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ABSTRACT Optimizing energy consumption in buildings is a significant challenge in today’s society.
A major part of energy consumption is in heating, ventilation and air conditioning (HVAC) systems. In this
paper, the aim is to reduce the energy consumption of air handling units (AHU) by applying optimal
control. This system used in this study has four AHUs, all of which are assumed to be the same. Due
to the uncertainty of the temperature of the heat exchanger’s (H/E) inlet and outlet water, a model of the
system was first made using its hypothetical capacity according to the ASHRAE standards. The inlet and
outlet water temperatures are calculated using simulated and real data. In order to increase the model’s
accuracy and facilitate implementation on a real system, the data obtained is used to train a dynamic recurrent
neural network (RNN) for the H/E. Furthermore, to increase the system’s stability and bolster its response to
disturbances, which change system parameters over time and reduce the accuracy of neural network models,
an online recursive least squares (RLS-based) adaptive constrained generalized predictive controller (AGPC)
is used to control its outlet air temperature. The AGPC attempts to minimize the computational load and
estimates the transfer function by using continuously updated input-output data from the model; this model
has fewer parameters than the RNN model. Finally, the power consumption of the H/E is calculated. The
outlet humidity and airflow are controlled using an optimal controller to minimize energy consumption. The
results show a reduction in the energy consumption of 54.95% with respect to the previous work and of
69.9% compared to the dataset from the real system.

INDEX TERMS Predictive controller, adaptive control, air handling unit, energy optimization, dynamic
neural networks.

NOMENCLATURE
Symbol Definition Value
Tsa,i Air temperature in the outlet

of AHUi in ◦C
Tsai,ref Air temperature reference in the

outlet of AHUi in ◦C
(Supply air temperature in zones)

The associate editor coordinating the review of this manuscript and

approving it for publication was Shihong Ding .

TRi Recirculation air temperature
of AHUi in ◦C

To External air temperature in ◦C
Ho Outside air relative

humidity percentage
P Prediction horizon 5
M Control horizon 5
Ts Sampling time (s) 300
Ga,i Airflow rate in the outlet

of AHUi in (kg)s−1
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Gri Recirculation airflow rate
of AHUi in (kg)s−1

Go Outside airflow rate of AHU
units in (kg)s−1

Gw Water flow rate in H/E of 1
AHU units in (kg)s−1

OAi Recirculation air amount of
damper opening of AHUi

Houti Air relative humidity percentage
in the outlet of AHUi

aga Heat transfer coefficient on the 0.025
air-side in the H/E of AHU
units (kW)(m2.◦C)−1

agw Heat transfer coefficient on the 0.013
water side in the H/E of AHU
units (kW)(m2.◦C)−1

cg Mass specific heat of H/E shell 0.89
wall in AHU units (kJ)(kg.◦C)−1

Mg Mass specific heat of H/E shell 5.13
wall inAHU units (kg)

l Length of coiled tube in H/E 114.0
of AHU units (m)

A0 Air-side surface of heat 6.58
exchanger of AHU units (m)2

Ai Water-side surface of AHU’s 0.782
H/E units (m)2

Aw Cross section area of coiled 3.4∗(10)−5

tube in AHU’s H/E units (m)2

ηs Efficiency of sensible heat 0.75
exchange of AHU units

Tg,i Temperature of heat shell wall
of H/E in AHUi(◦C)+1

Tm,i Average surface temperature
of fins in H/E of AHU◦i C

Touti,w Outlet water temperature
in H/E of AHU◦i C

Tini,w Inlet water temperature in H/E
of AHU◦i C

ρw Water density (kg)(m3)
−1

1000
cw Water mass specific heat 4.186

(kJ)(kg.◦C)−1

I. INTRODUCTION
Increasing energy consumption is one of society’s main
concerns today. A large portion of overall energy usage takes
place in buildings (about 30 %) [1], and a significant part
of this energy is related to ventilation, cooling, and heating
systems (about 50%) [2]. Maintaining the temperature and
humidity of the ambient air within the standard range to create
thermal comfort is one of the important points that should be
considered in the design of a ventilation system. In this paper,
the aim is to maintain these parameters within the desired
range for thermal comfort while reducing the HVAC system’s
energy consumption.

This paper builds on many existing studies in the field.
Reference [3] investigated the dataset from a four-AHU
ventilation system in a medium-large size building located
in Romania [4], [5]. Romania is a four-season country with
hot summers and cold winters, and optimizing cooling and
heating systems in this context is particularly important.
The data had been collected over a period of one year. The
ventilation space model of the system was estimated using
series neural networks, and the model predictive controller
(MPC) was distributed on the system. The energy efficiency
of the system, in general, was specified.

Reference [6] implemented an MPC on an HVAC system
and then estimated it using recurrent neural networks. That
paper investigated energy consumption over a period of just
one month in different seasons, and its scope was limited to
the cooling system. Reference [7] used a feedforward neural
network (FFNN), a radial basis function network (RBFN),
and an adaptive neuro fuzzy inference system (ANFIS) to
predict the energy consumption of a heating system. Results
were investigated over a period of 1.5 months. In all of these
references, themain goal is to predict the energy consumption
of the system using these neural networks directly that need a
lot of data from the system. But, this research’s main goal
is reducing the total energy consumption of the system in
the online form, using an adaptive neural-based predictive
controller and constrained optimal controller. Due to the
dynamic nature of the heat exchanger system, dynamic and
recurrent neural networks (RNN) only have been used for
modeling the system s’ heat exchanger with good accuracy.
Reference [8] discussed different kinds of artificial neural
network (ANN)-based MPCs. Reference [9] investigated the
computational load problem of MPC controllers. References
[10], [11] reduced the computational load of an MPC
controller by using linear models to simplify the building
model. Reference [12] incorporated MPC into the state-space
model of an office building. Reference [13] achieved an
energy-saving percentage of about 27.01%, which was
calculated over a 24-hour period.

This work, in contrast, calculates the energy-saving
percentage over a period of one year and investigates the
energy consumption in different parts of the AHU units. The
model of each component of the HVAC system has been
specified in detail. Some equations, like energy consumption
and nonlinear equations, which have been used for modeling
components, are quite complex. It should be noted that
achieving a good performance can be more challenging when
longer time periods are used. This paper uses a variable
air volume AHU. The ANN feed-forward neural network
approach with 20 layers has been used as a secondary method
to specify the setpoint.

Ref. [14] used a system state-space model of the whole
HVAC system and the zones it supplied. The model is
complex, and it has nonlinear states that increase the system’s
complexity. That study investigated the AHU and building
structure. In addition, the authors implemented the controller
in the centralized configuration system. In this work, on the
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other hand, an adaptive constrained GPC controller has been
implemented on a simplified estimated model to reduce the
computational load. Three types of controllers: integrated
fuzzy PI-PD Mamdani, cluster adaptive training based on
Takagi Sugeno-Kang (CABTSK), and bang-bang have been
applied to the system. Tuning these controllers can be
challenging when the system parameters are in flux. The
setpoint span of the indoor temperature has been specified
according to the ISO7730 standard. In (ref), the energy
consumption was investigated over a period of just 24 hours,
whereas this work uses a period of one year; the energy
efficiency of (ref) is about 37%; this study, meanwhile, has
achieved a reduction of 54%.

Numerous other techniques have been proposed for energy
optimization; however, many of them are complex and
increase the computational load. Reference [15] investigated
optimization problem solver tools for MPC controllers. Ref-
erence [16] specified MPC’s limitations that stand in the way
of its wider adoption in building control systems. Transfer
learning with feed-forward deep neural networks for MPC
has been presented in [17]. A predictive adaptive controller
has been presented in [18]. A purely data-driven black-
box model employing various choices of machine learning
approaches has been illustrated in [19]. A comprehensive
report ofMPC controller benefits can be found in [20]. AnRC
model has been used to estimate the building model and
simplify it in [21]. Reference [22] utilized simulated data
from an MPC-controlled HVAC system and the adaptive
boosting method to define decision rules. Distributed classic
adaptive controllers that are implemented on the white box
model have been illustrated in [23].

Reference [24] implemented an MPC strategy with
encoder-decoder recurrent neural networks for the smart
control of a thermal environment and achieved a 7% increase
in energy efficiency. The method was implemented by
considering the interaction between some of the system
variables, and the result was compared with those of a
PI controller and an adaptive PI controller. However, the
complexity of the method, the high volume of calculations,
the short duration of the experiment (about 4 hours)
and the low improvements in energy efficiency (between
4 and 7%) are disadvantages of said work. Furthermore,
[24] only addressed the control of the AHU’s outlet air
temperature.

Reference [25] studied the energy efficiency of five
structures of the air conditioning system; the study improved
the energy consumption of the cooling system by adding air-
to-air H/E to the structure of each AHU. Energy demand
fell by 23.68%, improving the efficiency of the first law by
31.29%. Similarly, the total energy losses were reduced by
26.58%, and the second law’s efficiency was improved by
11.79%. A cost analysis showed that the lowest payback
time and the highest cost savings were related to the first
and fourth structures, respectively and this study in took
place over a one-year period. A drawback of [25], however,
is that it only investigates the modeling section, and it does

not provide information about the performance of different
control techniques for layouts with five AHUs.

Reference [26] achieved an energy consumption reduction
of about 10% in a cooling system with variable air
volume (VAV) AHUs using the ANN model and a developed
controller. Reference [27] used data mining techniques to
reduce the energy required by an HVAC system energy by
about 23%. Two energy-based control techniques have been
investigated in [28], and the energy usage was reduced by
about 13%. Reference [29] developed a dynamic model for
an HVAC system using schedule-based temperature and a
damper position rest to reduce annual energy consumption.
Reference [30] used a heat recovery method to reduce energy
consumption in buildings. Ref [31] is about the FPGA-
based Taguchi-chaos-particle swarm optimization (PSO) sun
tracking system. In this reference, PI controller has been
considered as the main controller. PSO algorithm has been
used to tune PI controller parameters. Taguchi Method
and Logistic Map have been used to increase steady-state
convergence of PSO algorithm. The main goal is Maximum
PowerPoint Tracking of the solar panel to increase its output
power. PI is an unconstrained simple classical controller
with a small degree of freedom. Because of its basis in
online form implementation, PSO algorithm can increase the
computational burden of the system and decrease speed of the
controller. Also, the closed-loop system guarantee always is
a challenge. Results just have been investigated in the small
duration. In this work, an adaptive constrained predictive
controller with consideration to computational burden reduc-
tion and better closed-loop stability has been developed. Ref
[32] is about the solar-powered Stirling engine analysis and
optimization with heat transfer considerations. The genetic
algorithm has been used to compute the engine’s maximum
output power and its associated system characteristics. Exact
physical model of the system has been used that it can
change over the time and all parameters in real system have
uncertainties. There are no details about optimization cost
function and its constrains and considered genetic algorithm.

Because the actual structure of air conditioners in the real
system is not known, this paper considers a common structure
for all air conditioners that is detailed in [33]. Their capacity
has been assumed the same to facilitate the system analysis.
The capacity of the AHUs is considered the same as that
of the AHU used in [3] (i.e. 1000 CFM) to facilitate the
comparison of their energy consumption. In this work, the
control system is divided into two parts: control of the outlet
air temperature and control of the flow and humidity of each
AHU’s exhaust air. In the outlet air temperature control, since
the temperatures of the inlet and outlet water of the H/E
are unknown, these variables are first estimated using the
proposed dynamicmodel with parameters from a real water to
air H/E of the same capacity. In order to increase the accuracy
and flexibility of the model, a dynamic linear neural network
is used to estimate the overall model of the H/E. One of the
innovations of this paper is that it combines data-based and
model-based methods to increase accuracy. Real system data
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and simulation data are used to estimate the H/E model. The
adaptive constrained generalized predictive controller is used
to increase the system’s stability and ensure an appropriate
response to disturbances and possible changes in the system.
Another unique contribution of this article is that it considers
the computational load in the design of the controller and
attempts to reduce it. The humidity and airflow of each AHU
are kept within the desired range by using a controller that
seeks to optimize the system’s energy consumption (Fig. 1).
In this paper, MATLAB software is used for simulation.

Main advantages summerize of this work that have
specified according to the research gaps that have been
investigated previously, are described as follows in the end
of this section:

a) Using a one-year dataset from a four-season country
with hot summers and coldwinters. The simulation also
represents a year-long period.

b) Utilizing both physical and RNN-based data-driven
models of the H/E. A physical model has been used to

c) estimate the unknown data of the H/E and HVAC
system and to increase the accuracy of the main
dynamic neural

d) network model that is estimated for the H/E. In addi-
tion, the main RNN model increases the flexibility of
the proposed model such that it can be implemented
in real system applications; it also ensures that the
simulation results are as close to the actual system
results as possible.

e) Attempting to control all essential HVAC parameters,
including AHU outlet airflow rate, temperature, and
humidity, and keep them within the standard range
while optimizing energy consumption.

f) Using dynamic models only for the H/E and AHU
outlet air temperature section so as to simplify the
model and reduce the computational load. A non-
dynamic model is used to control the AHU outlet air
humidity and airflow.

g) Using online recursive least squares (RLS-based) adap-
tive constrained generalized predictive control (GPC)
to control the system’s outlet air temperature and
in turn increase the stability of the system. This
improves the system’s response to disturbances, such
as parameters that change over time, which reduce
the accuracy of neural network models. The reduction
of the computational load is also considered; to that
end, the system’s transfer function is estimated using
continuously updated input-output data
from the model, and it thus has fewer parameters than
the RNN model.

h) The results show a reduction in the energy consumption
of 54.95% with respect to the previous work and of
69.9% compared to the dataset from the real system.

This study has five sections. Section II reviews water
to air H/E modeling. Section III examines AHU output
temperature, airflow, and humidity control. In section IV,

the controllers’ simulation results have been investigated in
detail. Section V provides the conclusion of the paper.

II. WATER TO AIR HEAT EXCHANGER MODELING
As described in [3], the distributed MPC algorithm is
implemented on the system state-space model, which is
estimated using dynamic neural networks. According to
Nomenclature and the reference signal assigned to the air
temperature of the ventilated areas, the appropriate value of
the outlet air temperature of each AHU Tsai,ref has been
calculated to reach the reference signal. In this article, the aim
is to optimize the energy consumption of the air conditioners.
Therefore, the inlet water temperature is considered as a
control variable. Due to the uncertainty of the value of
the inlet and outlet water temperature (Tini,w,Touti,w), it is
assumed that the capacity of the AHU units is the same of
those used in [3], and an estimate of these values is made
using the general model intended for H/Es in [33] along with
information about the parameters of the water to air H/Es
laid out in the ASHRAE standards [34], [35]. To simplify
the model, it has been assumed in Nomenclature that the H/E
input and outlet air humidity are equal. The equations for the
dynamic model equations are as follows:Ti,w =

Tini,w+Touti,w
2 , Ti,d = Tini,w − Touti,w

Tm,i ' 0.96 Tsai,ref ,
dx
dτ
'
x (t)− x (t − 1)

Ts

, (1)

ρwcwAwl
dTi,w
dτ
= GwcwTi,d + agwAi

(
Tg − Ti,w

)
︸ ︷︷ ︸

Mass and energy equation of H/E coils

, (2)

Tm,i = ηsTg,i − (1− ηs)Ti,w. (4)

This HVAC system has four AHUs that have been divided
into two pairs (AHU1,2& AHU3,5) [3]. More details are
provided in in Fig. 2.

As per the instructions of [33], a common structure
has been specified for each AHU in equations (2,3,17);
this structure is depicted in Fig. 3. After calculating the
inlet and outlet water temperature of the H/E for two
AHU units, the main model of the H/E is estimated using
linear autoregressive neural networks. The reason for using
this data-driven approach for system modeling is that this
method has enough flexibility to model complex systems
with sufficient accuracy. In addition, this method can be
implemented on real systems. It is possible to estimate this
model using real control system data instead of dynamic
model data. In this paper, two-layer linear time-series
dynamic neural networks have been used to estimate the
AHU units’ outlet water temperature Tout,i and their outlet
air temperature Tsa,i in themodels of eachAHU. These neural
networks have been estimated using the MATLAB nonlinear
autoregressive with external input (NARX) neural networks
toolbox [36], [37]. To that end, 70% of data has been used
to train the model, 15% has been used for validation, and
the remaining 15% of data has been used to test the neural
networks. The training function is the Levemberg-Marquardt
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FIGURE 1. Methodology scheme ( main parts of the work in overall form).

[38] algorithm, and the performance cost function is the mean
square error (mse). The overall form of these neural networks
is shown in Fig. 4.

The dataset from [4] (To,Ho), simulation data from [3]
(Tsai,ref ,Tri), and the estimated data described in the first part
of section 2 (Tini,w,Tout,i) were used to train, validate, and test
the neural networks.

A. REAL SYSTEM DATASET DESCRIPTION
Dataset [3], [4] related to 4 air handling units in a
medium-large sized building ( PRECIS research center ) in
Romania has been used. In temperate continental weather
with hot summers and cold winters. On-site electric chillers
offer cooling, while a district heating network provides
warmth. Sensors individually measure the temperature data
with each AHU. AHU 1 and AHU 2 are located on the

roof of the building and are in charge of ventilation on
floors 4-7, which are mostly research labs. While AHU
3 and AHU 5 are responsible for the building’s lower
levels, including administrative, multifunction, and technical
facilities. Exhaust, intake, and recirculation air temperatures
are all monitored by sensors in each AHU. The data is
gathered at five-minute intervals and covers the entire year
of 2017.

B. SIMULATION DATASET DESCRIPTION
In [3], simulation results of 4 AHU units have been
specified for one year duraiton. These simulations have been
done in the outside environment condition that has been
specified in [4]. AHU units outlet air temperature (Tsa,ref) and
recirculation air temperature (Tri) data have been used in the
modeling and control section of this paper.

Mgcg
dTg,i
dτ
= agwAi

(
Ti,w − Tg

)
+ agaAo

(
Tsai,ref + Tri

2
− Tm,i

)
︸ ︷︷ ︸

Energy equation

, (3)
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FIGURE 2. (a) (b) H/E inlet and outlet water temperatures estimated
using the model created for AHU(1,2) & AHU(3,5) (equations 2&3).

The results (Figs. 5 and 6) show that there is a complete
linear relation between the output and target data and that
R is a regression factor equal to 1. The accuracy of the
estimated model is perfect, and the data fit the estimated
model completely.

(Kwi,Kl, hl, hwi,Wwi,Wl, bl, bwi,Wr ) are weight matrices
of these neural networks. Each layer has the Purelin transfer
function.

According to neural network model flexibility, the main
goal of this section is to estimate a generalized data-driven
model for each AHU heat exchanger with good accuracy.

FIGURE 3. Overall structure that has been used for the AHUs in this paper.

FIGURE 4. Overall structure of H/E linear dynamic time-series neural
network model for AHUi .

Due to figure 4 overall model has 2 parts. First part is
that the main dynamic recurrent neural network model
has been estimated to model outlet air temperature (Tsa).
Figure 5 shows that the R = 1 and gradient and estimation
error are very small approximately is zero. It is reason most
of the data that has been used for estimation of the model
captured from linear system simulation in [3] and the first
part of section II estimated model output completely fit on
the dataset. The neural network layers and neurons have
been considered as small as possible to avoid its overfitting.
Second part of the model is a feed-forward neural network
model of the H/E outlet water temperature. This model
has been considered to complete the overall model. Also,
in analyzing its results has helped to increase accuracy and
close estimated model to real system application. In two parts
neural networks has 2 layers and 2 neurons in each node.

III. AHU OUTPUT TEMPERATURE, AIRFLOW, HUMIDITY
CONTROL
A. AHU OUTLET AIR TEMPERATURE CONTROL
In the previous section, the H/E model was estimated using
neural networks. Because the data used to train the neural
network is collected from a closed-loop controlled system,
this neural network can act as a controller to regulate the
output temperature Tsa,i of the AHU. The disadvantage of this
method is that if the values of the reference signal and input
signals change or the system parameters change, the output
of the system may be suboptimal. Another disadvantage is
that if the neural network model is estimated online, the large
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FIGURE 5. (a) (b) (c) (d) AHU1 outlet air temperature Tsa,i dynamic
neural network model estimation results.

number of parameters causes this model to put a significant
computational burden on the controller hardware, and the

FIGURE 6. (a) (b) (c) AHU1 outlet water temperature Touti,w neural
network model estimation results.

system therefore requires more powerful hardware for its
implementation. The proposed solution is to use an auxiliary
adaptive controller to increase system stability and maintain
output convergence in the presence of disturbances. MPC
is one of the optimization-based control methods that is
used in many systems due to its desirable features such as
enhanced system stability and its ability to neutralize the
effect of disturbances; another advantage is that it can be
implemented despite constraints. The disadvantages of this
controller are its complexity and the large volume of its
calculations [39], [40].

Due to the large number of parameters in the neural
network model, the computational burden will be high if the
controller is applied to it. In order to reduce said burden,
this study uses a different MPC method called generalized
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predictive control (GPC). In this method, only the input-to-
output transfer function of the system is used to implement
the controller. One benefit of this method is that it can be
implemented on non-minimum phase

systems and even unstable systems. It also responds well
to disturbances. The GPC controller equations are specified
below:

A
(
z−1

)
= 1+ a1z−1 + . . . .+ anaz

−na ,

B
(
z−1

)
= b0 + b1z−1 + . . . .+ bnbz

−nb ,

C
(
z−1

)
= c0 + c1z−1 + . . . .+ cncz

−nc ,

1
(
z−1

)
= 1− z−1,

CARIMA Model: A
(
z−1

)
y (t)

= z−dB
(
z−1

)
u (t − 1)+

C
(
z−1

)
e (t)

1
(
z−1

) , (5)

where the polynomial A(z−1) is the model output dynamic
and the polynomials B

(
z−1

)
and C(z−1) are the control

input and disturbance dynamics, respectively. na, nb, and nc
are the degrees of these polynomials. d is the input delay.
1
(
z−1

)
is an integrator that has been added to the model

to prevent steady-state error. The desired control signal u(t)
is generated by minimizing the cost function (Jc). This cost
function is optimized iteratively in every sequence of the
control algorithm. The prediction output is calculated over the
prediction horizon using the Diophantine equation in which
C
(
z−1

)
is white Gaussian noise. (In this paper C

(
z−1

)
=

0, d = 0.):

Ã
(
z−1

)
= 1A

(
z−1

)
→ 1

= Ej
(
z−1

)
Ã
(
z−1

)
+ z−jFj

(
z−1

)
, (6)

Ej
(
z−1

)
= ej,0 + ej,1z−1 + . . . .+ ej,j−1z−(j−1), (7)

Fj
(
z−1

)
= fj,0 + fj,1z−1 + . . . .+ fj,naz−na, (8)

Gj
(
z−1

)
= B

(
z−1

)
Ej
(
z−1

)
, (9 (9)

A(z−1)
singular
−→

{
E1 = 1
F1 = z(1− Ã(z−1))

→


Ej+1(z−1) = Ej(z−1)+ fj,0z−j

fj+1,i = fj,i+1 − fj,0ãi+1, i = 0,
1, . . . , nã − 1,

(10)

Equation (6) is a Diophantine equation, and Ej
(
z−1

)
and

Fj
(
z−1

)
are Diophantine polynomials that are calculated by

the recursive equation (10). For the predicted output (11):

ŷ (t + j | t) = Gj
(
z−1

)
1u (t + j− d + 1)+ Fj

(
z−1

)
y (t) , (11)

Y = φY− + πU−︸ ︷︷ ︸
Free Response

+ �U+︸ ︷︷ ︸
Force Response

, (12)

REF = [REF (t + d + 1) . . . . . . ..REF (t + d + p)]T ,

Jc = (REF − Y )TQ(REF − Y )+ UT
+RU+→

∂J
∂U+

= 0
receding horizon
−−−−−−−−−→ 1u(t) = U+ (1, 1) ,{
1umin < 1u(t) < 1umax

umin < u(t) < umax

Constrains
−−−−−→ −3 < 1Tini,w < 3

−20 < Tini,w < 80
(13)

Y is the estimated model output of the vector along the
prediction horizon. REF is the reference signal, and the R
and Q matrices of the input and output weights are selected
via repeated simulations as the results are continuously
investigated. P is the prediction horizon, andM is the control
horizon. 1u (t) is the control signal variation obtained from
(13). The �,πφ matrices and U+, U−, Y− are defined as
follows:

φ =

fd+1,0 · · · fd+1,na...
. . .

...
fd+p,0 · · · fd+p,na

 ,Y− =
 y (t)

...
y (t − na)

 ,
π =

gd+1,1 · · · gd+1,nb...
. . .

...
gd+p,p · · · gd+p,nb

 ,U− =
1u (t − 1)

...
1u (t − nb)

 ,
� =

 gd+1,0 · · · 0
...

. . .
...

gd+p,m−1 · · · gd+p,0

 ,U+ =
 1u (t)

...
1u (t + m− 1)

 ,
(14)

The GPC controller is applied to the transfer function model,
which is strictly proper and is estimated online each time
the control algorithm is run using data from the outlet air
temperature Tsa,i and inlet water temperature Tini,w; it should
be noted that the latter datapoint is considered as a control
variable. This model is updated during the execution of
the control algorithm, and the effect of disturbances To,Tri
on the system’s output is considered; there is therefore
no need to enter them into the control algorithm. The
computational burden is thus reduced. As the model is
updated, the adaptive constrained GPC controller can
adequately control the system perturbation by neutralizing
disturbances and converging the output to the reference
signal. Ge,i is the transfer function that has been estimated
online during the control for each AHU (Fig. 7). The degree
of the transfer function is assumed to be equal to 3. This
model has been estimated using the RLS algorithm [41]. θ(t)
is the vector of the estimated parameters, which consist of the
discrete transfer function parameters Ge,i. K(t) is the Kalman
filter coefficient vector, Pe(t) is the covariance matrix, and
ϕ1 (t) is the regression matrix, which consists of measured
output and control input signals. Finally, λ is the forgetting
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factor:

θ (t) = θ (t − 1)+ K (t)
[
y (t)− ϕT (t − 1) θ (t − 1)

]
,

K (t) = Pe (t − 1) ϕ1 (t − 1)[
λI + ϕT (t − 1)Pe (t − 1) ϕ (t − 1)

]
,

Pe (t) =

(
I − K (t) ϕT (t − 1)

)
Pe (t − 1)

λ
, λ = 1, (15)

Ge,i is specified as follows:

Estimated Transfer Function →

Ge,i (t) =
b0 (t) z−1+b1 (t) z−2+b2 (t) z−3

a0+a1 (t) z−1+a2 (t) z−2+a3 (t) z−3
, a0=1,

θ (t) =
[
a1 (t) a2 (t) a3 (t) b0 (t) b1 (t) b2 (t)

]T
,

ϕ (t − 1) =
[
−Tsa,i (t−1 · · ·t−3) Tini,w (t−1 · · ·t−3)

]T
,

(16)

In this section main goal is to control the output air
temperature (Tsa,i) of each AHU. The proposed adaptive
constrained generalized controller has been applied on
estimated transfer function equation (16) that has been
estimated online using dynamic recurrent neural network
(that has been investigated in section II) control input
variable (H/E inlet water Tini,w) and model output (Tsa,i).
The reference value for output (Tsa,ref) and recirculation
air temperature (Tri) have been considered using simulation
dataset in [3]. Other variables used are from the real
system dataset [4]. Outlet water temperature (Touti,w) only
is used to increase the accuracy of the overall model
and close the estimated model to real system application.
It also has been used in section IV for energy consumption
calculation.

B. AHU OUTLET AIR HUMIDITY AND FLOW
CONTROL, AND ENERGY
CONSUMPTION OPTIMIZATION
The ventilation system’s ability to maintain the humidity of
the ventilated areas within the standard range is one of the
essential points that should be considered because it is a
crucial criterion for creating thermal comfort. The purpose
is to keep the outlet airflow Ga,i of each air conditioner
constant and also to keep the relative humidity Hout,i of the
outlet air within the range specified by ASHRAE [42]. The
humidity and output airflow rate has been controlled using
the fan and a recirculation air damper system (Figure 3).
An equation for the relative humidity percentage and airflow
rate of the output air of each AHU is given below as per the
instructions of [33]:

Gout,i = Go + Gri
Hout,iGout,i = HriGriOAi + HoGo
Hri(t) ∈ [25, 65]
Gri(t) ∈ [0.6558, 0.8745] ,
G0(t) ∈ [−0.0583, 0.0583] ( kgs ),

(17)

FIGURE 7. Block diagram of the control system for each AHU unit.

In this section, according to the real system dataset and
(17), just Ho is known. The values of the other variables
are unknown. To demonstrate the optimal constrained
controller’s ability to control the system, the values of the
unknown variables Go,Gri have been chosen to be within
the range that will ensure that the assumed value for every
AHU capacity and its outlet airflow (1700m3.h, 0.583kg.s−1)
track the reference with accuracy [3]. These variables are
random values in specific ranges. Hri is also a random
value, and its range has been chosen according to ASHRAE
standards. The main goal of this work is to reduce the energy
consumption of each AHU over the period of one year. In the
constrained optimal controller implemented in this section,
the cost function contemplates the total power of the H/E as
well as the fan and damper system. Humidity and exhaust
airflow are controlled so that, in addition to maintaining their
value within the specified range, the power consumption of
the system is also minimized. According to ‘‘Fan laws’’ in
[34], [43], the overall form of the fan power can be specified
in the HVAC design with this equation:

P0= 0.1 (kW ) ,Gout,i
ControlGoal
−→

Ga,i = 0.583 kg.s−1,
PHumidity & Airflow Control

= P0
(Ga,i=0.583)6

(Gout,i=
HriGriOAi + HoGo

Hout,i
)6
, (kW )

(18)

For the H/E, the power consumption can be expressed as:

PH/E =
Gwcw
Ts

∣∣(Tini.w − Touti,w)∣∣ (kW ) (19)

56586 VOLUME 10, 2022



O. Asvadi-Kermani et al.: Energy Optimization of Air Handling Units Using Constrained Predictive Controllers

FIGURE 8. (a) (b) Outlet temperature controller simulation results for
AHU1,2 & AHU3,5.

The optimal constrained controller (Fig. 7) cost function J
and constraints are:

J (OAi) :Ptotal = PHumidity & Airflow Control + PH/E
30 ≤ Hout,i ≤ 60.(20)
0.965Ga,i ≤ Gout,i ≤ Ga,i, 0.2 ≤ OAi
≤ 1 (Damper Opening Percentage) .

(20)

This controller has been simulated in MATLAB, and the
‘‘fmincon’’ algorithm has been used for optimization. The
results are shown in Fig. 10.

IV. DISCUSSION OF CONTROLLER SIMULATION RESULTS
In section 3.1, the adaptive constrained GPC has been applied
to each AHU. The controller parameters (P, M , and the
degree of Ge in the transfer function) play an essential role
in the volume of the controller calculations. In this work,

FIGURE 9. (a) (b) Estimated model Ge,i parameters, closed-loop poles,
and zeros during the control algorithm of AHU1,2& AHU3,5.

these parameters are selected such that the computational
load and dimensions of the controller matrices (φ, π,�) are
minimized. In contrast, the controller can properly manage
the outlet air temperature of each AHU. These parameters,
the weight matrices Q and U, and the constraint related to
the changes of the control signal (1T ini.w) are determined
by repeating the system simulation over a period of one
year and reviewing the results to obtain a favorable response
are shown in Fig 8. The control signal constraint (Tini.w) is
also determined by the results of section 2. Figure 2 shows
that the outlet air temperature (T sa,i) of each AHU is well
converged to the reference signal (T sai,ref). The temperature
of the inlet and outlet water of the H/E(Tini.w,Touti,w) have
also been determined. Figure 3 shows that the parameters of
the conversion function that are estimated online converge
rapidly to a constant value when the control algorithm is
executed. The poles of the model are also located within
the unit circle, indicating that the closed-loop system is
stable (Fig 9). In section 3.2, the constrained optimal
controller is implemented on the system to control the relative
humidity and airflow of each AHU; the minimization of
the energy used by each air conditioner is also considered.
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FIGURE 10. (a) (b) Constrained optimal controller simulation results.

The power consumption of the H/E is calculated using the
difference between its inlet and outlet water temperatures,
which is added to the power consumption of the airflow
and humidity control system eq(20). The dataset used in
this system is that of a ventilation system in a country
with four distinct seasons that range from hot to cold,
which further emphasizes the importance of optimizing the
ventilation system’s energy consumption. This simulation
was performed over a period of one year with a sampling
time of 300 seconds, which was chosen based on the real
system dataset in [4]. The energy consumption of the air
conditioning system was calculated and compared with the
energy consumption published in [3], which was calculated
using the overall energy consumption equation; the two
studies were performed in similar conditions. The results are
given in Table 1. The simulation results show a return of more
than 54%.

This study is based on a simulation. It is important to
explain how to implement this control system on the real
system. The implementation can be done in two ways:
adaptive and non-adaptive. In the non-adaptive mode, data
related to the closed-loop system of the ventilated areas are
collected. In the next step, the reference signal temperature

TABLE 1. Energy consumption of AHUs during one year (kW.h).

of the AHU outlet is determined. After collecting this
data, the inlet and outlet water temperatures are estimated
by measuring the actual parameters of the H/E. In the
temperature control section, the model of the dynamic neural
networks is estimated using the data collected from the
system. In this case, this neural network acts as the controller.
Then, the only computational load is in the section that
controls the humidity and exhaust airflow. In the non-adaptive
mode, if the system’s operating conditions change, the model
needs to be re-estimated. In the adaptive mode, the system is
more resilient to real system disturbances because the transfer
functionmodel used in the temperature controller is estimated
online based on the inlet water temperature and the outlet air
temperature. This method has a higher computational load,
but it provides better system stability.

Efforts have also beenmade tominimize the computational
burden. One of the disadvantages ofMPC is its computational
load, which necessitates robust hardware. Arduino-based
boards can be used to control each AHU by sending
commands and collecting the data of the measured variables.
For larger buildings, PLC-based hardware can be used. It is
also possible to implement the proposed control algorithm
on a central PC using MATLAB software and its Arduino
toolbox. This study uses a Windows laptop with Intel Corei7-
4702MQ CPU, 12 GB of ram, and the MATLAB and
Simulink software. The total simulation time with a sampling
time of 300 seconds and 102,980 total samples was about six
hours, or about 0.21 seconds for each sequence in the adaptive
mode.

V. CONCLUSION
Optimizing the energy consumption of ventilation systems
is one of the most important challenges that should always
be considered in smart buildings. In this article, in addition
to keeping the temperature and humidity of the ventilation
system’s AHUs within the desired thermal comfort range,
we also attempt to minimize each AHU’s energy usage
by investigating the consumption of their components.
The dynamic neural network model of the water-to-air
H/E is estimated using real data, data obtained from the
simulation of a ventilation system with four AHUs, and
the proposed dynamic model of the water-to-air H/E. The
adaptive constrained generalized predictive controller has
also been implemented on the H/E model to improve
the system output’s convergence to the reference value as
well as the system’s response to disturbances and possible
changes in its parameters; the stability of the system is thus
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bolstered. In the design of this controller, an attempt has been
made to minimize the computational load by simplifying
the model on which it is implemented. The results show
that the AHUs’ energy consumption is reduced by more
than 54%.
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