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ABSTRACT Blood pressure measurement is required to monitor the cardiovascular state of a person, and
it is commonly conducted in a noninvasive way using oscillometry-based blood pressure monitors (BPM).
Blood pressure can be estimated by analyzing the oscillometric waveform (OMW) in the BPM, and many
methods have been examined to increase their estimation accuracy. In this study, we proposed a new method
that enhances estimation accuracy and requires no external user information, such as age and gender, in the
test phase. In the method, the entire OMW was considered as an input to reduce information loss via feature
extraction, and convolutional neural networks were utilized to effectively analyze the high-dimensional input.
Additionally, the proposed method included a novel ensemble method to further increase the estimation
accuracy. The performance of the proposed method was evaluated and compared with other studies via
subject-independent tests considering real situations in which it is difficult to obtain preliminary information
on a test subject. Data from 64 subjects were used in the test. The mean absolute error of the proposed method
was 3.12 and 3.98 mmHg for systolic and diastolic blood pressure, respectively, which was superior to those
reported in other studies conducted in similar conditions. Individuals can measure their blood pressure with
higher precision using the proposed method with improved estimation performance. This can aid in reducing
the risk of cardiovascular diseases.

INDEX TERMS Blood pressure estimation, convolutional neural network, noninvasive measurement,

oscillometry.

I. INTRODUCTION

Blood pressure commonly refers to the pressure of blood
in arteries, which are blood vessels containing blood from
the heart. It changes according to the pumping action of
the heart. Specifically, systolic blood pressure (SBP) and
diastolic blood pressure (DBP) are defined as the highest and
lowest blood pressure within a cardiac cycle, respectively [1].
The blood pressure is an important vital sign that represents
the state of the cardiovascular system, and it is commonly
measured in hospitals or homes [2]. An arterial catheter can
be used to measure it directly; however, it is an invasive
method and can lead to clinical risks such as infection,
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bleeding, and ischemia [3]. As a noninvasive method, the
auscultatory method has been used in hospitals. It compresses
the upper arm of the subject using a cuff and gradually
reduces the air pressure in the cuff. A medical personnel
then uses a stethoscope to hear Korotkoff sounds that appear
when the cuff pressure is the same as SBP and disappears
when the pressure is the same as DBP. The auscultatory
method is accurate and considered as the gold standard for
noninvasive blood pressure measurements. However, it can
be affected by the listener’s hearing ability, and a skilled
personnel is required to measure the blood pressure [4].
Currently, automatic blood pressure monitors that do not
require a medical personnel are widely used. They sense
an oscillometric waveform (OMW) due to the vibrations of
pulse waves in the brachial artery when the cuff pressure

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

56813


https://orcid.org/0000-0002-9162-9319
https://orcid.org/0000-0001-6749-6985
https://orcid.org/0000-0002-9504-2275

IEEE Access

M. Choi, S.-). Lee: Oscillometry-Based Blood Pressure Estimation Using Convolutional Neural Networks

is decreased after compression. Specifically, SBP and DBP
are determined by analyzing OMW. Many algorithms have
been proposed to obtain SBP and DBP from OMW, and the
maximum amplitude algorithm (MAA) is the most conven-
tional algorithm that has been used [5]. The pulse of OMW is
enlarged when the cuff pressure is close to the mean arterial
pressure (MAP), which is the average arterial blood pressure
value in a cardiac cycle. The MAA simplifies the OMW and
constructs an OMW envelope (OMWE) to find a maximum
point corresponding to the cuff pressure that is close to the
MAP. Then, the algorithm utilizes empirical coefficients to
determine the SBP and DBP points from the maximum point.
MAA is simple and has been used in many commercial
devices; however, it is sensitive to noise. Additionally, it is
not accurate for a subject because it utilizes fixed empirical
coefficients for all subjects without considering the charac-
teristics of OMW for each subject.

In some studies, SBP and DBP were estimated by ana-
lyzing the characteristics of OMW in more detail. In these
studies, features from OMW or OMWE were extracted, and
these features were used as inputs for machine learning
techniques. For example, Forouzanfa et al. mathematically
approximated OMWE with two Gaussian functions and used
the model parameters for the input of two separate feed-
forward neural networks (FFNN) to estimate blood pres-
sure [6]. Alghamdi er al. extracted 27 features, including
time, frequency domain, and chaotic features, and blood
pressure values were obtained using Gaussian process regres-
sion (GPR) [7]. Lee and Chang extracted eight features and
increased the feature data by applying them to the parametric
bootstrap method [8]. SBP and DBP were then estimated
using deep belief networks-deep neural networks (DBN-
DNN). The study was conducted in different ways. Specifi-
cally, DBN-DNN-based fusion ensemble regression models
using bootstrap-aggregation and adaboost techniques were
proposed [9], [10], and deep Boltzmann machine (DBM)-
based methods were introduced by the author [11], [12]. The
OMWE can simplify the OMW and represent the morpholog-
ical characteristics of the OMW. However, detailed informa-
tion on each pulse of the OMW can be ignored. Therefore,
Argha and Celler considered seven features extracted from
each pulse of OMW and utilized these features for a long
short-term memory recurrent neural network (LSTM-RNN)-
based method [13]. The study was further developed, and
improved results were reported by the author using the DBN-
DNN [14]. These studies attempted to identify useful fea-
tures that contain information on SBP and DBP. However,
there might be valuable characteristics of OMW that cannot
be extracted as features. By considering the possibility of
information loss, Narus et al. used a simplified OMWE as
the input of an artificial neural network for blood pressure
estimation [15]. The extended input dimension can decrease
information loss, but the complexity of the model should be
increased to represent a complex relationship between the
input and output.
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Therefore, in this study, we utilized convolutional neural
networks (CNN) for blood pressure estimation. A CNN is a
popular deep learning technique that can construct a complex
and deeper model that reduces the problems of conventional
learning methods such as overfitting and vanishing gradi-
ent [16], [17]. Furthermore, CNNs have been widely used
in image processing fields, and many studies have shown
remarkable results by utilizing CNNs for the analysis of one-
dimensional physiological signals, including electrocardio-
grams and electroencephalograms [18]-[22]. In this study, the
entire OMW was used as input to prevent the omission of
valuable information required for blood pressure estimation,
and CNN models were constructed to obtain SBP and DBP
by effectively utilizing the high-dimensional input. Addition-
ally, the proposed method includes an ensemble technique to
further increase the estimation performance. The ensemble
method uses gender information of subjects. Gender infor-
mation has already been used in many studies as a feature
[9]-[12], and previous studies assumed that the gender infor-
mation of a test subject can be known. However, gender
information is external information that cannot be obtained
by using the measured signal itself, and an additional pro-
cess, such as feedback from users, is required. Our ensemble
method uses gender information only in the training phase,
and does not require an additional procedure. The gender
information is utilized to adjust the weights of data dif-
ferently, and three models are trained using the weights to
increase the diversity of the models. Then, a model that is suit-
able for each test datum is selected to estimate blood pressure
in the ensemble method. The model selection is conducted
without prior information on the gender of a test subject, and
only the estimation results from the three models are utilized
to select a model for each test datum. The performance of
the proposed method was evaluated and compared with other
methods using a subject-independent test (SIT) [23]. SIT
separates the data of all subjects such that the data of each
subject are included only in the training or test set. This is
performed to evaluate the performance of a model for the data
of an unseen subject, similar to a real environment, where
it is difficult to obtain information about a test subject in
advance. Physiological signals, including OMW, generally
exhibit characteristic differences for each subject, and it is
important to utilize SIT in the performance evaluation of
physiological signal-based systems.

The main contributions of this study can be listed as
follows:

1) A CNN-based method for estimating SBP and DBP
was proposed. This includes a method to construct
input data from OMW and the structure of the CNN
model that is suitable for dealing with the input data.
To the best of our knowledge, this is the first study that
uses the entire OMW as an input for deep learning-
based blood pressure estimation. Hence, the results can
be a valuable reference for applying deep learning tech-
niques to blood pressure estimation in future studies
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FIGURE 1. Preprocessing of data: (a) measured CPS, (b) extracted OMW, (c) constructed SLS, and
(d) DLS. Red stars are two peaks corresponding to ST and DT.

2) A novel ensemble method was used to increase the
performance of blood pressure estimation. It requires
the gender information of subjects, but the information
is used only in the training phase to expand the diversity
of CNN models. Therefore, additional gender informa-
tion of the test subject is not required, and the ensemble
method can be used in real situations to improve the
estimation accuracy of blood pressure.

The results of the proposed method were evaluated
and compared with those of similar studies. SIT was
utilized for evaluation, and readers were able to under-
stand the advantages of the proposed method and the
current level of oscillometry-based blood pressure esti-
mation more precisely. The comparison results can also
be viewed as a standard when the performance of a new
blood pressure estimation method is evaluated in other
studies.

The rest of this paper is organized as follows. A detailed
explanation of the proposed method is described in Section II.
The explanation includes data acquisition, preprocessing,
data augmentation, the structure of the proposed CNN model,
and an ensemble method. The effectiveness of the proposed
method is described in Section III. The performance of
the blood pressure estimation obtained using the proposed
method is presented and compared with the results of other
studies in this section. Finally, the conclusions and future
work for this study are summarized in Section IV.

3)

VOLUME 10, 2022

Il. METHODS

A. DATA ACQUISITION

Blood pressure was measured using a commercial device
(BPBIO480 KV, InBody). It uses one of two cuffs according
to the arm circumference of the subject. The pressure signal
of the cuff was obtained at a sampling rate of 100 Hz and
saved in the USB memory of the device. The device can also
acquire Korotkoff sounds, but the signals were not used in this
study because they cannot be acquired in other blood pressure
monitors. A total of 64 subjects (39 males and 25 females)
participated in the experiment, and their ages ranged from
21 to 45 years. We obtained informed consent from all the
subjects prior to the experiment, and blood pressure was mea-
sured four times for each subject using the device. A trained
nurse used a stethoscope to simultaneously obtain SBP and
DBP via the auscultatory method with the measurements of
the device, and the values were used as the gold standard to
compare the estimated blood pressure results obtained via the
proposed method. For the rest of the experimental protocol,
such as posture to measure blood pressure and rest time
between measurements, the standards that are typically used
for blood pressure measurements were utilized [24]. Among
256 records that were acquired from 64 subjects, 10 records
were discarded because Korotkoff sounds, required to deter-
mine true SBP and DBP, were unclear or there was distortion
in the measured cuff pressure signal (CPS) due to the motion
of the subject.
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FIGURE 2. Example of data augmentation. The black dashed square represents the data from the ST - margin

to the DT + margin in the OMW.

B. PREPROCESSING

The CPS contains two components (Fig. 1(a)). One of the
components corresponds to a decreasing linear trend due to
decompression of the cuff during blood pressure measure-
ment, and the other component corresponds to OMW due
to the vibrations of pulse waves from the body. OMW is
extracted from CPS by using a band-pass filter with a pass
band of 0.3-15 Hz (Fig. 1(b)), and it is used as the input
to a CNN model for estimating blood pressure. Two time
points are defined when the value of CPS is the same as
SBP or DBP at the SBP time point (ST) and DBP time point
(DT), respectively, and the model is used to determine the
relationship between OMW and ST and DT by considering
them as input and output. The model is used to find two
pulse peaks with time points matching ST and DT in OMW.
Then, SBP and DBP can be estimated by reading the CPS
values corresponding to ST and DT, which are determined
by the model. To train the model, the proposed method does
not directly use ST and DT values as labels, and a signal is
constructed and utilized as label data for SBP and DBP. The
two signals for SBP and DBP are defined as the SBP label
signal (SLS) and DBP label signal (DLS), respectively, and
are constructed as follows (Fig. 1(c, d)):

1) Two time points which values are true SBP and DBP
are identified and defined as pre-ST and pre-DT in the
CPS.

2) Pulse peaks are detected in OMW, and two peaks,
which are nearest to pre-ST and pre-DT, are identified
and used as ST and DT.

3) SLS and DLS with a length of L/r are constructed as

follows:

1 if i = ST/r,

SLS() = 11— =31 if i - ST/r| <, (D)
0 otherwise,
1 if i = DT/r,

N li—=DT/r|  :p,:

DLS(G) = {1 - — = if[i—DT/r|<a, (2)

0 otherwise,

where L denotes the length of OMW.
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The SLS and DLS are used to intuitively provide the position
information of ST and DT to the model, and the model can
simplify the relationship between OMW and the ST and DT
through the SLS and DLS. In addition, the SLS and DLS
have values from zero to one, and it can limit the range of
output values of the model without being affected by the
length of OMW. L is normally very long when compared with
the ST and DT points, and r is used to reduce dimensionality
and remove unnecessary information in the SLS and DLS.
Specifically, L corresponded to 6800 in our data, and r was
set as 16 in this study. Even after reducing the dimensionality,
the information of the two points remains sparse within SLS
and DLS, and « is designated to expand the information of
ST and DT. The values of SLS and DLS gradually decrease
from around ST and DT, and the position information of ST
and DT is represented as a triangular shape. It emphasizes
the information of ST and DT and increases the proportion
of meaningful information in the total, similar to the heat-
map representation used in human pose estimation of image
processing [25], [26]. Additionally, the probabilities of ST
and DT can be estimated from the model trained using the
SLS and DLS. It is needed in a proposed ensemble method,
and a more detailed explanation of the proposed ensemble
method is provided in Section II-E. The value of o was
experimentally set as 30.

C. AUGMENTATION OF TRAINING DATA

Deep learning techniques, such as CNN, can construct a
complex model, but a large dataset is required in the training
process. Therefore, in this study, data augmentation is con-
ducted to increase the training data size. The trained model
determines ST and DT in OMW, and the data from ST to
DT should be included in the input data. In the proposed
method, the data from the ST - margin to the DT + margin
are considered as essential information, and new data are
constructed by sequentially trimming the original data with
the exception of the essential information. Hence, we define
the data before and after the essential information as Dpefore
and Dgf., Tespectively, which are continuously trimmed at
a second unit, and new data are generated for all trimmed
cases. The margin was set to a length of 3 s to include at
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FIGURE 3. Structure of the proposed CNN model for estimating ST and DT
from OMW.

least one more pulse in the OMW. Fig. 2 shows an example
of the augmentation process. The length of the OMW is
44.2's, and Dpefore and Dygrer exhibit lengths of 18 s and
3.2 s, respectively. Then, Dpefore can be trimmed 18 times,
and D, can be trimmed three times. Therefore, all possible
trimmed cases correspond to 18 x 3 = 54, and a new set
of 54 cases can be obtained via the augmentation process.
The size of augmented data was 28,570 from 246 records of
64 participants in our study. Blood pressure monitors uses
their own algorithm to decide maximum cuff pressure to be
compressed and endpoint of measurement, and the length
of the measured OMW might vary for each measurement.
By using augmented data, the model can learn various cases
of OMW of various lengths, and a more robust estimation is
possible for OMW with a short length.
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FIGURE 4. Example of estimated SLS in the three CNN models trained
using different datasets.

D. STRUCTURE OF THE CNN MODEL

In the proposed model, input data size of 1 x 6800 x 1
was used. OMW was normalized to a zero mean and unit
variance, and zero padding was utilized for OMW whose
length was shorter than 6800 to be used as the input data.
The structure of the proposed model is shown in Fig. 3. The
model is constructed to find the positions of ST and DT in
OMW, and fully convolutional networks are utilized without
fully connected layers to preserve the position information
on ST and DT in each layer. The model consists of six CNN
blocks constructed by combining a 1-D convolutional layer,
batch normalization, ReLu activation function, and a 1-D max
pooling layer. The first block uses a 1-D convolutional layer
with a kernel size of 1 x 3 x 1, stride of 1, and 14 filters. The
purpose of this layer involves extracting detailed information
on the OMW signal, and a small kernel is utilized. Then, batch
normalization and ReLu activation function are attached to
reduce the impact of the data scale and prevent the vanishing
gradient problem [27]. Previous studies extracted features
from the OMWE to determine ST and DT [6], [8]. This is
because the analysis of the overall shape of the OMW can aid
in estimating ST and DT. Therefore, wider kernels are used
for the 1-D convolutional layers in the second to sixth blocks
to acquire useful information in a wide region of OMW, sim-
ilar to the OMWE-based features utilized in previous studies.
The model investigates a wide range of OMW trends via
successive broad kernels, and variable information on ST and
DT is extracted. Similar to the first block, batch normalization
and the ReLu activation function are also included in the
blocks. The label data of this model are SLS and DLS with
reduced dimensionality as explained in Section II-B. The
length of the input data is decreased by four 1-D max pooling
layers in the second to fifth blocks. The number of filters
is set to two in the last convolutional layer to produce two
signals with a length of 6800/r, each corresponding to SLS
and DLS.
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FIGURE 5. Overall block diagram of the proposed method.

E. ENSEMBLE METHOD USING GENDER INFORMATION
The output of the model could contain an outlier value, and
a low-pass filter with a cutoff frequency of 0.5 Hz is used to
smooth the output, that is the estimated SLS and DLS. ST and
DT are obtained by determining a point with the maximum
value in SLS and DLS, respectively. Then, SBP and DBP can
be estimated by identifying the CPS values corresponding to
ST and DT.

Only one model can be used to conduct the aforementioned
estimation process; however, three models are trained and
utilized in the proposed method. This is conducted to fur-
ther improve the estimation performance using an ensemble
method. The ensemble methodology is a common concept in
machine learning. It involves building several diverse models
and integrating the results of multiple models to increase
the prediction performance and improve the robustness of
prediction [28]. To construct models with diversity, the pro-
posed method assigns different weights to training data using
gender information. One model is trained considering the
entire data with equal weights. However, the other two mod-
els separate the entire training data into male and female
data and increase the weights of the male or female data to
train each model. The usefulness of gender information in
blood pressure estimation has been shown in previous stud-
ies [9]-[12], and gender information-based data manipulation
was implemented in this study. Experimental protocols for
blood pressure measurement normally require the gathering
of gender information to analyze the results of blood pressure
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measurement according to gender [24], and the acquisition
of the information is not abnormal or difficult. Therefore,
the information was recorded in our experiment and utilized
for the ensemble process. Furthermore, the information is
required only in the training phase to construct diverse mod-
els, and the gender information of a test subject is not required
to estimate SBP and DBP in the proposed method. This is
a crucial advantage because gender information is external
information that cannot be automatically obtained by using a
blood pressure monitor in the test phase.

The proposed method simultaneously applies a test datum
to the three models and selects the output of one model by
comparing their reliability to obtain the ST and DT. It is
to utilize the information of the three models with various
characteristics regardless of the actual gender information of
the test datum. A detailed explanation is presented in Fig. 4,
which shows the three estimated SLS results from the three
models. The original SLS used for training has a maximum
value of one at ST, and the model is trained to produce an out-
put similar to the SLS. Therefore, the maximum value of the
estimated SLS will be close to one when reliable estimation is
performed in the model. This idea is reflected in the proposed
method, and the estimated SLS output of the model with the
highest maximum value is selected among the three estimated
SLS results from the three models. Then, ST is determined
using the selected SLS output. This process utilizes the
estimated SLS of each model as a signal representing the
probability of ST, and the point with the highest probability
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is selected as ST. For example, the estimated SLS of model 2
exhibits the highest maximum value of 0.82 among the three
estimated SLS results, and ST is designated as 177 in Fig. 4.
The estimation of DT is conducted using the same process
as above with the exception that estimated DLS is used as
opposed to SLS. Other methodologies such as the weighted
sum or morphology analysis of outputs can be used to merge
the information of three models, but the selection method was
utilized in this study, because the method is simple and dose
not need any adjustable or empirical variables.

F. SUMMARY OF THE PROPOSED METHOD

The overall process of the proposed method is illustrated in
this section (Fig. 5). The proposed method utilizes OMW
and label data, consisting of SLS and DLS as training data,
which are obtained via preprocessing. Then, data augmen-
tation is implemented to increase the size of the training
data by trimming the OMW into various lengths. The gender
information is used to obtain three models having diversity.
One model considers the entire training data equally, but the
other two models increase the weights of male or female
data for training, respectively. In the test phase, OMW is
extracted from the measured CPS and applied to the three
trained models. The output of the models is the estimated SLS
and DLS, and the proposed ensemble method selects one of
the results of the three models by comparing their reliability.
The ST and DT are determined from the selected results. SBP
and DBP are estimated by determining the pressure values
corresponding to ST and DT in the measured CPS.

IIl. RESULTS AND DISCUSSIONS
A. SIMULATION ENVIRONMENT
Simulations were conducted to verify the proposed method
using a computer with an Intel Core i7-6700 CPU and
NVIDIA GeForce GTX 1060 graphics card. Preprocessing
was conducted in MATLAB, and other steps, including the
construction of the CNN models, training process, and blood
pressure estimation from the estimation results of the models,
were implemented in Python with TensorFlow and Keras.
In the training, the batch size was set as 100, and the mean
square error loss and Adam optimizer were utilized to update
the weights of the models. The learning rate was 5 x 107>
and it was reduced by 10% to as low as 107 if there was no
improvement for three epochs. The total number of epochs
for training was 100, but early stopping was activated when
there was no improvement in the performance for ten epochs.
The performance of blood pressure estimation was verified
using SIT. As mentioned in the introduction, SIT is used to
identify the performance of a system on the data of unknown
subjects, and the test data consist only data of subjects who
do not belong to the training data. The evaluation process is
similar to real situations, and it is important and necessary
to apply SIT to verify a system that analyzes physiological
signals such as OMW with inter-subject variation [29]. The
data of 64 subjects were randomly divided into eight folds
and cross-validated. The training data contained the data of
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FIGURE 6. MAE of blood pressure estimation using the proposed method
in ten simulations. The orange line denotes the results of the proposed
method, including the ensemble method, and the blue line denotes the
results when the ensemble method was not utilized.

56 subjects to train the models in each fold. The data of eight
subjects were tested for each fold, and the estimation errors
of all subjects were collected. As mentioned at Section II-A,
the auscultatory method was used to identify true SBP and
DBP, and the estimation error was obtained as the difference
between the true value and the estimated blood pressure for
SBP and DBP, respectively. The auscultatory method cannot
give true MAP, and the estimation and analysis were con-
ducted for SBP and DBP. Subsequently, the mean error (ME),
standard deviation of error (SDE), and mean absolute error
(MAE) were calculated for SBP and DBP to represent the
performance of blood pressure estimation as follows:

e =Yyi— i 3)
1 N
ME = Zei, )
i=1
1 N
_ A 2
SDE = | —— 2(@ ME)2, 5)
=
1 N
MAE = — 21: leil, (6)
=

where y;, y;, ¢;, and N denote the true value, estimated value,
estimation error, and number of data, respectively. Then, the
subject-wise cross-validation was repeated ten times to obtain
a more generalized performance for the proposed method.

B. BLOOD PRESSURE ESTIMATION RESULTS OF THE
PROPOSED METHOD

Fig. 6 shows the MAE of the proposed method for ten simula-
tions of blood pressure estimation. It also contains the results
of cases that excluded the ensemble method, and the effect
of the ensemble method can be identified by comparing the
two results. To calculate the results for the case without the
ensemble method, ST and DT were estimated using only one
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FIGURE 7. Bland-Altman plot showing the relationship between true
blood pressure and estimation error.

TABLE 1. Averaged results of blood pressure estimation (mmHg) for ten
simulations.

SBP DBP
Method
ME SDE MAE ME SDE MAE
MAA 3.92 6.48 5.51 4.59 5.99 6.23
w/o Ensemble 0.62 4.73 3.21 0.13 5.68 4.16
Proposed 0.72 4.57 3.12 0.06 5.27 3.98

model (Model 1 in Fig. 5), and SBP and DBP were obtained
from ST and DT. The results varied slightly according to
each simulation; however, there were no outliers. Overall, the
MAE was low when the ensemble method was utilized in the
results, and its effect was more noticeable for DBP than for
SBP. The MAE of SBP estimation was lower than that of DBP
when only one model was employed, and the improvement
from the ensemble method was more prominent in DBP with
more room for enhancement. A t-test was used to verify the
statistical significance of the differences between the results
with and without the ensemble method [30]. The calculated p
values were 0.028 and 0.004 for SBP and DBP, respectively.
The values were lower than 0.05, which shows that the use of
the ensemble method has a statistical significance at the 95%
confidence level in the results of blood pressure estimation.
Furthermore, the advantages of the ensemble method can be
confirmed by the averaged results (Table 1).

The results from MMA, which is a traditional method for
blood pressure estimation, were computed to exhibit the supe-
riority of the proposed method in Table 1. The MAE of the
proposed method were 3.12 and 3.98 mmHg, and the values
were 2.39 and 2.25 mmHg lower than MMA for SBP and
DBP, respectively. Additionally, the proposed method could
improve ME and SDE. The decrease in ME was the highest,
and the differences in ME between MAA and the proposed
method were 3.20 and 4.53 mmHg for SBP and DBP. MMA
is simple and has an intuitive operating principle; however, it
only analyzes the amplitude change in OSC pulses, and fixed
empirical coefficients are used for all data. Conversely, the
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TABLE 2. Computational time (s) for training and test.

Trr F TrE D
w/o Ensemble 3,840.99 0.86
Proposed 12,500.01 4.47

TABLE 3. Percentage of distribution of absolute error.

Absolute Error (%)

< 5 mmHg < 10 mmHg < 15 mmHg
SBP 80.08 97.56 98.37
DBP 69.11 96.09 99.19

proposed method attempts to find valuable information in the
entire OMW and utilizes the deep learning model and ensem-
ble method to generate most of the input data. Therefore, the
performance of the proposed method was better than that of
MMA.

The distribution of the estimation error was investigated
to analyze the performance of the proposed method in more
detail. The results of the seventh simulation were used for the
analysis, and the estimation error was plotted according to the
true blood pressure (Fig. 7). There was no bias for true blood
pressure in the figure, and R* was 0.0148 and 0.0002 for SBP
and DBP, respectively. The results show that the estimation
performance of the proposed method was rarely affected by
the blood pressure value. Additionally, there were a few cases
with errors higher than 20 mmHg for SBP, but most of the
error values were less than 15 mmHg (Table 3). The British
Hypertension Society established a standard for grading the
performance of a blood pressure monitor [31]. Although there
were some differences in the experimental protocol used in
this study, it was possible to evaluate the proposed method by
numerically comparing the results of the proposed method
with the standard. The standard considers a blood pressure
monitor as ‘A’ grade when it has more than 60, 85, and 95%
absolute error with values lower than 5, 10, and 15 mmHg,
respectively. The results of the proposed method satisfied
the standard, indicating the superiority of the blood pressure
estimation results obtained via the proposed method.

Computational time was investigated to provide more
detailed information on the proposed method (Table 2). The
proposed method was validated via the subject-wise eight-
folds cross-validation, and average training time for each fold
(T7r_r) was calculated. The number of training data was
24,998.75 on average in each fold, and Trg r was 3,840.99
without the ensemble method. It increased approximately
three times when using the ensemble method, because the
three models were trained in the ensemble method. In the test
phase, the time to estimate blood pressure was measured for
each datum, and the averaged time was defined as T7g_p. The
Tre_p was more than three time when using the ensemble
method. This is because the time for comparing the results
of the three models was necessary. The proposed method
required the long training time, but the time for estimating
blood pressure was relatively short. Therefore, the proposed
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TABLE 4. Comparison results with other studies on OMW-based blood pressure estimation.

Method SBP DBP SIT External information
ME SDE MAE ME SDE MAE

1. FENN [6] - 8.58 6.28 - 7.33 5.73 (e} -

2. DBN-DNN (8] 0.01 6.35 - 0.03 5.28 - (6] -

3. GMR [32] 1.18 5.67 - 0.32 5.72 - (¢} -
4.IGMR [33] -0.34 5.79 4.52 0.73 432 3.32 (6} Age

5. DBN-DNN-FE [9] -0.01 5.74 - -0.04  4.68 - (6] Age and gender
6. DBN-DNN-AE [10] 0.02 5.74 - -0.03 4.67 - (6] Age and gender
7.DBR [11] -0.50 5.96 - 0.21 4.82 - (6] Age and gender
8. DBMDS [12] 0.17 5.34 - -0.11 4.36 - (6] Age and gender
9. GPR [7] - - 3.64 - - 4.27 X -

10. LSTM-RNN [13] -1.2 59 3.8 1.8 8.8 73 X -

11. DBN-DNN-BB [14] 0.4 2.9 1.1 -1.0 5.6 3.0 X -
Proposed 0.72 4.57 3.12 0.06 5.27 3.98 (6] -

method can be used in real situations by utilizing the models
that were trained offline.

C. COMPARISON WITH OTHER STUDIES

Many studies that estimate blood pressure based on OMW
have been conducted, and the effectiveness of the proposed
method was compared with the results of previous studies
(Table 4). The comparison considered 11 methods that used
various techniques such as FFNN, DBN-DNN, Gaussian
mixture regression (GMR), improved GMR (IGMR), DBN-
DNN with a fusion ensemble estimator (DBN-DNN-FE),
DBN-DNN with an asymptotic approach-based ensemble
method (DBN-DNN-AE), DBM regression (DBR), DBM-
based Dempster-Shafer fusion (DBMDS), GPR, LSTM-
RNN, and DBN-DNN with beat-by-beat time domain
features (DBN-DNN-BB).

The proposed method outperformed methods 1-3 that did
not utilize external information. Methods 1-3 were validated
via SIT, and all the performance indices of SBP and DBP
were worse than those of the proposed method with the excep-
tion of the ME for method 2. The ME of method 2 was 0.71
lower than that of the proposed method for SBP. However, the
ME and SDE of DBP were almost equal, and the SDE of SBP
was 1.78 higher than that of the proposed method. Therefore,
the proposed method exhibited a better performance in blood
pressure estimation than method 2 overall. Furthermore, SBP
results could be improved via the proposed method when
compared with methods 4-8, but DBP results were better
in methods 4-8. By comprehensively considering the results
of SBP and DBP, the blood pressure estimation performance
of the proposed method was similar to that of methods 4-8.
However, methods 4-8 used external information, such as
age and gender, and the information should be acquired
and included in the input when blood pressure estimation is
conducted for a test subject in a system that utilizes
methods 4-8. On the other hand, the proposed method does
not require any external information, and only the mea-
sured CPS is used in the testing phase. Nevertheless, the
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proposed method showed good performance similar to
methods 4-8, and which is an advantage of the proposed
method. Methods 9-11 did not utilize SIT in the performance
evaluation, and the data of all subjects were classified into
training and test data without considering the subject-wise
separation of data. The evaluation process is advantageous for
performance evaluation when compared to SIT for physiolog-
ical data with inter-subject variation because the characteris-
tics of subjects in the test data can be analyzed during training
in advance. Therefore, it is difficult to rigorously compare the
results of methods 9-11 with those of the proposed method.
Despite this, all the results of SBP and DBP obtained via
the proposed method were better than those obtained via
methods 9 and 10.

IV. CONCLUSION

In this study, a CNN-based method was proposed to estimate
blood pressure. The method analyzes OMW and does not
require any external information on a subject in the test phase.
The CNN model of the proposed method extracts useful
information in the entire OMW and finds the pulse positions
corresponding to SBP and DBP. Data augmentation was con-
ducted to expand the size of the training data, and an ensemble
method was utilized to further increase the performance of the
blood pressure estimation in the proposed method. Simula-
tions and comparisons with other studies were performed, and
the effectiveness and superiority of the proposed method were
confirmed. To the best of our knowledge, this is the first study
in which a deep learning-based model is devised to analyze
the entire OMW for blood pressure estimation. The method
uses the entire OMW as input to prevent the omission of
valuable information in the OMW. Furthermore, the excellent
performance of the proposed method was identified via the
results. The proposed method can be utilized in various forms
of automatic blood pressure monitors and can improve the
estimation performance of blood pressure values. This benefit
can aid individuals in managing cardiovascular diseases by
ensuring more accurate blood pressure monitoring. In future
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studies, we will validate the expanded size of real data and
perform an in-depth analysis of outliers.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

B. Zhang, Z. Wei, J. Ren, Y. Cheng, and Z. Zheng, ‘‘An empirical study on
predicting blood pressure using classification and regression trees,” IEEE
Access, vol. 6, pp. 21758-21768, 2018.

F. Tabei, J. M. Gresham, B. Askarian, K. Jung, and J. W. Chong, “Cuff-
less blood pressure monitoring system using smartphones,” IEEE Access,
vol. 8, pp. 11534-11545, 2020.

L. E. Klinker, T. S. Henriques, M. D. Costa, R. B. Davis, M. A. Mittleman,
P. Mathur, and B. Subramaniam, “Comparison of invasive and noninvasive
blood pressure measurements for assessing signal complexity and surgical
risk in cardiac surgical patients,” Anesthesia Analgesia, vol. 130, no. 6,
p. 1653, 2020.

M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and
I. Batkin, “Oscillometric blood pressure estimation: Past, present, and
future,” IEEE Rev. Biomed. Eng., vol. 8, pp. 44-63, 2015.

G. Drzewiecki, R. Hood, and H. Apple, “Theory of the oscillometric
maximum and the systolic and diastolic detection ratios,” Ann. Biomed.
Eng., vol. 22, no. 1, pp. 88-96, Jan./Feb. 1994.

M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, and S. Rajan,
“Feature-based neural network approach for oscillometric blood pressure
estimation,” IEEE Trans. Instrum. Meas., vol. 60, no. 8, pp. 2786-2796,
Aug. 2011.

A. S. Alghamdi, K. Polat, A. Alghoson, A. A. Alshdadi, and
A. A. A. El-Latif, “Gaussian process regression (GPR) based non-invasive
continuous blood pressure prediction method from cuff oscillometric sig-
nals,” Appl. Acoust., vol. 164, Jul. 2020, Art. no. 107256.

S. Lee and J.-H. Chang, “Oscillometric blood pressure estimation based
on deep learning,” IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 461-472,
Apr. 2017.

S. Lee and J.-H. Chang, “Deep belief networks ensemble for blood pres-
sure estimation,” IEEE Access, vol. 5, pp. 9962-9972, 2017.

S. Lee and J.-H. Chang, “Deep learning ensemble with asymptotic tech-
niques for oscillometric blood pressure estimation,” Comput. Methods
Programs Biomed., vol. 151, pp. 1-13, Nov. 2017.

S. Lee and J.-H. Chang, “Deep Boltzmann regression with mimic features
for oscillometric blood pressure estimation,” IEEE Sensors J., vol. 17,
no. 18, pp. 5982-5993, Sep. 2017.

S. Lee and J.-H. Chang, ‘“‘Dempster—Shafer fusion based on a deep
Boltzmann machine for blood pressure estimation,” Appl. Sci., vol. 9, no. 1,
p- 96, Dec. 2018.

A. Argha and B. G. Celler, “Blood pressure estimation from time-
domain features of oscillometric waveforms using long short-term memory
recurrent neural networks,” IEEE Trans. Instrum. Meas., vol. 69, no. 6,
pp. 3614-3622, Jun. 2020.

A. Argha, J. Wu, S. W. Su, and B. G. Celler, “Blood pressure estima-
tion from beat-by-beat time-domain features of oscillometric waveforms
using deep-neural-network classification models,” IEEE Access, vol. 7,
pp. 113427-113439, 2019.

S. Narus, T. Egbert, T.-K. Lee, J. Lu, and D. Westenskow, ‘“Noninvasive
blood pressure monitoring from the supraorbital artery using an artificial
neural network oscillometric algorithm,” J. Clin. Monit., vol. 11, no. 5,
pp. 289-297, Sep. 1995.

Z. Unal, “Smart farming becomes even smarter with deep learning—
A bibliographical analysis,” IEEE Access, vol. 8, pp. 105587-105609,
2020.

X.-W. Chen and X. Lin, “Big data deep learning: Challenges and perspec-
tives,” IEEE Access, vol. 2, pp. 514-525, 2014.

X. Xu, S. Jeong, and J. Li, “Interpretation of electrocardiogram
(ECG) rhythm by combined CNN and BiLSTM,” IEEE Access, vol. 8,
pp. 125380-125388, 2020.

O. Cheikhrouhou, R. Mahmud, R. Zouari, M. Ibrahim, A. Zaguia, and
T. N. Gia, “One-dimensional CNN approach for ECG arrhythmia analysis
in fog-cloud environments,” [EEE Access, vol. 9, pp. 103513-103523,
2021.

E. Eldele, Z. Chen, C. Liu, M. Wu, C.-K. Kwoh, X. Li, and C. Guan,
“An attention-based deep learning approach for sleep stage classifica-
tion with single-channel EEG,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 29, pp. 809-818, 2021.

X. Xu and H. Liu, “ECG heartbeat classification using convolutional
neural networks,” IEEE Access, vol. 8, pp. 8614-8619, 2020.

56822

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

=
i :

W. Huang, Y. Xue, L. Hu, and H. Liuli, “S-EEGNet: Electroencephalo-
gram signal classification based on a separable convolution neural network
with bilinear interpolation,” IEEE Access, vol. 8, pp. 131636-131646,
2020.

M. Choi, G. Koo, M. Seo, and S. Kim, ‘“Wearable device-based system to
monitor a driver’s stress, fatigue, and drowsiness,” IEEE Trans. Instrum.
Meas., vol. 67, no. 3, pp. 634-645, Mar. 2018.

G. S. Stergiou et al., “A universal standard for the validation of blood
pressure measuring devices: Association for the advancement of medical
instrumentation/European society of hypertension/International Organi-
zation for Standardization (AAMI/ESH/ISO) collaboration statement,”
Hypertension, vol. 71, no. 3, pp. 368-374, Jan. 2018.

V. Belagiannis and A. Zisserman, “Recurrent human pose estimation,”
in Proc. 12th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG),
May 2017, pp. 468—475.

L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “Multi-scale structure-aware
network for human pose estimation,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 713-728.

S.-H. Wang, K. Muhammad, J. Hong, A. K. Sangaiah, and Y.-D. Zhang,
“Alcoholism identification via convolutional neural network based on
parametric ReL.U, dropout, and batch normalization,” Neural Comput.
Appl., vol. 32, no. 3, pp. 665-680, Feb. 2020.

L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33,
nos. 1-2, pp. 1-39, 2010.

M. Choi and J. J. Jeong, “Comparison of selection criteria for model
selection of support vector machine on physiological data with inter-
subject variance,” Appl. Sci., vol. 12, no. 3, p. 1749, Feb. 2022.

A. Guzanova, G. Izarikov4, J. Brezinov4, J. Zivéék, D. Draganovskd, and
R. Hudik, “Influence of build orientation, heat treatment, and laser power
on the hardness of Ti6Al4V manufactured using the DMLS process,”
Metals, vol. 7, no. 8, p. 318, Aug. 2017.

E. O’Brien, J. Petrie, W. A. Littler, M. D. Swiet, P. L. Padfield, D. Altman,
M. Bland, A. Coats, and N. Atkins, “The British hypertension society
protocol for the evaluation of blood pressure measuring devices,” J. Hyper-
tension, vol. 11, no. 2, pp. S43-S62, 1993.

S. Lee, S. Rajan, G. Jeon, J.-H. Chang, H. R. Dajani, and V. Z. Groza,
“Oscillometric blood pressure estimation by combining nonparametric
bootstrap with Gaussian mixture model,” Comput. Biol. Med., vol. 85,
pp. 112-124, Jun. 2017.

S. Lee, C.-H. Park, and J.-H. Chang, “Improved Gaussian mixture regres-
sion based on pseudo feature generation using bootstrap in blood pressure
estimation,” IEEE Trans. Ind. Informat., vol. 12, no. 6, pp. 2269-2280,
Dec. 2016.

MINHO CHOI received the B.S. degree from the
Department of Electric and Electronic Engineer-
ing, Chung-Ang University, Seoul, South Korea,
in 2012, and the Ph.D. degree from the Department
of Creative IT Engineering, Pohang University of
Science and Technology, Pohang, South Korea,
in 2019.

From 2019 to 2021, he was a Senior Researcher
at InBody Company Ltd., Seoul. Since 2022, he
has been a Senior Researcher with the Digital

Health Research Division, Korea Institute of Oriental Medicine, Daejeon,
South Korea. His current research interests include sensing technology for
biomedical measurements, the signal processing of physiological signals,
and artificial intelligence for biomedical data.

SANG-JIN LEE received the B.S. and master’s
degrees from the Department of Electronics and
Information Engineering, Korea University, Seoul,
South Korea, in 2014 and 2016, respectively.
Since 2017, he has been working as a
Researcher at InBody Company Ltd., South Korea.
His current research interests include measure-
ments and signal processing of physiological sig-
nals and algorithms for estimating blood pressure.

VOLUME 10, 2022



