandari, V. Effendy, and G. A. Ary Wisudiawan, ‘‘Modeling
user interface of first-aid application game using user centered design
(UCD) method,’’ in Proc. 6th Int. Conf. Inf. Commun. Technol. (ICoICT),
May 2018, pp. 354–359.

[153] M. Mukelabai, B. Behringer, M. Fey, J. Palz, J. Krüger, and
T. Berger, ‘‘Multi-view editing of software product lines with
PEoPL,’’ in Proc. 40th Int. Conf. Softw. Eng., Companion, May 2018,
pp. 81–84.

[154] B. Paech andK. Schneider, ‘‘How do users talk about software? Searching
for common ground,’’ in Proc. 1st Workshop Ethics Requirements Eng.
Res. Pract. (REthics), Aug. 2020, pp. 11–14.

[155] R. Chatterjee, A. Ahmed, and P. R. Anish, ‘‘Identification and classifica-
tion of architecturally significant functional requirements,’’ inProc. IEEE
7th Int. Workshop Artif. Intell. for Requirements Eng. (AIRE), Sep. 2020,
pp. 9–17.

[156] M. Waterman, ‘‘Agility, risk, and uncertainty, part 2: How risk
impacts agile architecture,’’ IEEE Softw., vol. 35, no. 3, pp. 18–19,
May 2018.

[157] G. Abbas, M. Imran, Y. Hafeez, A. Kiani, A. Ali, and T. Jabbar, ‘‘Improv-
ing software architecture design decision by selecting set of solutions,’’ in
Proc. 3rd Int. Conf. Comput., Math. Eng. Technol. (iCoMET), Jan. 2020,
pp. 1–7.

[158] A. Akhtar, Y. H. Motla, H. Aslam, and M. Jamal, ‘‘Role of requirement
change in software architecture using twin peaks model,’’ in Proc. IEEE
5th Int. Conf. Softw. Eng. Service Sci., Jun. 2014, pp. 174–177.

[159] S. Ghaisas, ‘‘Traceability for a knowledge-driven software engineering,’’
in Proc. IEEE/ACM 10th Int. Symp. Softw. Syst. Traceability (SST),
May 2019, p. 1.

[160] I. Rubasinghe, D. Meedeniya, and I. Perera, ‘‘Traceability management
with impact analysis in DevOps based software development,’’ in Proc.
Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2018,
pp. 1956–1962.

[161] T. Durschmid, E. Kang, and D. Garlan, ‘‘Trade-off-oriented develop-
ment: Making quality attribute trade-offs first-class,’’ in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng., New Ideas Emerg. Results (ICSE-NIER),
May 2019, pp. 109–112.

[162] A. A. A. Saeed and S.-W. Lee, ‘‘Non-functional requirements trade-
off in self-adaptive systems,’’ in Proc. 4th Int. Workshop Requirements
Eng. Self-Adapt., Collaborative, Cyber Phys. Syst. (RESACS), Aug. 2018,
pp. 9–15.

[163] E.-M. Arvanitou, A. Ampatzoglou, N. Nikolaidis, A.-A. Tzintzira,
A. Ampatzoglou, and A. Chatzigeorgiou, ‘‘Investigating trade-offs
between portability, performance and maintainability in exascale sys-
tems,’’ in Proc. 46th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA),
Aug. 2020, pp. 59–63.

[164] R. Edwards and N. Bencomo, ‘‘DeSiRE: Further understanding nuances
of degrees of satisfaction of non-functional requirements trade-off,’’
presented at the 13th Int. Conf. Softw. Eng. Adapt. Self-Manag. Syst.,
Gothenburg, Sweden, 2018, doi: 10.1145/3194133.3194142.

MARYAM GILLANI received the B.S. degree in
software engineering and computer sciences from
the Forman Christian College (FCCU), Lahore,
and the M.S. degree in computer software engi-
neering from the NUST College of Electrical
and Mechanical Engineering (CEME), Islamabad,
Pakistan. She is currently pursuing the Ph.D.
degree in machine learning and artificial neural
networks with University College Dublin (UCD),
Ireland. She worked as a Lecturer for two years in

a public sector university and worked on data collection and communication
protocols for VANETs, intelligent transport systems, and rapid software
development.

HAFIZ ADNAN NIAZ received the B.S. degree
in computer systems engineering from UCET-IUB
and the M.S. degree in computer engineering from
the NUST College of Electrical and Mechan-
ical Engineering (CEME), Islamabad, Pakistan.
He is currently pursuing the Ph.D. degree with
University College Dublin (UCD), Ireland, and
working on optimizing energy of communication
for high-performance heterogeneous computing.
He has two years of industrial experience as a

System Engineer in which he got hands-on experience on hardware and
software domains of various networking areas. He worked as a Lecturer
for two years and explored research areas that include data collection and
communication protocols for VANETs along with image processing and
rapid software development.

ATA ULLAH received the B.S. and M.S. degrees
in computer science from COMSATS University
Islamabad (CUI), Islamabad, Pakistan, in 2005 and
2007, respectively, and the Ph.D. degree in com-
puter science from IIUI, Pakistan, in 2016. From
November 2017 to 2018, he was with the Uni-
versity of Science and Technology Beijing, China.
In 2008, he joined the National University of
Modern Languages (NUML), Islamabad, where
he is currently working as an Associate Professor.

He was awarded ICT funding for the development of various projects. He has
published 60 papers in ISI indexed impact factor journals and international
conferences. His research interests include WSN, the IoT, health-services,
the IoV, NGN, VoIP, and their security solutions. He is a reviewer and a guest
editor of journals and conference publications.

56178 VOLUME 10, 2022

http://dx.doi.org/10.1145/3194133.3194142

