
Received May 12, 2022, accepted May 22, 2022, date of publication May 23, 2022, date of current version May 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3177594

Deep Learning-Based Near-Field Source
Localization Without a Priori Knowledge
of the Number of Sources
HOJUN LEE , YONGCHEOL KIM , SEUNGHWAN SEOL, AND JAEHAK CHUNG
Department of Electronics Engineering, Inha University, Incheon 22212, South Korea

Corresponding author: Jaehak Chung (jchung@inha.ac.kr)

This work was supported by the Inha University Research Program.

ABSTRACT In this paper, we propose a high resolution grid-based deep learning source localization that
precisely estimates the locations of near-field sources without a priori knowledge of the number of sources.
The proposed method consists of a principal component analysis network (PCAnet) and a spatial spectrum
network (Sp2net). The proposed PCAnet calculates the noise spaces of the received signals by convolutional
layers without a priori knowledge or the estimation of the number of sources and has the lower complexity
than eigenvalue decomposition (EVD). The proposed Sp2net calculates the spatial spectrum with a linear
layer from the output of the PCAnet and classifies dense location grids with a convolutional neural network
(CNN). From the spatial spectrum, this paper also proposes an activation function to enlarge the values at the
grid points where the near-field sources exist, which are differentiable for all input values. Then, the direction
of arrivals (DOAs) and the ranges of the near-field sources are estimated with high resolution. Computer
simulations demonstrated that the proposed method had better DOA and range estimation performances
than those of the conventional methods.

INDEX TERMS Array signal processing, direction-of-arrival estimation, machine learning, signal detection.

I. INTRODUCTION
Source localizations (SLs) play an important role in the
research area of array signal processing such as radar, sonar,
and wireless communications [1]–[6]. Most SLs focused on
estimating the direction-of-arrivals (DOAs) for the far-field
sources with a plane wave model. When the sources are
located in the near-field, the plane wave assumption is no
longer appropriate, and the wavefronts of the near-field
sources are considered as a spherical form [7], [8]. Thus, the
near-field SLs (NFSLs) needed to estimate the DOAs and the
ranges of the sources.

For the NFSLs, the two-dimensional multiple signal clas-
sification (2D-MUSIC) and lots of MUSIC-based methods
have been studied [7]–[11]. The conventional MUSIC-based
methods had large computational complexities because
eigenvector decomposition (EVD) is utilized to decompose
the received signals into the signal and noise spaces. In [12],
the reduced-dimension MUSIC (RD-MUSIC) was proposed
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to reduce the computational complexity. However, their esti-
mation performances decreased when the estimated number
of sources is incorrect.

To solve the drawback of the MUSIC-based methods, the
NFSLs without the knowledge of the number of sources
were proposed [13], [14], [16]. In [13], the discrete fractional
Fourier transform (DFrFT) based SL was proposed. The
DFrFT was designed for one snapshot, which was unsuitable
for low signal-to-noise power ratio (SNR) scenarios. In [14],
the low complexity localization algorithm (LCLA)was devel-
oped. The LCLA estimated the DOAs and the ranges by DFT
and orthogonal matching pursuit (OMP), respectively. Since
DFT has a frequency bias by the DFT size, the frequency
bias caused the DOA estimation errors, which also led to the
range estimation errors. In [15], [16], the fourth-order cumu-
lant (FOC) based methods were proposed. The FOC-based
methods had the error propagation between the DOA and the
range estimations by the dependence of the DOA and the
range estimation processes.

Various deep learning (DL) based researches have been
conducted in many applications such as image processing,
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signal detection, and estimation theory. DL-based SLs also
have been studied [17]–[26]. The DLSLs were implemented
by a deep neural network (DNN) or a convolutional neu-
ral network (CNN) with preprocessed data [17]–[26]. The
DLSLs were classified as grid-free and grid-based methods.

The grid-free method calculates the coordinates of the
source as a specific value by the regression of the DLSL.
Since the grid-free method has no constraint of the resolution,
the locations of the sources are precisely estimated. In the
grid-free method, however, the maximum number of sources
needs to be determined in advance. If the number of actual
sources exceeds the predetermined number, the SL results
may be incorrect [25], [26].

The grid-based scheme assigns labels to all range- and
azimuth-grids on the target space and estimates the source
locations by the classification. The resolution of the esti-
mation is determined according to the grid interval, but
all sources are detected without the predetermined num-
ber of sources. To obtain the high resolution, however,
the grid-based method needs so many classes to map all
range- and azimuth-grids, and the learning process with the
conventional DNN and CNN structures also requires many
features and training data to classify the classes [27]. Thus,
the high resolution grid-based DLSL may not be imple-
mented by the conventional learning structures. In the con-
ventional grid-based methods, the DOAs of the far-field
sources were estimated with a large grid interval of 5◦

[18], [22] or 10◦ [23], [24] to keep the acceptable number
of classes.

Based on the literature reviews, the problems of the con-
ventional NFSLs are as follows: (a) TheMUSIC-based meth-
ods require a priori knowledge or the perfect estimation of the
number of sources; (b) The NFSLs without the knowledge of
the number of sources perform worse in a low SNR; (c) The
grid-free DLSLs need the predetermined maximum number
of sources; (d) The grid-based DLSLs are difficult to achieve
the high resolution.

In this paper, therefore, we propose a novel high resolution
grid-based DLSL structure that learns and estimates both
the DOAs and the ranges of the near-field sources without
a priori knowledge of the number of sources. Since the
proposed network works on the grid-based, the maximum
number of the near-field sources is not required. To improve
the learning and estimation performances for many classes,
the proposed network consists of a principal component anal-
ysis network (PCAnet) that estimates the noise space and a
spatial spectrum network (Sp2net) that precisely estimates
the DOAs and the ranges of the near-field sources. The
proposed PCAnet solves the problems of the conventional
MUSIC-based methods by calculating the noise spaces with-
out a priori knowledge or the estimation of the number of
sources and with lower computational complexity than EVD.
The proposed Sp2net calculates the spatial spectrum from the
noise spaces with a linear layer. An activation function in
the Sp2net is also proposed to be differentiable for all inputs
and to enlarge the values of the null spaces from the spatial

spectrum. Then, the proposed Sp2net classifies the source
location grids with a CNN and estimates both the DOAs
and the ranges of the near-field sources with high resolution.
Computer simulations demonstrated that the SL estimation
performance of the proposed method was better than that of
the conventional methods.

The contributions of this paper are fourfold:
• We propose the PCAnet that calculates the noise spaces
with the lower computational complexity than EVD and
without a priori knowledge or the estimation of the
number of sources.

• We propose the Sp2net that precisely estimates both the
DOAs and the ranges of the near-field sources with high
resolution.

• We propose the custom activation function that is differ-
entiable for all input values and enlarges the values of
the null spaces from the spatial spectrum.

• The proposed method improved the SL estimation per-
formance without a priori knowledge of the number of
sources by using DL.

II. SIGNAL MODEL
Assume that L far-field or near-field sources independently
radiate narrowband signals. This paper focuses on the NFSL
in mixed near- and far-field signal scenarios. The sig-
nals are statistically mutually independent and uncorrelated
with noise. The signals are captured by a uniform linear
array (ULA) consisting of N sensors with spacing d . The
configuration of the ULA with the l-th signal is displayed in
Fig. 1.

FIGURE 1. Uniform linear array configuration.

Let the DOA and the range of the arbitrary l-th source be
θl and rl , respectively, and the radiated narrowband signal at
the k-th snapshot be sl (k). The received signal (xn (k)) of the
n-th sensor is given as,

xn (k) =
L∑
l=1

sl (k) gn,lejτn(θl ,rl ) + wn (k) , (1)

n = 1, . . . ,N , k = 0, . . . ,K − 1,

where K and wn (k) denote the number of snapshots and
the additive Gaussian noise of the n-th sensor, respectively.
gn,l denotes the l-th source’s magnitude attenuation for the
n-th sensor with respect to the reference sensor [28]–[31].
τn (θl, rl) denotes the relative propagation delay of the n-th
sensor to the reference sensor, which is set to the first sensor
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in Fig. 1, and is expressed as [4], [26],

τn (θl, rl)

=



2π
λ

(√
r2l + (nd)

2
− 2rlnd sin (θl)− rl

)
,

for near-field,

−2π (n− 1)
d
λ
sin (θl) ,

for far-field,
(2)

where λ denotes wavelength. The near-field sources are
located in the near-field and the Fresnel region, i.e., rl ∈(
0, 2D2/λ

)
where D is the array aperture [8], [26], and the

far-field sources are located further than 2D2/λ.
In a matrix form for N sensors, Eq. (1) can be written as,

x (k) = As (k)+ w(k), (3)

where

x (k) = [x1 (k) · · · xn (k) · · · xN (k)]T , (4)

s (k) = [s1 (k) · · · sl (k) · · · sL (k)]T , (5)

w (k) = [w1 (k) · · · wn (k) · · · wN (k)]T , (6)

A = [α (θ1, r1) · · · α (θl, rl) · · · α (θL , rL)] , (7)

α (θl, rl) =
[
g1,lejτ1(θl ,rl ) · · · gN ,lejτN (θl ,rl )

]T
. (8)

III. PROPOSED METHOD
The proposed method learns and estimates the DOAs and
ranges of the near-field sources with the input of the covari-
ance matrix of the received signals. For the high resolution
SL, the proposed method utilizes the orthogonality between
the signal and noise spaces, which is the same idea as the
conventional MUSIC. The proposed method consists of the
PCAnet and the Sp2net in Fig. 2. The proposed PCAnet
calculates the noise spaces from the covariance matrix of the
received signals with the low complexity and without a priori
knowledge or the estimation of the number of sources. The
proposed Sp2net precisely estimates the DOAs and ranges
of the near-field sources with the CNN and the proposed
activation function.

FIGURE 2. Block diagram of the proposed network.

In Fig. 2, R denotes the covariance matrix of the received
signals (x (k)) in Eq. (3), and is given as,

R = E
{
x (k) xH (k)

}
= ARssAH

+ σ 2
wI , (9)

where Rss = E
{
s (k) sH (k)

}
and σ 2

w denotes the variance
of the noise. W denotes the noise spaces, and M denotes
the number of channels of the noise spaces. Z denotes the
estimated DOAs and ranges of the near-field sources. P and
Q denote the numbers of azimuth- and range-classes, respec-
tively. The number of all classes for the source location is
P× Q.
The following subsections describe the proposed networks.

A. PRINCIPAL COMPONENT ANALYSIS NETWORK
In the conventional MUSIC, the EVD is utilized to decom-
pose the signal and noise spaces. However, the EVD not
only has a high complexity but also needs knowledge of
the number of sources. To solve the problems, this paper
proposes the PCAnet that decomposes the signal and noise
spaces by the convolutional layers (Convs) that utilize the
Gram-Schmidt process (GS) idea. The PCAnet dividesR into
multiple blocks to reduce the complexity and orthogonalizes
the divided blocks in parallel by the proposed GS neural
network (GNN). The PCAnet calculates W by a depthwise
Conv (DepthConv) without a priori knowledge or the esti-
mation of the number of sources. The block diagram of the
proposed PCAnet is represented in Fig. 3.

To reduce the complexity, the proposed PCAnet divides
R into D block covariance matrices with [N × B] in Fig. 3,
where B denotes the column block size and D = N/B. The
divided R is expressed as,

R =
[
R1 · · · Rd · · · RD

]
, (10)

where

Rd =
[
vd,1 · · · vd,b · · · vd,B

]
, (11)

vd,b =
[
v1d,b · · · v

n
d,b · · · v

N
d,b

]T
. (12)

The detailed GNN process is described as follows: For
the d-th block, the proposed GNN computes the block
eigenvectors

(
Qd ∈ RN×B

)
from the block covariance matrix(

Rd ∈ RN×B
)
. Qd is obtained by removing dependent com-

ponents between column vectors of Rd like the conventional
GS.

In the proposed GNN, each column vector of Rd is
sequentially orthogonalized. The first column vector of
Rd is normalized and set to the first block eigenvector(
Q1
d = qd,1 ∈ RN×1

)
, i.e., qd,1 = vd,1/‖vd,1‖, where ‖ · ‖

denotes a norm operator. For the b-th column vector (vd,b ∈
RN×1, where b = 2, 3, . . . ,B) of Rd , the orthonormal basis(
qd,b ∈ RN×1

)
is calculated by subtracting the dependent

components of vd,b for Qb−1
d =

[
qd,1 qd,2 · · · qd,b−1

]
from vd,b.
To calculate the dependent components, the conventional

GS utilizes the inner product, but this paper replaces the
inner product with the convolutional layer (Conv) because
the Conv attains the features from the inputs [17], [18], [26],
[32]–[36]. However, since the general Conv sums the con-
volution results for each channel, this paper utilizes the
1-dimensional DepthConv (DepthConv1D) to calculate the
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FIGURE 3. Block diagram of the PCAnet.

dependent components of vd,b for Qb−1
d with learnable

weights. For computing the dependent components of vd,b for
each column vector of Qb−1

d , the DepthConv1D is designed
with the kernel size of N , the filter size of one, and the stride
of one. The input of the DepthConv1D is set to the result of
the Hadamard product for the complex conjugate ofQb−1

d and
Vd,b ∈ RN×(b−1), where Vd,b is (b− 1) replications of vd,b.
The DepthConv1D executes a weighted sum to the column
vector of

{
Qb−1
d

}∗
� Vd,b with the learnable weights and

attains the dependent components
(
cd,b ∈ R1×(b−1)

)
, where

� and ∗ denote the Hadamard product operator and complex
conjugate, respectively. Assume f Gb,d (·) is the DepthConv1D
for the b-th state in the d-th block. cd,b is expressed as,

cd,b = f Gb,d
({

Qb−1
d

}∗
� Vd,b

)
. (13)

Since cd,b in Eq. (13) have positive or negative values, a leaky
rectified linear unit (LeakyReLU) is used as an activation
function [35]. Note that the DepthConv1D includes the acti-
vation function.

Then, the block orthonormal basis
(
qd,b ∈ RN×1

)
of vd,b

is calculated by removing cd,b from vd,b, and is as,

qd,b = q̃d,b/‖̃qd,b‖, (14)

where

q̃d,b = vd,b −Qb−1
d cd,bT. (15)

The block eigenvectors
(
Qb
d ∈ RN×b

)
for vd,1, vd,2, . . . , vd,b

are computed by concatenating Qb−1
d and qd,b, and is given

as,

Qb
d =

[
Qb−1
d | qd,b

]
. (16)

The d-th block eigenvectors
(
Qd = QB

d ∈ RN×B
)

are
obtained from Eq. (13) to Eq. (16) for b = 2, 3, . . . ,B, and
the block eigenvectors for all blocks are attained.

Let all block eigenvectors be concatenated, which is
referred to as Q̃ ∈ RN×N , and is expressed as,

Q̃ =
[
Q1 · · · Qd · · · QD

]
. (17)

Since Q̃ in (17) is calculated by the divided block covariance
matrices, the orthogonality among the block eigenvectors
may not be satisfied. Thus, the dependent components among
the blocks need to be removed.

To obtain approximated eigenvectors (Q̂) from Q̃, this
paper proposes a sliding window-GS (SW-GS). The proposed
SW-GS divides Q̃ into submatrices by the size of the slid-
ing window and orthogonalizes Q̃ by removing dependent
components among the submatrices. When the sliding inter-
val and the window size are set to s (≤ B) and [N × B],
respectively, Q̃ is divided into E submatrices, where E =
(N − B) /s + 1. The e-th submatrix (Q̃e, where e ∈ [1,E])
consists of the column vectors from the {(e− 1) s+ 1}-th to
the {(e− 1) s+ B}-th of Q̃.

The first approximated eigenvectors (Q̂1 = q̂1 ∈ RN×B)
are set to the first submatrix (Q̃1), i.e., the same as Q1 in
Eq. (17). The e-th submatrix (Q̃e) is orthogonalized by
removing the dependent components for q̂1, q̂2, . . . , q̂e−1,
which is referred to as q̂e ∈ RN×B. Let

[̂
q1 q̂2 · · · q̂e−1

]
be the (e− 1)-th approximated eigenvectors (Q̂e−1 ∈

RN×(e−1)B). Then, q̂e is as,

q̂e = Q̃e − Q̂e−1

[
Q̂H
e−1Q̃e

]
. (18)

The e-th approximated eigenvectors (Q̂e ∈ RN×eB) are
obtained by concatenating Q̂e−1 and q̂e, and is expressed
as,

Q̂e =
[
Q̂e−1 | q̂e

]
. (19)

The approximated eigenvectors (Q̂ = Q̂E ∈ RN×F , where
F = E × B) are calculated from Eq. (18) to Eq. (19) for
e = 2, 3, . . . ,E .
The estimation of the noise spaces from Q̂ in the conven-

tional method is important to maximize the SL performance.
In the proposed PCAnet, the noise spaces are estimated by
assigning different learnable weights to each column vec-
tor of Q̂ without estimating the number of sources and by
learning the weights. After the learning process, the learnable
weights of the signal and the noise spaces are converged to
zero and arbitrary positive values, respectively. The noise
spaces can be found from Q̂.
To assign and learn the weights, a 2-D DepthConv (Depth-

Conv2D) with the kernel size of (1,1), the filter size ofM , and
the stride of (1,1) is used. The kernels of the DepthConv2D
are constrained to nonnegative values without biases to pre-
vent the phase variation of the noise space. The activation
function in the DepthConv2D is not utilized to preserve the
orthogonality between the signal and noise spaces. To apply
to the different learnable weights for each column vector of
Q̂ ∈ RN×F , the column vectors are channelized to a matrix
of [N × 1× F]. Since the filter size of the DepthConv2D
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is M , the outputs for F channels increase by M times and
the diversity is attained byM filters.
The output of the DepthConv2D is reshaped to U ∈

RN×F×M for M channels, i.e., U1, . . . ,Um, . . . ,UM . The
noise spaces (W ∈ RN×N×M ) with M channels are obtained
from each channel of U, and the noise space (Wm ∈ RN×N )
of the m-th channel is calculated as,

Wm = UmUH
m, for m = 1, 2, . . . ,M . (20)

Therefore, the proposed PCAnet calculates M noise spaces
without a priori knowledge or the estimation of the number
of sources by Eq. (20).

The following subsection describes the proposed Sp2net,
which estimates the DOAs and the ranges of the near-field
sources by using the estimatedM noise spaces.

B. SPATIAL SPECTRUM NETWORK
The proposed Sp2net estimates the DOAs and the ranges of
the near-field sources with high resolution by utilizing the
linear layer and the CNN. The target space is gridded by
two dimensions consisting of the azimuths and the ranges.
The virtual steering vectors are generated by Eqs. (2) and (8)
for the azimuth- and range-grid points. At the linear layer,
the product of W and the virtual steering vectors is inputted,
and the spatial spectrum is outputted. To obtain the high
resolution spatial spectrum, the proposed Sp2net utilizes the
orthogonality between the signal and noise spaces like the
conventional MUSIC. Thus, this paper also proposes an acti-
vation function that is differentiable and enlarges the values
of the null spaces from the spatial spectrum. Then, a CNN
estimates the DOAs and the ranges of the near-field sources
with the high resolution from the spatial spectrum by classi-
fying the dense grids of the source locations. The proposed
Sp2net is depicted in Fig. 4.

FIGURE 4. Block diagram of Sp2net.

In Fig. 4, P, Q, M , and N denote the numbers of azimuth
classes, range classes, noise space channels, and sensors,
respectively. Assume that p ∈ [1,P], q ∈ [1,Q], n ∈ [1,N ],
and m ∈ [1,M ]. S ∈ RP×Q×M×N is the result of multiplying
W ∈ RN×N×M by the virtual steering vector (α (p, q, n)), and
the element of S is calculated as,

S (p, q,m, n) = α (p, q, n)

×

N∑
j=1

{
α∗ (p, q, j)×W (j, n,m)

}
, (21)

where

α (p, q, n) = ejτn(θp,rq). (22)

In Eq. (21), the fourth dimension of S is the results of the
sensors. If the results in S are summed with proper weights,
the estimation accuracy and the resolution of the SL are
improved [36], [37]. However, obtaining the proper weights
is difficult. Thus, the proposed Sp2net learns the weights by
using the linear layer for the fourth dimension of S. The linear
layer (f L (·))) consists of one node for the weighted sum
and calculates the spatial spectrum (Ps ∈ RP×Q×M ) for the
azimuth- and range-grid points, which is as,

Ps = f L (S) . (23)

In Eq. (23), the elements of Ps at the grid points where
the near-field sources exist have small values because of
the orthogonality between the signal and the noise spaces.
The conventional MUSIC spectrum is obtained by taking the
reciprocal of Ps. However, if the activation function of the
linear layer is set to 1/x, the learning process may not be
carried out since 1/x is not differentiable at x = 0. Thus, this
paper proposes the custom activation function (a (x)) which
is differentiable for all x and is given as,

a (x) = e−µx
2
, (24)

where µ denotes a sharpening factor. Pa ∈ RP×Q×M is
calculated by a (Ps).

The third dimension of Pa consists of the M noise space
channels. The M channels are combined by the CNN to
attain one final spatial spectrum. The CNN is composed of
J Conv2Ds and linear layers in Fig. 5.

FIGURE 5. CNN structure in Sp2net.

The kernel size and the stride of the Conv2Ds are (1,1). The
filter size is one for the last Conv2D, and the remainder is α.
The activation functions of all Conv2Ds are the ReLU. The
output (PD ∈ RP×Q) of the Conv2D is obtained by combining
all channels.

For increasing the number of features of the proposed
network, the linear layers are applied to the rows and the
columns of PD. Note that the rows and the columns of PD
are mapped to the azimuth classes (P) and the range classes
(Q), respectively. The columns of PD pass through the linear
layer with Q nodes and the ReLU, and the rows of the output
of the linear layer pass through the next linear layer with P
nodes. To obtain the final output (Z ∈ RP×Q) of the proposed
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network, a softmax is used as the activation function for the
classification. The output of the Sp2net (Z) is the estimation
result for the DOAs and the ranges of the near-field sources.
The labels of Z for the azimuth- and range-grid points are
given as,

Z =



z (θ1, r1) · · · z
(
θ1, rq

)
· · · z

(
θ1, rQ

)
...

...
...

...
...

z
(
θp, r1

)
· · · z

(
θp, rq

)
· · · z

(
θp, rQ

)
...

...
...

...
...

z (θP, r1) · · · z
(
θP, rq

)
· · · z

(
θP, rQ

)

 ,
(25)

Therefore, the proposed PCAnet has lower complexity than
the conventional EVD and calculates the noise spaces without
a priori knowledge of the number of sources. The proposed
Sp2net classifies many DOA and range classes by using the
CNN and the proposed activation function and estimates both
the DOAs and the ranges of the near-field sources with the
high resolution.

IV. COMPUTER SIMULATIONS
In this section, the SL estimation performance and the compu-
tational complexity of the proposed method are analyzed by
the computer simulations, which have been widely utilized
for the evaluation of the conventional DLSL methods [26],
[38], [39]. For the comparisons with the proposedmethod, the
RD-MUSIC [12], the LCLA [14], the FOC-based root prop-
agator (FOC-RP) [15], and the Cramer-Rao bound (CRB)
[3], [40], [41] were tested.

A. TRAINING
For training and evaluating the proposed network, a fixed
ULA passive sonar was assumed. Since the distances between
the near-field source and each array element were different,
gn,l in Eq. (1) was set according to the underwater transmis-
sion losses (TL) with Thorp’s model [42], [43], whose dB
scale model is given as,

TL = kTL10 log10 lTL +
lTL
103

10 log10 a (f ) , (26)

where kTL , lTL and f denote a spreading factor that describes
the propagation geometry, a distance (m), and frequency
(kHz), respectively. a (f ) denotes the absorption coefficient,
which is expressed as,

10 log10 a (f ) = 0.11
f 2

1+ f 2
+

44f 2

4100+ f 2

+ 2.75× 10−4f 2 + 0.003. (27)

For generating the training data set, kTL was set to 1.5 for the
practical spreading model.

Dataset configurations are demonstrated in Table 1. The
number of the fixedULA elements was set toN = 50 to cover
a wide underwater area. To avoid overfitting problems, the
training data set was generated with random parameters and
the random initial phases of the near- and far-field signals.

The number of sources was uniformly randomized from one
to five for the near-field sources and from zero to five for
the far-field sources. The grids for the ranges were set from
7.5 m (λ/4) to 600 m (20λ) with a grid interval of 7.5 m
(λ/4). The numbers of DOA and range classes (P and Q
in Fig. 4) were 180 and 80, respectively. Near-field sources
randomly lay on the grid points with the uniform distribution,
and the DOAs of the far-field sources were randomly set. The
near-field signal strengths were set to be stronger than those
of the far-field sources from 0 dB to 10 dB. The SNRs of the
near-field signals were set randomly from -20 dB to 20 dB
with a uniform distribution. The covariance matrix of the
received signals with 200 snapshots was utilized for training
as the input of the proposed network.

TABLE 1. Dataset configurations.

The output of the proposed network was a one-hot encoded
label in Eq. (25) that assigns ’1’ to the grids where the
near-field sources are located and allocates ’0’ to other grids.
To classify the one-hot encoded label, the loss function of the
proposed network used categorical cross-entropy [44]. The
parameters of the proposed network are shown in Table 2.

TABLE 2. Network parameters.

B. EVALUATION OF PERFORMANCES
The SL estimation performance of the proposed method
was analyzed according to various SNRs and the number
of snapshots. The estimation performance was measured by
the root mean square error (RMSE) from 100,000 Monte-
Carlo trials with the test data set, which was independent
of the training data set. The near-field sources were located
at (46◦, 0.75λ), (14◦, 9.5λ), and (−34◦, 19λ). The far-field
sources were located at (5◦,∞) and (55◦,∞). The example
of the SL result of the proposed method is displayed in Fig. 6.
In Fig. 6, the SNRs of the near-field sources were set to 0 dB,
and the SNRs of the far-field sources were set to −5 dB.
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FIGURE 6. Source localization result of the proposed method.

The proposed method precisely estimated the DOAs and the
ranges of all near-field sources.

Figure 7 demonstrates the DOA estimation performances
of the tested schemes. A solid block line denotes the CRB.
A blue triangle, green circle, magenta square, and red dia-
mond markers denote the RD-MUSIC, FOC-RP, LCLA, and
proposed method, respectively. Figures 7(a) and 7(b) show
the RMSEs according to various SNRs of the near-field
sources and the number of snapshots, respectively. The loca-
tions of the near- and far-field sources were the same as
in Fig. 6. In Fig. 7(a), the number of snapshots was set to
200. Since the FOC-RP and the LCLA dependently estimated
two parameters (DOAs and ranges), the estimation errors
were propagated to each parameter in low SNR regions and
the RMSEs did not monotonically decrease. The proposed
method also had large RMSEs in lower SNRs of −8 dB.
However, the proposed method had the smallest RMSEs in
all SNR regions. At the SNR = 10 dB, the RMSE of the
proposed method had 22, 15, and five times better than that
of the RD-MUSIC, the LCLA, and the FOC-RP, respectively.
In Fig. 7(b), the SNR was set to −5 dB. The RMSEs of the
proposedmethodwere the smallest among the testedmethods
for all snapshot scenarios.When the number of snapshots was
500, the proposed method had six, four and three times better
RMSEs than the RD-MUSIC, the FOC-RP, and the LCLA,
respectively.

Figure 8 shows the range estimation performances of the
tested schemes. The legends were the same as in Fig. 7.
Figures 8(a) and 8(b) display the RMSEs according to various
SNRs and the number of snapshots, respectively. In Fig. 8(a),
the number of snapshots was set to 200. The proposedmethod
had the smallest RMSEs among the tested schemes. At the
SNR = −10 dB, the RMSE of the proposed method had
80, 24, and four times better than that of the LCLA, the
FOC-RP, and the RD-MUSIC, respectively. In Fig. 8(b), the
SNR was set to −5 dB, and the numbers of snapshots were
from 100 to 2000. The RMSEs of the proposed method
also were the smallest among the tested methods for all
snapshot scenarios. When the number of snapshots was 500,
the proposed method had six, four, and three times better
RMSEs than the RD-MUSIC, the FOC-RP, and the LCLA,
respectively.

FIGURE 7. DOA estimation performances of (a) RMSE with varying SNR,
(b) RMSE with varying the number of snapshots.

The computer simulations demonstrated that the proposed
high resolution grid-based DLSL with the proposed activa-
tion function had better SL estimation performance than the
conventional methods.

C. COMPLEXITY COMPARISONS
In this subsection, the computational complexities of the
tested methods were compared by using the theoretical anal-
ysis and the average operation time. Table 3 demonstrates the
theoretical complexities of the tested methods. Table 4 and
Fig. 9 exhibit the average operation time and the complexities
based on Table 3, respectively, according to 200 and 500 snap-
shots. Other parameters were the same as in Tables 1 and 2.
For the fair comparisons of the average operation time, the
AMD Ryzen 7 3700X CPU was utilized, and the GPU was
not utilized.

In Table 4, the LCLA had the smallest average operation
time among the compared methods, but the LCLA had larger
RMSEs than the proposed method in Figs. 7 and 8. For
500 snapshots, the average operation time of the LCLA was

TABLE 3. Comparison of computational complexity.
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FIGURE 8. Range estimation performances of (a) RMSE with varying SNR,
(b) RMSE with varying the number of snapshots.

TABLE 4. Comparison of average operation time.

FIGURE 9. Comparison of computational complexities according to the
number of snapshots.

2.5 times faster than the proposed method, but the proposed
method had 80 times better RMSE performance than the
LCLA in Fig. 8(a).

In Fig. 9, the complexity of the FOC-RP was lower than
that of the proposed method at 200 snapshots but larger than

that of the proposed method at 500 snapshots. These results
were well matched with Table 4. Note that the proposed
method had better RMSEs than the FOC-RP for all snapshots.

Thus, the proposed method demonstrated the lower com-
plexity and RMSE than other conventional schemes.

V. CONCLUSION
This paper proposed the high resolution grid-based DLSL
that precisely estimates the locations of near-field sources
by classifying many source location classes. The proposed
PCAnet estimated the noise space without a priori knowledge
of the number of sources. The proposed Sp2net improved the
SL estimation performance by classifying dense grids with
the proposed activation function. The computer simulation
showed that the estimation performances for the DOAs and
the ranges of the proposed method were better than those of
the conventional methods.
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