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ABSTRACT Maintenance is one of the critical areas in operations in which a careful balance between
preventive costs and the effect of failures is required. Thanks to the increasing data availability, decision-
makers can now use models to better estimate, evaluate, and achieve this balance. This work presents a
maintenance scheduling model which considers prognostic information provided by a predictive system.
In particular, we developed a prescriptive maintenance system based on run-to-failure signal segmentation
and a Long Short Term Memory (LSTM) neural network. The LSTM network returns the prediction of
the remaining useful life when a fault is present in a component. We incorporate such predictions and
their inherent errors in a decision support system based on a stochastic optimization model, incorporating
them via chance constraints. These constraints control the number of failed components and consider the
physical distance between them to reduce sparsity and minimize the total maintenance cost. We show that
this approach can compute solutions for relatively large instances in reasonable computational time through
experimental results. Furthermore, the decision-maker can identify the correct operating point depending on
the balance between costs and failure probability.

INDEX TERMS Prescriptive maintenance, chance constraints, remaining useful life, stochastic optimiza-
tion, LSTM networks.

I. INTRODUCTION
Operational areas within organizations are under ever-
increasing pressure to improve their performance. Social,
political, and competitors are just some of the drivers push-
ing companies to be more efficient and effective with their
resources and assets. This pressure, in turn, has added a
tremendous burden to maintenance, an area that must keep a
delicate balance between the effects of failures and the cost of
preventive measures. Furthermore, the increase in complexity
of current production systems makes this balance even more
challenging, making condition-based maintenance policies
hard to define and implement. To deal with these difficulties,
maintenance areas have turned to operational data to get
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an answer, taking advantage of many sensors and telemetry
systems that are now available. Here, predictive analytics
tools have helped convert data into information, transforming
the constant flow from sensors and actuators to detect and
even predict changes in the state of the system [1], [2]. The
development of frameworks like the Prognostics and Health
Management (PHM) one [3], [4], have further increased the
need for fault prediction [5]–[8] as well as estimating the
remaining useful life (RUL) of a component after a fault
appears [9]–[12]. This has managed to reduce the number
of interruptions due to unexpected failures in different appli-
cation areas considering operational information [13], [14],
risk-averse strategy [15], uncertainty characterization [16],
and others [17]. However, this is only a partial solution.
As systems grow, so will the number of detections and diag-
noses, and what maintenance areas need is to have reliable

55924 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7471-5605
https://orcid.org/0000-0001-7740-9865
https://orcid.org/0000-0001-7045-4022
https://orcid.org/0000-0002-6511-5998


A. D. Cho et al.: Improving Prescriptive Maintenance by Incorporating Post-Prognostic Information

FIGURE 1. ALMA radio telescopes. From image gallery of almaobservatory.org by liam young, Juan carlos rojas, and sergio Otárola.

plans that help them balance the cost of preventive measures
with the ones caused by undetected or untreated failures
[18], [19]. In this setting, prescriptive analytics tools might
hold the key to improving the efficiency and efficacy of these
complex systems, taking advantage of the plethora of opera-
tional data sources that are now available, if these systems can
handle the uncertainties inherent with prognostic procedures.

Prescriptive maintenance has appeared under this new
paradigm, where maintenance support tools take advantage
of the information obtained through data analysis and pre-
dictions to compute and schedule maintenance plans that
recommend the best course of action [20]–[22].

Researchers have recently been dealing with uncertainty
and component connections in maintenance planning from
the decision-making perspective [19], [23], [24]. Covering
both aspects will be essential for large and complex pro-
duction facilities like wind farms [25], solar generators, and
even scientific instruments such as the ALMA radio tele-
scope [5]. In this work, we will focus on the last step of PHM
for decision-making in maintenance, which covers the two
aspects mentioned before.

A. OUR CONTRIBUTION
Our work has the following novel contributions:

1) We propose a stochastic model with chance constraint
to handle unexpected failures and address components
with different levels of uncertainty in decision-making
for maintenance to minimize the total cost. In addition,
the model considers the distance between components
in each maintenance period and the total residual RUL.

2) We study and describe the effect of varying ε of the
chance constraint in the resulting schedule.

II. PROBLEM DESCRIPTION
Let N be the set of components distributed over K machines,
which might be in different sites, or they could be separated
by several km between them, as shown in Figure 1. Addi-
tionally, each machine has a list of components on which a
predictive system, like the one described in [5], has detected
a degradation fault. Furthermore, each component has a pre-
dicted RUL distribution provided by this predictive system.
The machines are not necessarily identical, and we assume
that their components are independent between machines and
within each machine. If one of the machine’s components
fails, we consider that the machine fails. This type of setting
rises in several applications like manufacturing [26], off-
shore wind farms [25], and scientific instruments like the
ALMA radio telescope [27], among others.

Our goal is to arrange this set of components to mini-
mize the maintenance cost considering the distance between
machines and balancing the machines’ availability. We con-
sider a one-year planning horizonwithmaintenance decisions
per month in our work.

A. PREDICTIVE SYSTEM
LSTM networks are a type of artificial recurrent neural
network (RNN) architecture proposed by Hochreiter and
Schmidhuber [28] to deal with the vanishing gradient prob-
lem. One LSTM unit comprises three gates: an input gate,
an output gate, and a forget gate. It also has a memory cell
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that remembers values over arbitrary time intervals, while the
three gates regulate the flow of information into and out of the
cell. This type of RNN has been found extremely successful
in many applications [29]. A typical LSTM [30] is illustrated
in Figure 2.

FIGURE 2. LSTM unit.

We have developed an RUL prediction system based
on LSTM neural networks. This network was pre-trained
using run-to-failure data with degradation faults as the ones
described in [5]. The data for each component was analyzed
and clustered, with each cluster having a catastrophic fail-
ure threshold. The system is in charge of identifying which
cluster best represents the detected fault, after which it uses
the corresponding analytical model to predict the RUL’s dis-
tribution. As a result, we have available the mean r̂i and the
standard deviation σ̂i of the RUL estimation for each com-
ponent i. A general diagram with the developed prediction
system is shown in Figure 3.

FIGURE 3. Predictive system.

We will call as post-prognostic information the set of pre-
diction of the components with detections obtained from the
predictive system, which is later used as input to the decision-
making model.

III. PROPOSED MAINTENANCE SCHEDULING MODEL
The scheduling model formulation is based on the ideas
developed in [31]. However, unlike that work, instead of
accomplishing the given demands, our approach aims to use
the components as much as possible before the end of their
respective RUL.

A. DYNAMIC MAINTENANCE COST
A dynamic maintenance cost function models the trade-off
between the cost of preventive maintenance Cp (early repair
before failure) and the corrective maintenance cost Cc that
deals with unexpected failures [32]. Typically, corrective
maintenance costs are higher than preventive maintenance
ones. Therefore, dynamic cost functions are directly related
to the RUL of each component, and it is defined in [31]–[33]
as:

Ci,ti,0 (t) =
CpP

(
Ri,ti,0 > t

)
+ CcP

(
Ri,ti,0 ≤ t

)∫ t
0 P

(
Ri,ti,0 > z

)
dz+ ti,0

(1)

whereRi,ti,0 is the residual RUL of component i, which started
at time ti,0.

B. SCHEDULING MODEL
The prescriptive maintenance problem is modeled as the
following optimization problem:

min
∑
i∈G

∑
t∈T

Ci,ti,0 (t)zi,t −
∑
i∈G

∑
t∈T

Vi,tzi,t

+

∑
t∈T

C+γt

+

∑
t∈T

(
Cd
clDt + C

r+
cl 1̄t + C

r−
cl 1t

)
, (2)

such that,∑
t∈T

zi,t = 1, ∀i ∈ G, (3)

P

(∑
i∈G

∑
t∈T

ζi,tzi,t ≤ ρ

)
≥ 1− ε, (4)∑

i∈G

fizi,t ≤ M̄ + γt , ∀t ∈ T , (5)

Dt ≥ ϕi,j
(
zi,t + zj,t − 1

)
, ∀i, j ∈ G, i 6= j; ∀t ∈ T , (6)

1̄t =
∑
i∈G

zi,t max
{
0, ri − Op · t

}
, ∀t ∈ T , (7)

1t =
∑
i∈G

zi,t max
{
0,Op · t − ri

}
, ∀t ∈ T , (8)

zi,t ∈ {0, 1}, γt ,Dt , 1̄t ,1t ≥ 0, ∀i ∈ G,∀t ∈ T , (9)

where Ci,ti,0 (t) is the dynamic maintenance cost defined in
Section III-A. The parameters and decision variables are
summarized in Table 1.

The objective function, given by equation (2), minimizes
the total maintenance costs of a set of |G| components. Each
component has its dynamic maintenance cost, nominal func-
tional cost, additional time for the repair cost, the cost of the
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TABLE 1. Summary of the sets, decision variables and parameters of the
scheduling model.

distance between components, and cost related to residual
RUL.

Constraints (3) guarantees that each component enters
maintenance only once in the planning horizon. In contrast,
the chance constraint (4) restricts the number of components
that run out of RUL before their scheduled maintenance with
a threshold ρ and a probability of 1 − ε. In that constraint,
the Bernoulli random variable ζi,t is 1 if Ri,ti,0 < t and
0 otherwise; and ρ sets a upper bound on the number of
components with catastrophic failure. The probability of not
achieving the bound set by ρ is given by ε.

Constraints (5) ensures that at most M̄+γt work-hours are
needed for maintenance in each period t . If additional work-
hours are needed, then additional costs are added to the total
maintenance cost.

Constraints (6) determine the maximum distance between
components planned for maintenance in period t; this allows
for reducing the dispersion of the components in each main-
tenance period. Finally, constraints (7)-(8) represent the total
number of days before and after the end of the RUL in which
components require maintenance in period t .

C. SAFE APPROXIMATION OF CHANCE CONSTRAINT
The usage of chance constraint (4) in a decision-making
model makes it computationally challenging. In order to
make this constraint tractable, an upper bound can be com-
puted on the left-hand side of this inequality using Markov
and generalized Bernstein inequality as proposed in Proposi-
tion 1 in [33]. Hence, given z ∈ {0, 1}|T |×|G| satisfying∑
i∈G

∑
t∈T

E[ζi,t ]zi,t

≤ max

{
ρε,max

δ>0

[
|G|

[
(εeδρ)1/|G| − 1

]
eδ − 1

]}
= ρ∗, (10)

it will also satisfy constraint (4).
Figure 4 shows the behavior of the values of ρ∗, for

ρ = 11 and 150 components. In this Figure, we can notice
that for ε very close to 0, the bound is smaller, implying
that it is strengthened more than the number of components
with corrective maintenance, as long as it does not exceed the
amount ρ. As the value of ε increases, this condition becomes
less strict.

FIGURE 4. Safe approximation curve using ρ = 11 and 150 components.

D. STOCHASTIC MIP SCHEDULING MODEL
To deal with non-linear terms, we linearize the chance
constraint and dynamic cost using safe approximation and
approach the stochastic optimization model with a set of
scenarios sampled from the prediction distribution of the
RUL of each component.

1) CHANCE CONSTRAINT LINEARIZATION
Using the safe approximation defined in Section III-C, we can
reformulate chance constraint (4) taking the same strategy
proposed in [31] by defining an auxiliary decision variable
as follows

Pi,t := E(ζi,t ) = P(Ri,ti,0 ≤ t), ∀i ∈ G,∀t ∈ T . (11)

Considering P̄i,t as an upper bound of Pi,t and 0 ≤ Pi,t ≤
P̄i,t ≤ 1, we can rewrite

ui,t = Pi,tzi,t , ∀i ∈ G,∀t ∈ T , (12)

in the form of a safe approximation of the chance constraint
as follows:∑

t∈T

∑
i∈G

ui,t ≤ ρ∗, (13)
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0 ≤ ui,t ≤ Pi,t , ∀i ∈ G, ∀t ∈ T , (14)

Pi,t − (1− zi,t )P̄i,t ≤ ui,t ≤ P̄i,tzi,t , ∀i ∈ G,∀t ∈ T .

(15)

Analogously, we apply the linearization to the non-linear
term Ci,ti,0 (t)zi,t of the objective function by defining

wi,t := θi,tzi,t , (16)

where, θi,t = Ci,ti,0 (t), and 0 ≤ θi,t ≤ θ̄i,t ≤ Cc. Therefore,
the linearization of wi,t is given as follows:

0 ≤ wi,t ≤ θi,t , ∀i ∈ G,∀t ∈ T , (17)

θi,t − (1− zi,t )θ̄i,t ≤ wi,t ≤ θ̄i,tzi,t , ∀i ∈ G,∀t ∈ T , (18)

θ̄i,t = max
0≤t ′≤ti,0+t

Ci,ti,0 (t
′), ∀i ∈ G,∀t ∈ T .

(19)

2) SCENARIOS
From the post-prognostic information, we create a set of
scenarios S, such that each scenario is generated from each
component’s RUL distribution, i.e.,

S = {s1, s2, . . . , s|S|} (20)

with

sk = (rsk ,1, rsk ,2, . . . , rsk ,|G|), k = {1, . . . , |S|}, (21)

rsk ,i ∼ N (r̂i, σ̂ 2
i ), ∀i ∈ G, (22)

where r̂i, σ̂i represent the mean and standard deviation of the
RUL estimate of component i, respectively.

3) OPTIMIZATION MODEL
Considering the information on the distribution of the RUL of
each component and the linearization of the non-linear terms
of both the chance constraint and the dynamic cost function
described in Section III-D1, we can formulate our prescriptive
maintenance problem into a stochastic mixed-integer model
as follows,

min
1
|S|

∑
s∈S

8s, (23)

such that,

8s =

(∑
t∈T

∑
i∈G

wi,t +
∑
t∈T

C+γt

)
+

∑
t∈T

(
Cd
clDt + C

r+
cl 1̄s,t + C

r−
cl 1s,t

)
−

∑
t∈T

∑
i∈G

Vi,t · zi,t , ∀s ∈ S, (24)∑
t∈T

zi,t = 1, ∀i ∈ G, (25)∑
i∈G

fizi,t ≤ M̄ + γt , ∀t ∈ T , (26)

Dt ≥ ϕi,j
(
zi,t + zj,t − 1

)
,

∀i, j ∈ G, i 6= j; ∀t ∈ T , (27)

1̄s,t =
∑
i∈G

zi,t max(0, rs,i − Op · t),

∀t ∈ T , ∀s ∈ S, (28)

1s,t =
∑
i∈G

zi,t max(0,Op · t − rs,i),

∀t ∈ T ,∀s ∈ S, (29)∑
t∈T

∑
i∈G

ui,t ≤ ρ∗. (30)

0 ≤ ui,t ≤ Pi,t , ∀i ∈ G, ∀t ∈ T , (31)

Pi,t − (1− zi,t )P̄i,t ≤ ui,t ≤ P̄i,tzi,t ,

∀i ∈ G, ∀t ∈ T , (32)

0 ≤ wi,t ≤ θi,t , ∀i ∈ G, ∀t ∈ T , (33)

θi,t − (1− zi,t )θ̄i,t ≤ wi,t ≤ θ̄i,tzi,t ,

∀i ∈ G, ∀t ∈ T , (34)

zi,t ∈ {0, 1}; wi,t , γt ,Dt , 1̄s,t ,1s,t ≥ 0;

∀i ∈ G, ∀t ∈ T ,∀s ∈ S, (35)

where,

θ̄i,t = max
0≤t ′≤ti,0+t

Ci,ti,0 (t
′), (36)

Pi,t = P(Ri,ti,0 ≤ t) = P(ri ≤ ti,0 + t), (37)

and ri has the same distribution as defined in (22). ti,0 repre-
sents the days elapsed since the last emission of the predic-
tive information until the moment the scheduling process is
carried out and ρ∗ is the safe approximation constant defined
in (10). For simplicity, we consider P̄i,t = 1, ∀i ∈ G,∀t ∈ T .

The model aims to minimize the average cost generated
through all the scenarios, which is described by the equations
(23) and (24). The constraints (25)-(29) guarantee that all
components enter maintenance only once during the planning
horizon, and ensure that at most they need M̄ + γt work-
hours for maintenance in each period t . These constraints
also reduce the geographical dispersion between the com-
ponents attended in each period, considering the distance
between them. The model aims to use each component as
much as possible and reduce the days each enters main-
tenance after the end of RUL in each period t in each
scenario.

The constraints (30)-(32) represent the linearization of
the chance constraint (4), whereas the linearization of the
dynamic cost is given by the equations (33)-(34).

IV. EXPERIMENTAL SETTINGS
The proposed prescriptive maintenance system was imple-
mented in Python 3.8.10 using Gurobi 9.1.1 as a
mixed-integer optimization solver. The experiments were
done on a computer with an Intel R© CoreTM Processor
i5-3230M of 2.6 GHz x 4 cores, with 8 GB RAM, and Linux
Mint 20.1 Ulyssa (64 bits) as OS.

The model settings were as follows: the planning horizon
for maintenance was set to one year, i.e. H = |T | =
12, with each month as a period with operational length of
30 days, Op = 30. The preventive and corrective costs were
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FIGURE 5. Case study: 150 faulty components distributed in 9 machines.

TABLE 2. Runtime in seconds to load each step.

Cp
= 100000 and Cc

= 400000, respectively. Other related
costs were: C+ = 10000, Cd

cl = 10000, Cr+
cl = 11000,

Cr−
cl = 22000, and Vi,t = 5000. The maximum work-hours

was set to M̄ = 160, and 100 scenarios were generated.
These cost values were set with the objective of evaluating
both the dynamic cost and the performance of the proposed

model. We consider that the distance between components
i and j is the time required to go from one to the other for our
experimental setup. Furthermore, we consider the distance
between components the same as the distance between the
machines that contain each component. Hence, if the same
machine has the two components, we consider the distance
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FIGURE 6. Effect of scheduling: varying ε-value in the chance constraint.

to be 0. Finally, we consider the distance cost Cd
cl to be the

average travel cost by unit of time.
A public repository with all the benchmark instances tested

with our methodology can be found at [34].

V. COMPUTATIONAL RESULTS
A simulated problem of |G| = 250 components distributed
over K = 9 machines, as shown in Fig. 5b was used as
one of the instances to test the model’s performance. Fur-
thermore, we set ε = 0.1 and ρ = 11; this implies that
about 5% of the components enter corrective maintenance
due to a catastrophic failure with a probability of at least
1− ε. We solved the model using multiple scenarios sampled

from RUL distribution, described in Section III-D2, and we
assumed that the predictive system provided us with the infor-
mation on the same day that the scheduling model was exe-
cuted; therefore, we set ti,0 = 0. The result of the minimum
maintenance cost of each scenario is shown in Figure 5a,
where the red dash line represents the average maintenance
cost over all the scenarios.

In the resulting recommendation, all components enter
maintenance before the end of their RUL, with planned
maintenance of fewer than 12 days before they fail with
respect to the estimated RUL r̂i ∀i ∈ G, as illustrated in
Figure 5c (which presents no After RUL orange bars). Look-
ing at the cases for all scenarios, 3.41% of cases have some
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TABLE 3. Complemtary: sets and parameters.

TABLE 4. Abbreviations.

of the components go into maintenance after the end of the
sampledRUL, rs,i ∀s ∈ S,∀i ∈ G. This study verifies that less
than 5% of the components goes into corrective maintenance,
which we have previously set, and is reflected in the orange
bars in Figure 5d.

Constraint (4) introduces a tuning parameter ε, that helps
the decision-maker balance the different costs. Figure 5e
shows that for smaller values of ε, a higher mainte-
nance cost is needed since the model tries to increase the
machines’ availability by making earlier maintenance proce-
dures. For the case study, if ε ≥ 0.1, the maintenance cost
decreases almost linearly, showing slight changes in some
periods.

Figures 6a to 6b show the effect on the schedule of
increasing ε from 10−8 to 0.1. The analysis shows significant
changes, showing several grouping modifications in each
period. On the other hand, when we increased the ε from
0.1 to 0.2, there were only small changes in the movement of
some components: one component from period 2 to period 1,
two components from period 9 to period 10, and two compo-
nents from period 10 to the next period. Varying ε implied
some schedule changes and the effect on the maintenance
cost and computational effort. In the figures, for each period,
the red box indicates the component with a residual RUL
of less than ten days, the orange box when it is between
11 and 20 days, and the green one when it is greater than
20 days.

We also tested the performance in instances with 500 and
1000 components distributed over 20 machines, measur-
ing the time required to solve them. Our instances with
1000 components were solved in around 12 minutes. The
results are summarized in Table 2.

VI. CONCLUSION
The increasing complexity of systems has made it harder
for the operational areas to develop well-balanced policies in
maintenance. The availability of data has helped significantly
get better information, but decision support tools are crucial
to help improve efficiency and the effective use of resources
and assets. Furthermore, these tools need to embrace the
uncertainty inherent with predictive analytics tools such as
RUL predictions to be helpful.

Our work shows an initial approach to doing this. Our
model presents excellent performance, even when there are
different levels of uncertainty in the predicted RUL. This
approach complements predictive systems, taking advantage
of their information. Furthermore, the scheduling model
can handle a more extensive set of components, reduce
processing time, and give robust recommendations to the
decision-makers.
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