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ABSTRACT Considering the problem of difficulty in transmission and storage due to a large amount of
data in the water-supply network monitoring system based on a wireless sensor network (WSN), we propose
a sparse representation of the water-supply network monitoring data by using compressed sensing (CS)
method. At the same time, aiming at the problem of low leakage identification accuracy caused by
information loss under compressed sensing, we propose a leak identification method for a water-supply pipe
network based on compressed sensing and deep residual neural network (ResNet). Firstly, under the condition
that the observation matrix ensures the integrity of signal information, the compressed sensing theory is used
to compress and observe leakage signals to obtain observation data, to reduce the redundant information and
volume of the data. At the same time, the observation data is preprocessed to realize the transformation of
a one-dimensional signal to a two-dimensional matrix. Then the residual neural network is trained by using
the two-dimensional data to realize the automatic, efficient, and accurate leak identification under different
leakage apertures. Experimental results show that the proposed method can obtain relatively high accuracy
and greatly reduce the training time of ResNet by using compressed data. When the Compression rate (CR)
is 70% and the observation matrix is a Gaussian random matrix, the average accuracy is 96.67% and the
training time is only 50% compared to uncompressed data. The research work provides a new intelligent
leak identification under different leak apertures using WSN and has important application prospects in
saving water resources.

INDEX TERMS Pipeline leakage, compressed sensing, residual neural network, observation matrix.

I. INTRODUCTION
A survey report shows that 43% of water is wasted due to
leakage in pipelines [1]. If a pipeline leak is not detected, the
leakage will generate a significant waste of water resources.
Therefore, the research work of leak identification in the
water-supply pipeline has beenwidely concerned at home and
abroad. In recent years, wireless sensor network (WSN) has
been developed rapidly and attracts more and more attention
in the field of pipeline monitoring, which organizes and
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combines tens of thousands of sensor nodes freely through
wireless communication technology. The leak identification
based on WSN can efficiently discover the leak events
to reduce the waste of water resources and economic
losses [2]–[4], which is popularly applied in leak monitoring
of water-supply pipelines at present.

Nowadays, several leak identification schemes have
emerged, such as time-domain reflectometry (TDR) [5], [6],
real-time transient modeling [7], negative pressure wave-
based method [8]–[10], transient pressure wave-based
method [11]–[16] and acoustic-basedmethods [17], [18]. The
TDR-based method is suitable and effective which requires
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only an already-installed metal pipeline as a prerequisite.
It is necessary to build a theoretical model for real-time
transient modeling, which lacks adaptability leading to low
accuracy of leak identification and has large computation.
The negative pressure wave is not obvious in the case of
small leakage under complicated background noise, which
may result in a larger error of leak identification. The transient
pressure wave-based method has the desirable merits of
high efficiency, low cost, and non-intrusion which requires
additional excitation signals [11]. The acoustic-based method
has high sensitivity and accuracy of leak identification [19],
which has great advantages in leak identification in water-
supply pipelines [20]–[23].

The most popular leak identification methods by acoustic
wave adopt machine learning such as k-nearest neighbors,
support vector machines (SVMs) [24], and artificial neural
networks [25]. In the classification process, the extraction
of suitable features of leak acoustic signal is considered as
an important factor for increasing performance. Recently,
deep learning has become the most successful machine
learning method and attracted more attention in leak
identification [26], [27]. In particular, convolutional neural
network (CNN) has become popular in condition monitoring
[28], which can automatically extract features from raw data
for fault identification and classification. Ince et al. [29] and
Abdeljaber et al. [30] proposed fast and accurate condition
monitoring, acoustic-based structural health monitoring, and
early fault identification systems using 1D-CNN. Similarly,
the goal of the approach in [31] was to autonomously
learn useful features for bearing fault detection in rotating
machinery based on raw 1-D signals. The autonomous
feature learning approach was compared with the handcrafted
features approach using the same data to objectively quantify
performance, with the former producing an accuracy of
93.61% and the latter 87.25%.

Leak identification based on wireless acoustic sensor net-
work (WASN) has widely applied in water-supply pipelines
and generates a mass of data, which results in a lot
of training time of CNN model and has a great impact
on the real-time performance of monitoring system. The
compressive sensing (CS) first proposed in [32] attracts
increasing attentions. CS provides a promising technique to
reconstruct a signal from a small number of measurements by
exploiting the sparseness nature of the signal [33], [34], which
has shown significant success in the processing of big data
[35], synthetic aperture radar imaging [36], andWASN based
monitoring system [37]. Hence, the combination of CS and
CNN for leak identification is expected to solve the problem
of poor real-time performance caused by a large training time
for monitoring of water-supply pipelines based on WASN.

In this paper, we propose a CS-ResNet framework for
multi-class leak identification under leakage apertures in
WASN based water-supply pipelines. Our contributions are
as follows.

1) Under the condition that the observation matrix ensures
the integrity of the signal information, the compressed

sensing theory is used to compress and observe the
leakage signal of the water-supply pipeline to obtain
the observation data, so as to reduce the redundant
information and volume of the data.

2) The observation data is preprocessed to realize the
transformation of one-dimensional signal to two-
dimensional matrix data.

3) The residual neural network is trained by using the
observed data, to realize the automatic, efficient, and
accurate identification of the leakage under different
apertures of the water-supply pipeline.

4) The experiments are conducted to verify the effective-
ness of the proposed method.

The rest of the paper is organized as follows. In Section II,
we provide a brief overview and derivation of theoretical
models. In Section III, we give an identification method of
the leakage of water-supply pipeline based on residual neural
network in compressed sensing domain. In Section IV, the
experimental study on leak identification of water-supply
pipeline is conducted. In section V, we end the paper with
some concluding remarks.

II. BASIC THEORY
A. COMPRESSED SENSING THEORY
The main idea of compressed sensing theory is that if the
signal has sparsity, the signal can be projected into a space
with a very low dimension relative to the original signal
through a matrix (observation matrix) irrelevant to sparsity,
so as to obtain the observation signal with a very small length
relative to the original signal. The reconstruction algorithm
can be used to reconstruct the low-dimensional observation
signal into the original signal. Its principle is as follows:

Suppose the signal x with signal length N is linearly
measured in an observation matrix 8 ∈ RM×N (M � N )
to obtain the observation value y ∈ RM, as follows:

y = 8x (1)

This process can be regarded as the linear projection of the
signal on the observation matrix.

Now that the signal is observed and measured, it is
necessary to consider reconstructing the signal x from the
observed value y. SinceM � N , (1) has an infinite solution,
and it is difficult to reconstruct the signal x. If the signal x is
sparse, x is k-sparse, and y and8 alsomeet certain conditions,
it is proved by the theory that x can be reconstructed by
solving the optimization problem shown in (2), expressed as:

x ′ = argmin ‖x‖0 s.t.y = 8x (2)

where ‖·‖0 is the l0-norm of the vector. The compressed
sensing theory of E. J. Candes points out that to reconstruct
k-sparse signal x from high precision, the dimension of
observation value y must satisfy (3), and the observation
matrix8must satisfy the restricted isometric property (RIP).

M = O(κ lg(N )) (3)
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The sparse representation theory of signal indicates that
the signal x can be sparsely represented by a certain
transformation 9 or a certain over-complete dictionary 9,
then the signal x can be represented by the sparse signal s,
which is:

x = 9s (4)

Since (1) can sparsely represent the signal x, then:

y = 8x = 89s = As (5)

where A = 89,A ∈ RM×N is called perception matrix,
as shown in Figure 1.

FIGURE 1. Compressed sensing measurement process.

Equation (5) is an underdetermined equation, and to
reconstruct the linear system of equations with a unique
sparse solution from, the constraint of sparsity needs to be
added. Equation (5) can be regarded as the linear observation
value of the sparse signal under the perception matrix A, and
at the same time A satisfies the RIP condition, the problem
of reconstructing the signal x is transformed into solving the
optimal norm to reconstruct the sparse signal, expressed as:

s′ = argmin ‖s‖0 s.t.y = As (6)

The reconstructed sparse signal s’ is obtained, and
the reconstructed signal x is obtained by sparse inverse
transformation of (7).

x̂ = 9s′ (7)

CS theory breaks through the frequency limitation of the
Nyquist sampling theorem, and at the same time realizes
the acquisition and compression of the signal, using a
small amount of observed sampling data to retain a good
approximation to the original signal, which can achieve the
reconstruction of the original signal. Compression rate: the
ratio of the length of the original signal minus the length of
the observed value to the length of the original signal, which
is used to measure the degree of compression and acquisition
of the original signal. It is defined as:

CR =
N −M
N

× 100% (8)

B. COMPRESSION ACQUISITION
In the compressed sensing theory, if the signal has sparsity,
the observed value can be obtained by linear projection
of the signal through the observation matrix, as shown in
equation (1). The data dimension of the observed value is
different from that of the original signal, and the dimension
of the observed value is much lower than that of the actual
signal, so as to reduce the dimension of the data. In the design
of the observation matrix, the RIP conditions must be obeyed
while ensuring the integrity of the original signal information,
which realizes a high-precision reconstruction of the original
signal.

On the premise that the observation matrix ensures the
integrity of the signal information, if the signal x has sparsity,
the signal x is linearly projected under the observation
matrix to obtain the low-dimensional observation value y,
which realizes the dimensionality reduction of data from
N to M dimensions, and its compressed collection and
dimensionality reduction method as shown in Figure 2.

FIGURE 2. Dimension reduction of compressed acquisition.

Since the observation matrix ensures the integrity of the
signal information, the obtained observation value contains
a lot of useful information of the original signal. Combining
CS with the convolution neural network model, CS reduces
the volume of data and greatly simplifies the computational
complexity in model training, thus improving the recognition
efficiency of the convolutional neural network model. The
compression rate of CS is a performance index to measure
the degree of data dimensionality reduction. The higher the
CR, the less information of the original signal contained in
the observation value, which has an impact on the accuracy
of the convolutional neural network model in the compressed
sensing domain.

C. OBSERVATION MATRIX
The observation matrix 8 ∈ RM×N (M � N ), also called the
measurement matrix, is an important part of the compressed
sensing framework. The observationmatrix is used to observe
the original signal to obtain the observation value, and the
observation matrix is also required for signal reconstruction
from the observation value. Therefore, the observation
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matrix plays a very important role in the acquisition of
the observation value and the signal reconstruction. In the
compressed sensing theory, the observation matrix must be
incoherent with the sparse matrix of the signal, that is, the
matrix 8 cannot be expressed linearly by the matrix 9.
The commonly used observation matrices include Gaussian
random observation matrix, Bernoulli random observation
matrix, local Hadamard observation matrix, and Fourier
observation matrix.

1) GAUSSIAN RANDOM OBSERVATION MATRIX
In compressed sensing, the Gaussian random observation
matrix is the most widely used observation matrix. Its design
method is to randomly generate a matrix 8 of size M × N ,
and each element of the matrix 8 must obey the Gaussian
distribution of the mean value of 0 and the variance of 1

√
M
,

that is:

8i,j ∼ N (0,
1
√
M

) (9)

The matrix has strong randomness. Because the matrix is
not related to the sparse matrix of most orthogonal bases
and orthogonal dictionaries, when the signal length is N, the
sparsity is K, and the observation value under the Gaussian
random observation matrix satisfies M > cK lg(N/K ), the
matrix satisfies the RIP property with great probability, so the
original signal can be reconstructed accurately.

2) BERNOULLI RANDOM OBSERVATION MATRIX
The Bernoulli random observation matrix is also one of the
commonly used observation matrices in compressed sensing
framework. Its design method is to design a matrix 8 with
the size of M × N , and make each element in the matrix 8
obey Bernoulli distribution, that is:

8i,j =

+
1
√
M
P = 1

2

−
1
√
M
P = 1

2

(10)

The matrix has strong randomness like the Gaussian
random matrix, and it is proved by theory that this matrix
satisfies the RIP property. Compared with the Gaussian
random matrix, the element of Bernoulli random observation
matrix is±1, so it is easier to implement and store in practical
application.

3) LOCAL HADAMARD OBSERVATION MATRIX
The local Hadamard matrix can also be used as the
observation matrix in compressed sensing. Its design method
is to generate a Hadamard matrix with the size of N × N ,
and then randomly select M row vectors from the matrix to
construct an observationmatrix8with the size ofM×N . The
observation matrix is a local Hadamard matrix of sizeM ×N
consisting of M row vectors selected from the Hadamard
matrix. At the same time, since the Hadamard matrix is
orthogonal, the local Hadamard has partial orthogonality
and non-correlation, which makes the less observations are
needed to reconstruct the signal under the observation matrix.

4) PARTIAL FOURIER OBSERVATION MATRIX
The Partial orthogonal matrix can also be used as the
observation matrix in compressed sensing, such as partial
Fourier matrix, and it is proved theoretically that partial
orthogonal matrix also satisfies the RIP condition. The
design method of partial orthogonal matrix is to generate an
orthogonal matrix H of size N × N , then randomly select
M row vectors from the matrix H to form a matrix of size
M × N , and finally the matrix of size M × N is normalized
by column vector to obtain the observation matrix 8. Under
this observation matrix, to accurately reconstruct the original
signal, its sparsity must meet the following requirements:

κ ≤ c
1
µ

M
(log(N ))6

(11)

where µ =
√
M = max(

∣∣Hi,j∣∣), when µ=1, the partial
orthogonal matrix becomes the partial Fourier observation
matrix.

D. RESIDUAL NEURAL NETWORK
There are many models based on convolutional neural
network, such as LeNet, AlexNet, VGG16, Inception.
At present, with the improvement of computer computing
power, the number of convolution network layers of the
model is increasing, but there is a problem that the effect of
the model is not very good when the number of convolution
network layers is increasing. HeKaiming’s team proposed the
residual neural network structure in 2016, which can improve
this problem. The residual neural network solves the gradient
dispersion problem by making up the weight of the shallow
network for the weight of the deep network, and has a very
strong representation ability.

1) RESIDUAL ELEMENT
The residual element is the main component of the residual
neural network, which mainly includes two-layer residual
element and three-layer residual element, as shown in
Figures 3 and 4. A layer of identity mapping X is added to
the residual neural network, which can increase the depth of
the neural network without degrading the model effect.

FIGURE 3. Two-layer residual element.

The two-layer residual element has fewer network layers
and is generally used for the model with less demand for
network layers, which can reduce the number of parameters
for model training and recognition, to reduce the amount of
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FIGURE 4. Three-layer residual element.

calculation of the model. The three-layer residual element has
more network layers, which is mostly used in models with
more demand for network layers. In this paper, the two-layer
residual element is used to construct the convolutional neural
network.

2) CONVOLUTION LAYE
The convolution layer is one of the basic unit structures
of convolution neural network and is a network structure
for feature extraction of input data. The convolution layer
uses the convolution kernel to perform sliding convolution
operation on the local area of the input data to extract the
corresponding features. The feature of weight sharing of
the convolutional layer can reduce its network parameters,
which is beneficial to avoid over-fitting caused by too many
parameters. The formula of convolution operation is shown
in (12).

yl(i,j) = Ml
ix
l(r j)
=

W−1∑
j′=0

Ml(j′)
i x l(j+j

′) (12)

Where x l(r
j) is the i-th convoluted local region of the l-th layer,

Ml(j′)
i is the j-th weight of the i-th convolution kernel of the

l-th layer, and W is the length of the convolution kernel.

III. IDENTIFICATION METHOD OF LEAKAGE OF
WATER-SUPPLY PIPELINE BASED ON RESIDUAL NEURAL
NETWORK IN COMPRESSED SENSING DOMAIN
The observed value contains a lot of useful information
of the original signal, which can be directly used to
identify the leakage of the water-supply pipeline. Because the
residual neural network model has better performance, this
paper proposes a method for identifying the leakage of the
water-supply pipeline based on CS and the residual neural
network (CS-ResNet).

A. FRAMEWORK OF PROPOSED METHOD
The flow framework of the method is shown in Figure 5.
The method is mainly divided into four parts: compression
acquisition, data preprocessing, residual neural network
training, and water-supply pipeline leakage identification.

Compression acquisition: At the leakage of the water-
supply pipeline, the leakage vibration signal is acquired, and

the observation value is obtained by observing the acquired
signal under an observation matrix.

Data preprocessing: Use observations to form an observa-
tion dataset. Then data preprocessing is performed to convert
the one-dimensional water-supply pipeline leakage signal
into a two-dimensional positive matrix format.

Residual neural network training: The preprocessed data
is constructed into a data set, and the data set is divided
into training set and test set at a ratio of 4:1. Then the
residual neural network is trained to update the parameters
and errors in the network to achieve the optimal model,
and the water-supply pipeline leakage identification model is
obtained.

Leakage identification: The leakage data after data prepro-
cessing is sent to the leakage identification model based on
CS-ResNet for identification, and the result of the leakage
identification of the water-supply pipeline can be obtained.

B. RESIDUAL NEURAL NETWORK MODEL
In this paper, according to the length and signal characteristics
of the leakage vibration signal data set of the water-supply
pipeline, and the number of network layers of residual neural
network should not be too deep, the two-layer residual
element is selected to construct an 18-layer residual neural
network model (ResNet18) as the residual neural network
model of the leakage recognition experiment. Its network
structure is shown in Figure 6.

C. DATA PREPROCESSING
Generally, the collected water-supply pipeline leakage vibra-
tion signal is a one-dimensional time-domain signal, which
is difficult to be processed directly by convolutional neural
network. Therefore, it is necessary to preprocess the water-
supply pipeline leakage vibration signal data sets with dif-
ferent leakage apertures to convert the original water-supply
pipeline leakage vibration signal into a matrix of size n× n.
In general, the environment of water-supply pipeline leak-

age is very complex. In the collected water-supply pipeline
leakage vibration signals, the median difference of the data
is relatively large, and the number of outliers and outliers is
large, which will adversely affect the identification accuracy
and convergence performance of the leakage identification
model. Therefore, the data need to be standardized and
normalized.

The standardized expression of standard deviation is shown
in (13).

x ′ =
x − u
σ

(13)

where u is themean value of the data sample, σ is the standard
deviation of the data sample.

The normalized expression is shown in (14).

x ′′ =
x ′ − xmin

xmax − xmin
(14)
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FIGURE 5. The framework of the leakage identification method of water-supply pipeline based
on CS-ResNet.

FIGURE 6. The network structure of ResNet18.

where x ′′ is the normalized data sample, xmin is the minimum
value of the data sample, and xmax is the maximum value of
the data sample.

After normalization, matrix mapping is performed on each
data, each data sample is transformed into a matrix of
size n × n. And the matrix dimension must be greater than
the number of data features. If the data length is not enough,
a zero filling operation is taken for the deficiency of the
matrix.

D. TRAINING OF RESIDUAL NEURAL NETWORK
To obtain accurate output, it is necessary to optimize
the network model and update the model parameters.

The convolutional neural network has the same training
method as a general neural network. It needs to be trained step
by step according to loss function, gradient descent algorithm
and error backpropagation to make it reach the optimal
model. The training process of residual neural network is
shown in Figure 7.

FIGURE 7. The training process of convolutional neural network.

IV. EXPERIMENTAL STUDY ON LEAK IDENTIFICATION OF
WATER-SUPPLY PIPELINE
To verify the performance of the leakage identification
method of the water-supply pipeline based on CS-ResNet,
and the influence of compression rate and observation matrix
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FIGURE 8. Experimental site of leakage of water-supply pipeline with different diameters.

FIGURE 9. Size of 304 stainless steel hexagonal pagoda with 4points.

on the method, ResNet18 residual neural network model
is used in this experiment. Different compression rates and
observation matrices are used for compression collection,
different observation value data sets are constructed, and the
leakage aperture identification model of the water-supply
pipeline is trained. The trained model is used to identify
the leakage of the water-supply pipeline under different
apertures, and the identification accuracy of test set is
used to measure performance of the model. All of the
computations are conducted using a computer with 2.9 GHz
Intel processor, a maximum memory of 16 GB and GeForce
GTX 1660 graphics, and all of the programs are written in
Tensorflow 2.1 environment.

A. SIGNAL ACQUISITION OF LEAKAGE OF
WATER-SUPPLY PIPELINE
To verify the performance of the method proposed in this
paper, an experimental site that simulates the leakage of
water-supply pipes with different apertures is built based

on laboratory equipment. As shown in Figure 8, the
leakage of water-supply pipelines with different diameters
is simulated by installing straight water pipe joints with
different diameters on the fire pipe, and the data acquisition
system of SebaKMT composite correlator is used for
data acquisition. Among them, according to reference [19]
and the experimental analysis results of leakage signal
characteristics, the dominant frequency band of leakage
vibration signal energy is 200Hz-1500Hz. At the same time,
the leakage vibration signal is relatively weak as a whole,
and is susceptible to noise interference, resulting in a low
SNR. A high-sensitivity accelerometer is required to obtain
the leakage signal. The higher the sensitivity, the stronger the
correlation of the collected signals, and the smaller the leak
detection positioning error. Therefore, the high-sensitivity
Lens acceleration sensor LC0115 selected in this paper, its
detailed specifications are shown in Table 1:

In the process of data acquisition, the pipeline parameters
of the fire pipe: the pressure is 0.2MPa, the material is steel,
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TABLE 1. Specifications of lc0115.

the inner diameter is 100mm, and the propagation speed of the
leakage vibration signal in the steel pipeline can be obtained
as 1250m/s according to the sound velocity empirical model.
According to the reference [19] and the characteristics of
the leakage vibration signal of the water supply pipeline,
the dominant frequency range of the signal energy is mainly
concentrated between 200Hz-1500Hz. It can be known from
the sampling law that a sampling frequency that is more than
twice the maximum frequency can meet the requirements of
signal acquisition without distortion. In addition, combined
with the parameter requirements of the AD converter of the
selected data acquisition device, the maximum can only be
set to 6554Hz. Therefore, we use an anti-aliasing filter with a
cutoff frequency of 1500Hz at the data acquisition end to filter
out signals greater than 1500Hz, and use a sampling rate of
6554Hz to satisfy Nyquist’s law to ensure that the collected
data will not be distorted. The number of sampling points is
set to 4096 for the following two reasons, which can not only
meet the storage requirements of the data acquisition terminal
register, but also meet the requirements of the effective
detection distance of the leakage vibration signal of the water
supply pipeline under different circumstances. 1) The number
of sampling points is set according to the capacity of the
register of the data acquisition terminal used to ensure that the
data will not overflow or be lost during storage. 2) Determine
the number of sampling points according to the length of the
pipeline under test. The effective detection length of the leak
detection method proposed in this paper is within 200 meters
for buried pipelines, and the effective detection length for
overhead pipelines is within 500 meters. The vibration signal
of pipeline leakage beyond this detection length is so weak
that the leakage cannot be accurately identified. The length
of the pipeline used in this experiment is 50 meters. The
maximum time delay of 4096 sampling points selected in this
paper is 4096∗(1/6554) = 0.625s. According to the diameter
of the experimental pipeline in this paper is 100mm, the
propagation speed of the leakage vibration signal is 1250m/s,
and the maximum length of the pipeline that can be detected
is 1250m/s∗0.625s = 781.25m. The straight water pipe joint
adopts the 4-point 304 stainless steel hexagonal pagoda. Its
size is shown in Figure 9. There are seven different diameters:
4 points−8mm, 4 points−10mm, 4 points−12mm, 4 points
−14mm, 4 points −16mm, 4 points −18mm, 4 points
−20mm.

As shown in Figure 8, the wireless data acquisition node
A is attached to the pipeline 5 meters to the left of the leak
through its magnetic base, and node B is attached to the

pipeline 16 meters to the right of the leak in the same way.
The acquisition pipeline is 21 meters long, and the wireless
data acquisition node B has a sub-pipeline. Seven different
304 stainless steel hexagonal pagodas are installed at the
leakage place to collect the leakage acoustic and vibration
signals of the water-supply pipeline, and one leakage-free
signal is collected to form eight different types of data. The
wireless data acquisition nodes A and B collect 3050 samples
of each type of data respectively, and the signal length of each
sample is 4096. The data set collected by the wireless data
acquisition node B is used in this experiment. The data set
is divided into training data set and test data set at a ratio
of 4:1, and the number of samples in the training data set is
19520 and the number of samples in the test data set is 4880.

B. OBSERVATION DATA SET AND DATA PREPROCESSING
To verify the performance of the water-supply pipeline
leakage identification method based on CS-ResNet, each
data sample in the data set is observed and compressed
under a certain observation matrix and CR to obtain
the corresponding observation data sample, to realize the
compressed acquisition of the water-supply pipeline leakage
signal. Finally, the observation data set samples of different
leakage signals are obtained, where each type of data is still
3050 and the number of overall samples is 24400.

According to Section 2.3, data preprocessing is performed
for each data sample in the observation data set. When the
observation matrix is a Gaussian random matrix and CR is
80%, the data length of the sample before the observation
is 4096, and the length of the observation value after
observation compression is 819. After the data sample of the
observation value is preprocessed, a group of data is randomly
selected and transformed into gray image format through
matrix mapping.

FIGURE 10. Visualization of observations with a CR of 80%.

During the conversion, if the data length is not enough to be
converted into a similar positive matrix form, it is completed
through the zero filling operation to obtain the gray atlas,
as shown in Figure 10, and the size of each picture is 29×29.
The image format of leakage data under different apertures
after the compressed acquisition is quite different, while
the grayscale images of the leakage signal under different
apertures without compression acquisition in Figure 11 have
little difference, and the grayscale images of different leakage
apertures also have a certain similarity. From the perspective
of visual processing, the compressed collected observations
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are sent to the resnet18 model for training, which can achieve
better accuracy.

FIGURE 11. Visualization of different leakage data.

C. PERFORMANCE UNDER DIFFERENT COMPRESSION
RATIOS
To discuss the influence of CR on the performance of the
network model, the observation compression collection with
CR of 50%, 60%, 70%, 80%, and 90% is carried out respec-
tively when the observation matrix is a Gaussian random
matrix, and the observation data sets with different CR are
constructed. Then, the data sets are sent to ResNet18 model
for training and recognition, in which the number of iterations
during ResNet18 model training is 100 and batch_size is 64,
the optimization algorithm is Adam algorithm, and the loss
function is cross-entropy loss function, which are consistent.
The observed value data set of each compression rate is used
to do five experiments, and the identification accuracy of the
five experiments is averaged.

FIGURE 12. Accuracy of five times training recognition under different
compression rates.

TABLE 2. Average time of five training under different compression rates.

The accuracy rate of five experimental training identi-
fication with CR of 50% - 90% is shown in Figure 12.

FIGURE 13. Accuracy of five times training recognition for each leakage
aperture when CR is 70%.

The accuracy rate of water-supply pipeline leakage identi-
fication decreases slowly as the increase of CR. Because
the higher the CR, the leakage characteristic information
contained in the observed value of compressed collected
leakage signal is relatively low, but it does not have a great
impact on the accuracy of leakage identification, and the
overall accuracy is still above 92%. As shown in Table 2,
the training time of CS-ResNet18 model under different CR
decreases as the increase of CR. when CR is 90%, the data
length of the sample set is only one-tenth of the original
data, and its training time is only 651s, which also has high
accuracy. CS-ResNet18 has excellent performance under a
high compression rate. If the leakage identification of the
water-supply pipeline does not require high accuracy, the
use of a high compression rate can reduce the sample points
of data, thereby greatly reducing the training time of the
model and quickly identifying leakage. At the same time,
it can reduce the pressure of network communication and
data storage, which is conducive to the load and real-time
performance of the water-supply pipeline monitoring system
network.

D. PERFORMANCE AT FIXED COMPRESSION RATE
When CR is 70% and the observation matrix is a Gaussian
random observation matrix, the compressed acquisition data
set is compared with the data set without compressed
acquisition. The parameters of their ResNet18 model training
are the same, which is consistent with the above. When the
leakage signal is compressed and collected, the recognition
accuracy rate of each type of water-supply pipeline leakage
aperture trained for five times is shown in Figure 13, and
the 8-dimensional confusion matrix output after a set of
data training and recognition is shown in Figure 14. When
the leakage signal is not compressed and observed, the
recognition accuracy of each type of water-supply pipeline
leakage aperture trained for five times is shown in Figure 15.

From Figure 13 and Figure 15, in the five training of
each leakage aperture signal under the condition that the
leakage signal is compressed and not compressed, when
the leakage aperture is 0mm and 8mm, the recognition
rate of the leakage aperture reaches 100%, and the leakage
aperture is 12mm, 14mm, 16mm, 18mm, the recognition
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FIGURE 14. Confusion matrix under compressed acquisition.

FIGURE 15. Accuracy of five times training recognition for each leakage
aperture under uncompressed acquisition.

rate of the leakage aperture is relatively low. From the
perspective of the confusion matrix, there is a small amount
of aliasing in these four different apertures, which leads to
misidentification as other leakage apertures. It can be seen
from Figure 14 and Figure 16 that there is more aliasing
after compressed acquisition. This is because the observation
value of compressed acquisition lacks a small amount of
information relative to the original signal, but does not
cause important information to be lost, so the accuracy of
recognition is still very high. As shown in Table 3, the training
time of the model is greatly reduced, and the training time
is only 50% of the uncompressed collection, which greatly
shortens the training time of the model.

TABLE 3. Performance comparison between compressed acquisition and
uncompressed acquisition.

E. PERFORMANCE UNDER DIFFERENT OBSERVATION
MATRICES
To analyze the influence of the observation values obtained
under different observation matrices on performance of
leakage identification model, the observation compression

FIGURE 16. Confusion matrix under compressed acquisition.

collection of the observation matrices of Gaussian random
matrix, Bernoulli random matrix, local Hadamard matrix
and partial Fourier matrix is carried out respectively under
the compression rate of 80%, and the data sets of different
observation matrices are constructed. The data sets of
different observation matrices are sent to the ResNet18model
for five times of training and recognition. The number
of iterations, optimization algorithms, loss functions, and
batch_size of the ResNet18 model during model training are
consistent with the above.

When performing linear projection, the observation matri-
ces with different structures have a great impact on the
amount of useful information contained in the observations,
which has a high impact on the accuracy of the convolution
neural network model. Under Gaussian random observa-
tion matrix, Bernoulli random observation matrix, local
Hadamard observation matrix and partial Fourier observation
matrix, the vibration signals of the water-supply pipeline
leakage are compressed and observed respectively.

A sample of acoustic vibration signal of the water-supply
pipeline leakage is randomly selected from the experimental
data of the water-supply pipeline leakage under different
apertures. The time-frequency diagram of this group of
signals is shown in Figure 17, and its amplitude range is about
−3−3.

FIGURE 17. Time-frequency of acoustic vibration signal of water-supply
pipeline leakage.

The sample is compressed with CR= 50% under Gaussian
random observation matrix, Bernoulli random observation
matrix, local Hadamard observation matrix and partial
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FIGURE 18. Observation values under different observation matrices.

Fourier observation matrix to obtain the observed value.
The observed values under different observation matrices
are shown in Figure 18. Among them, the Gaussian random
matrix and the partial Fourier observation matrix have little
change to the amplitude range of the signal. The amplitude
range of the observed values under the Gaussian random
matrix is about −4−4 and the amplitude range of the
observed values under the partial Fourier observation matrix
is about 0-3. While the Bernoulli random observation matrix
and the local Hadamard observation matrix greatly change
the amplitude range of the signal, the amplitude range of
the observed values under them is about −200−200. The
difference in the amplitude range of the observed values
of Bernoulli random observation matrix, local Hadamard
observation matrix, Gaussian random matrix and partial
Fourier observation matrix is caused by their different
construction methods.

FIGURE 19. Accuracy of five times training recognition under different
observation matrices.

Then, the data sets of different observation matrices are
respectively sent to the residual neural network model.
After five training and recognition experiments, the mean
value is calculated, and the accuracy of the model under
different observation matrices is shown in Figure 19. When
the observation matrix is Gaussian random matrix, Bernoulli
random matrix and local Hadamard matrix, the accuracy
of the model is about 95%. While under partial Fourier
matrix, the accuracy of the five experiments is higher than

that of other observation matrices, and the average accuracy
is 98.77%.

FIGURE 20. Accuracy of five times training and recognition for each
leakage aperture under partial Fourier observation matrix.

FIGURE 21. Confusion matrix under partial Fourier observation matrix.

When the observation matrix is a partial Fourier matrix,
the accuracy of the five-time training and recognition of
the leakage under different apertures of each water-supply
pipe is shown in Figure 20, and the 8-dimensional confusion
matrix output after a set of data training and recognition is
shown in Figure 21. Compared with the previous experiment,
the recognition rate is 100% when the leakage aperture is
0mm and 8mm, while the recognition rates of 12mm, 14mm,
16mm, and 18mm are relatively low but higher than the
recognition rate under the Gaussian random matrix. From
the confusion matrix in Figure 21, the aliasing of these four
different apertures is less than that under Gaussian random
matrix, which is close to that without compressed acquisition.

V. CONCLUSION
Aiming at the problems of too large data volume and
too much information redundancy based on Nyquist data
acquisition, which is not conducive to the load and real-time
performance of the water-supply pipeline monitoring system
network, this paper proposes a leakage identification method
based on CS and the residual neural network. Under the
condition of the observation matrix to ensure the integrity
of the signal information, the compressed collection is
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performed to reduce the redundant information and volume of
the data. Firstly, it analyzes the compressed collection of the
water-supply pipeline leakage signal, different observation
matrices and residual neural network, and then explains
the method proposed in this paper, and finally verifies the
performance of the method through experiments, as well
as the influence of CR and observation matrix on the
performance of the model. Experiments show that:

1) The accuracy rate of the water-supply pipeline leakage
identification decreases slowly with the increase of CR.
But the overall accuracy rate is still above 92%, and the
model training time is greatly reduced.

2) When the CR is 70% and the observation matrix is
a Gaussian random matrix, the average accuracy rate
reaches 96.67%, and the training time is only 50% of
the uncompressed acquisition, which greatly reduces
the training time of the model.

3) When the observationmatrix is a partial Fourier matrix,
the average accuracy of the leakage identification of the
water-supply pipeline is 98.77%.

Therefore, the proposedmethod can achieve relatively high
recognition accuracy using compressed observations, while
greatly reducing the time of model training.
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